首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The copper chaperone for superoxide dismutase (CCS) gene encodes a protein that is believed to deliver copper ions specifically to copper-zinc superoxide dismutase (CuZnSOD). CCS proteins from different organisms share high sequence homology and consist of three distinct domains; a CuZnSOD-like central domain 2 flanked by domains 1 and 3, which contain putative metal-binding motifs. We report deduced protein sequences from tomato and Arabidopsis, the first functional homologues of CCS identified in plants. We have purified recombinant human (hCCS) and tomato (tCCS) copper chaperone proteins, as well as a truncated version of tCCS containing only domains 2 and 3. Their cobalt(2+) binding properties in the presence and absence of mercury(2+) were characterized by UV-vis and circular dichroism spectroscopies and it was shown that hCCS has the ability to bind two spectroscopically distinct cobalt ions whereas tCCS binds only one. The cobalt binding site that is common to both hCCS and tCCS displayed spectroscopic characteristics of cobalt(2+) bound to four or three cysteine ligands. There are only four cysteine residues in tCCS, two in domain 1 and two in domain 3; all four are conserved in other CCS sequences including hCCS. Thus, an interaction between domain 1 and domain 3 is concluded, and it may be important in the copper chaperone mechanism of these proteins.  相似文献   

2.
The copper chaperone for superoxide dismutase (CCS) activates the eukaryotic antioxidant enzyme copper, zinc superoxide dismutase (SOD1). The 2.9 A resolution structure of yeast SOD1 complexed with yeast CCS (yCCS) reveals that SOD1 interacts with its metallochaperone to form a complex comprising one monomer of each protein. The heterodimer interface is remarkably similar to the SOD1 and yCCS homodimer interfaces. Striking conformational rearrangements are observed in both the chaperone and target enzyme upon complex formation, and the functionally essential C-terminal domain of yCCS is well positioned to play a key role in the metal ion transfer mechanism. This domain is linked to SOD1 by an intermolecular disulfide bond that may facilitate or regulate copper delivery.  相似文献   

3.
Insertion of copper into superoxide dismutase 1 (SOD1) in vivo requires the copper chaperone for SOD1 (CCS). CCS encompasses three protein domains: copper binding Domains I and III at the amino and carboxyl termini, and a central Domain II homologous to SOD1. Using a yeast interaction mating system, yeast CCS was seen to physically interact with SOD1, and this interaction required sequences at the predicted dimer interface of CCS Domain II. Interactions with SOD1 also required sequences of Domain III, but not Domain I. Mutations were introduced at the dimer interface of yeast SOD1, and the corresponding mutant failed to interact with CCS. When loaded with copper independent of CCS, this mutant SOD1 exhibited superoxide scavenging activity, but was normally inactive in vivo because CCS failed to recognize the enzyme. Activation of SOD1 by CCS was also examined using an in vivo assay for copper incorporation into SOD1. Yeast CCS was observed to insert copper into a pre-existing pool of apoSOD1 without the need for new SOD1 synthesis or for protein unfolding by the major SSA cytosolic heat shock proteins. Our data are consistent with a model in which prefolded dimers of apoSOD1 serve as substrate for the CCS copper chaperone.  相似文献   

4.
The copper chaperone for superoxide dismutase (CCS) is an intracellular metallochaperone required for incorporation of copper into the essential antioxidant enzyme copper/zinc superoxide dismutase (SOD1). Nutritional studies have revealed that the abundance of CCS is inversely proportional to the dietary and tissue copper content. To determine the mechanisms of copper-dependent regulation of CCS, copper incorporation into SOD1 and SOD1 enzymatic activity as well as CCS abundance and half-life were determined after metabolic labeling of CCS-/- fibroblasts transfected with wild-type or mutant CCS. Wild-type CCS restored SOD1 activity in CCS-/- fibroblasts, and the abundance of this chaperone in these cells was inversely proportional to the copper content of the media, indicating that copper-dependent regulation of CCS is entirely post-translational. Although mutational studies demonstrated no role for CCS Domain I in this copper-dependent regulation, similar analysis of the CXC motif in Domain III revealed a critical role for these cysteine residues in mediating copper-dependent turnover of CCS. Further mutational studies revealed that this CXC-dependent copper-mediated turnover of CCS is independent of the mechanisms of delivery of copper to SOD1 including CCS-SOD1 interaction. Taken together these data demonstrate a mechanism determining the abundance of CCS that is competitive with the process of copper delivery to SOD1, revealing a unique post-translational component of intracellular copper homeostasis.  相似文献   

