首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tyrosine hydroxylase (TH) is the first and rate-limiting enzyme in the biosynthesis of catecholamines, and its expression is regulated in a developmental stage- and cell type-specific manner. Our previous work suggested that the genetic elements responsible for cell type-specific expression of TH were in the repressor region of the TH promoter between −2187 and −1232 bp. To investigate the molecular mechanisms underlying the specificity of TH expression, the DNA methylation patterns of the CpG islands in the repressor region of the TH promoter were examined in human neural stem cells (NSCs) and dopaminergic neuron-like cells. Using a bisulfite sequencing method, we found that the cytosine residues of CpG islands within the NRSE-R site were specifically methylated in NSCs, but not in SH-SY5Y neuroblastoma cells. In NSCs, CpG methylation correlated with reduced TH gene expression, and inhibition of DNA methylation with 5-azacytidine restored TH expression. Furthermore, methyl-CpG binding domain proteins (MBDs) bound to the highly methylated X-1 and X-2 regions of the TH gene in NSCs. Taken together, these results suggest that region-specific methylation and MBDs play important roles in TH gene regulation in NSCs.  相似文献   

3.
There is increasing evidence that the different polymers that constitute the cytoskeleton are interconnected to form a three-dimensional network. The macromolecular interaction patterns that stabilize this network and its intrinsic dynamics are the basis for numerous cellular processes. Within this context,in vitrostudies have pointed to the existence of specific associations between microtubules, microfilaments, and intermediate filaments. It has also been postulated that microtubule-associated proteins (MAPs) are directly involved in mediating these interactions. The interactions of tau with vimentin filaments, and its relationships with other filaments of the cytoskeletal network, were analyzed in SW-13 adenocarcinoma cells, through an integrated approach that included biochemical and immunological studies. This cell line has the advantage of presenting a wild-type clone (vim+) and a mutant clone (vim−) which is deficient in vimentin expression. We analyzed the cellular roles of tau, focusing on its interactions with vimentin filaments, within the context of its functional aspects in the organization of the cytoskeletal network. Cosedimentation experiments of microtubular protein with vimentin in cell extracts enriched in intermediate filaments, combined with studies on the direct interaction of tau with nitrocellulose-bound vimentin and analysis of tau binding to vimentin immobilized in single-strand DNA affinity columns, indicate that tau interacts with the vimentin network. These studies were confirmed by a quantitative analysis of the immunofluorescence patterns of cytoskeleton-associated tubulin, tau, and vimentin using flow cytometry. In this regard, a decrease in the levels of tau associated to the cytoskeletal network in the vim− cell mutant compared with the wild-type clones was observed. However, immunofluorescence data on SW-13 cells suggest that the absence of a structured network of vimentin in the mutant vim− cells does not affect the cytoplasmic organization formed by microtubules and actin filaments, when compared with the wild-type vim+ cells. These studies suggest that tau associates with vimentin filaments and that these interactions may play a structural role in cells containing these filaments.  相似文献   

4.
We reported previously that the incorporation of sugars intoglycosphingolipids (GSL) is diminished in SW13 cells that lacka vimentin intermediate filament (IF) network (vim–) comparedto vim+ cells. To further analyze the nature of this abnormality,we double-labeled cells with 3H-serine and l4C-sugars. Therewas no difference between vim+ and vim– cells in the incorporationof serine into GSL, although the usual difference in sugar incorporationwas observed. This indicated that the defect in vim– cellswas not in the incorporation of sugars into ceramide synthesizedde novo by acylation of sphinganine (pathway 1). Sugars canalso be incorporated into ceramide synthesized from sphingosinethat is derived from catabolism of sphin-golipids (pathway 2),and into GSL that recycle through the Golgi apparatus from endosomes(pathway 3). The amount of galactose and glucosamine incorporatedinto GSL in these three pathways was analyzed by the use oftwo inhibitors of sphingolipid biosynthesis. ß-Chloroala-nineinhibits the de novo synthesis of sphinganine (pathway 1), andfumonisin Bl inhibits the acylation of sphinganine and sphingosine(pathways 1 and 2). We were surprised to observe that in bothvim+ and vim– cells only 20–40% of sugar incorporationinto GSL took place in pathway 1, and 60–80% of sugarincorporation took place in the recycling pathways. Moreover,in contrast to larger GSL, GlcCer was not synthesized in pathway3. Our observations indicate that vimentin IF facilitate therecycling of GSL and sphingosine, and that the differences betweenvim+ and vim– cells are predominantly in pathways 2 and3. Furthermore, although it is generally believed that virtuallyall GSL are synthesized in the de novo pathway, these data indicatethat the recyling pathways predominate in the incorporationof sugars into GSL in SW13 cells. glycosphingolipid biosynthesis intermediate filaments SW13 cells sphingolipid recycling vimentin  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Previously we demonstrated the association between human iNOS −1026C/A variant and susceptibility to hypertension, and found that −1026C/A altered the Yin Yang 1 (YY1)-binding pattern. In the current study, we verified that −1026C/A was located in a vital regulatory region of the iNOS promoter, wherein existed a DNA-binding complex composed of YY1, nuclear factor I (NFI) and activator protein-1 (AP-1). We also observed that YY1 bound dominantly to −1026C, and NFI bound dominantly to −1026A. Furthermore, the repressive effect of YY1 was more evident than NFI on the iNOS promoter activity, resulting in a more marked reduction of iNOS expression via YY1/AP-1 than via NFI/AP-1 under the stimulation of cytomix. In conclusion, diverse binding affinities of YY1 and its interacting partners to iNOS −1026C/A resulted in differential promoter activity, and potent inhibition of iNOS expression by YY1/AP-1 complex with −1026C may contribute to an enhanced risk for hypertension.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号