5.
Cellular systems for handling transition metal ions have been identified, but little is known about the structure and function of the specific trafficking proteins. The 1.8 A resolution structure of the yeast copper chaperone for superoxide dismutase (yCCS) reveals a protein composed of two domains. The N-terminal domain is very similar to the metallochaperone protein Atx1 and is likely to play a role in copper delivery and/or uptake. The second domain resembles the physiological target of yCCS, superoxide dismutase I (SOD1), in overall fold, but lacks all of the structural elements involved in catalysis. In the crystal, two SOD1-like domains interact to form a dimer. The subunit interface is remarkably similar to that in SOD1, suggesting a structural basis for target recognition by this metallochaperone.  相似文献   

6.
The copper chaperone for superoxide dismutase (SOD1) inserts the catalytic metal cofactor into SOD1 by an unknown mechanism. We demonstrate here that this process involves the cooperation of three distinct regions of the copper chaperone for SOD1 (CCS): an amino-terminal Domain I homologous to the Atx1p metallochaperone, a central portion (Domain II) homologous to SOD1, and a short carboxyl-terminal peptide unique to CCS molecules (Domain III). These regions fold into distinct polypeptide domains as revealed through proteolysis protection studies. The biological roles of the yeast CCS domains were examined in yeast cells. Surprisingly, Domain I was found to be necessary only under conditions of strict copper limitation. Domain I and Atx1p were not interchangeable in vivo, underscoring the specificity of the corresponding metallochaperones. A putative copper site in Domain II was found to be irrelevant to yeast CCS activity, but SOD1 activation invariably required a CXC in Domain III that binds copper. Copper binding to purified yeast CCS induced allosteric conformational changes in Domain III and also enhanced homodimer formation of the polypeptide. Our results are consistent with a model whereby Domain I recruits cellular copper, Domain II facilitates target recognition, and Domain III, perhaps in concert with Domain I, mediates copper insertion into apo-SOD1.  相似文献   

7.
In plant chloroplasts two superoxide dismutase (SOD) activities occur, FeSOD and Cu/ZnSOD, with reciprocal regulation in response to copper availability. This system presents a unique model to study the regulation of metal-cofactor delivery to an organelle. The Arabidopsis thaliana gene AtCCS encodes a functional homolog to yeast Ccs1p/Lys7p, a copper chaperone for SOD. The AtCCS protein was localized to chloroplasts where it may supply copper to the stromal Cu/ZnSOD. AtCCS mRNA expression levels are upregulated in response to Cu-feeding and senescence. We propose that AtCCS expression is regulated to allow the most optimal use of Cu for photosynthesis.  相似文献   

8.
Heterodimer formation between superoxide dismutase and its copper chaperone   总被引:3,自引:0,他引:3  
Copper, zinc superoxide dismutase (SOD1) is activated in vivo by the copper chaperone for superoxide dismutase (CCS). The molecular mechanisms by which CCS recognizes and docks with SOD1 for metal ion insertion are not well understood. Two models for the oligomerization state during copper transfer have been proposed: a heterodimer comprising one monomer of CCS and one monomer of SOD1 and a dimer of dimers involving interactions between the two homodimers. We have investigated protein-protein complex formation between copper-loaded and apo yeast CCS (yCCS) and yeast SOD1 for both wild-type SOD1 (wtSOD1) and a mutant SOD1 in which copper ligand His 48 has been replaced with phenylalanine (H48F-SOD1). According to gel filtration chromatography, dynamic light scattering, analytical ultracentrifugation, and chemical cross-linking experiments, yCCS and this mutant SOD1 form a complex with the correct molecular mass for a heterodimer. No higher order oligomers were detected. Heterodimer formation is facilitated by the presence of zinc but does not depend on copper loading of yCCS. The complex formed with H48F-SOD1 is more stable than that formed with wtSOD1, suggesting that the latter is a more transient species. Notably, heterodimer formation between copper-loaded yCCS and wtSOD1 is accompanied by SOD1 activation only in the presence of zinc. These findings, taken together with structural, biochemical, and genetic studies, strongly suggest that in vivo copper loading of yeast SOD1 occurs via a heterodimeric intermediate.  相似文献   

9.
Copper/zinc superoxide dismutase (SOD1) is an abundant intracellular enzyme with an essential role in antioxidant defense. The activity of SOD1 is dependent upon the presence of a bound copper ion incorporated by the copper chaperone for superoxide dismutase, CCS. To elucidate the cell biological mechanisms of this process, SOD1 synthesis and turnover were examined following 64Cu metabolic labeling of fibroblasts derived from CCS+/+ and CCS-/- embryos. The data indicate that copper is rapidly incorporated into both newly synthesized SOD1 and preformed SOD1 apoprotein, that each process is dependent upon CCS and that once incorporated, copper is unavailable for cellular exchange. The abundance of apoSOD1 is inversely proportional to the intracellular copper content and immunoblot and gel filtration analysis indicate that this apoprotein exists as a homodimer that is distinguishable from SOD1. Despite these distinct differences, the abundance and half-life of SOD1 is equivalent in CCS+/+ and CCS-/- fibroblasts, indicating that neither CCS nor copper incorporation has any essential role in the stability or turnover of SOD1 in vivo. Taken together, these data provide a cell biological model of SOD1 biosynthesis that is consistent with the concept of limited intracellular copper availability and indicate that the metallochaperone CCS is a critical determinant of SOD1 activity in mammalian cells. These kinetic and biochemical findings also provide an important framework for understanding the role of mutant SOD1 in the pathogenesis of familial amyotrophic lateral sclerosis.  相似文献   

10.
11.
The incorporation of copper ions into the cytosolic superoxide dismutase (SOD1) is accomplished in vivo by the action of the copper metallochaperone CCS (copper chaperone for SOD1). Mammalian CCS is comprised of three distinct protein domains, with a central region exhibiting remarkable homology (approximately 50% identity) to SOD1 itself. Conserved in CCS are all the SOD1 zinc binding ligands and three of four histidine copper binding ligands. In CCS the fourth histidine is replaced by an aspartate (Asp(200)). Despite this conservation of sequence between SOD1 and CCS, CCS exhibited no detectable SOD activity. Surprisingly, however, a single D200H mutation, targeting the fourth potential copper ligand in CCS, granted significant superoxide scavenging activity to this metallochaperone that was readily detected with CCS expressed in yeast. This mutation did not inhibit the metallochaperone capacity of CCS, and in fact, D200H CCS appears to represent a bifunctional SOD that can self-activate itself with copper. The aspartate at CCS position 200 is well conserved among mammalian CCS molecules, and we propose that this residue has evolved to preclude deleterious reactions involving copper bound to CCS.  相似文献   

12.
Cysteine-to-serine mutants of a maltose binding protein fusion with the human copper chaperone for superoxide dismutase (hCCS) were studied with respect to (i) their ability to transfer Cu to E,Zn superoxide dismutase (SOD) and (ii) their Zn and Cu binding and X-ray absorption spectroscopic (XAS) properties. Previous work has established that Cu(I) binds to four cysteine residues, two of which, C22 and C25, reside within an Atox1-like N-terminal domain (DI) and two of which, C244 and C246, reside in a short unstructured polypeptide chain at the C-terminus (DIII). The wild-type (WT) protein shows an extended X-ray absorption fine structure (EXAFS) spectrum characteristic of cluster formation, but it is not known how such a cluster is formed. Cys to Ser mutagenesis was used to investigate the Cu binding in more detail. Single Cys to Ser mutations, as represented by C22S and C244S, did little to affect the metal binding ratios of hCCS. Both mutants still showed approximately 2 Cu(I) ions and 1 Zn ion per protein. The double mutants C22/24S and C244/246S, on the other hand, showed Cu binding stoichiometries close to 1:1. The Zn-EXAFS of WT CCS showed a 3-4 histidine ligand environment that is consistent with Zn binding in the SOD-like domain II of CCS. The Zn environment remained unchanged between wild type and all of the mutant CCS proteins. Single Cys to Ser mutations displayed lower activity than WT protein, although close to full activity could be rescued by increasing the CCS:SOD ratios to 8:1 in the assay mixture. The structure of the Cu centers of the single mutants as revealed by EXAFS was also similar to that of WT protein, with clear indications of a Cu cluster. On the other hand, the double mutants showed a greater degree of perturbation. The DI C22/25S mutant was 70% active and formed a cluster with a more intense Cu-Cu interaction. The DIII C244/246S mutant retained only a fraction (16%) of activity and did not form a cluster. The results suggest the formation of a DIII-DIII cluster within a dimeric or tetrameric protein and further suggest that this cluster may be an important element of the copper transfer machinery.  相似文献   

13.
Copper chaperone is an essential cytosolic factor that maintains copper homeostasis in living cells. Cytosolic metallochaperones have been recently identified in plant, yeast, rodents, and human cells. During our investigation, we found a new member of the copper chaperone family for copper/zinc superoxide dismutase, which was cloned from rats. The new copper chaperone was named rCCS (rat Copper Chaperone for Superoxide dismutase). The cDNA of rCCS was found to have a length of 1094 bp, and the protein analyzed from the cDNA was deduced to contain 274 amino acids. The amino acid sequence of rCCS consists of three domains: A metal binding domain, which has a MXCXXC motif in domain I, a homolog of the Cu/Zn SOD in domain II, and a CXC motif in domain III. The binding of rCCS to Cu/Zn SOD was analyzed by GST column binding assay, and the domain II of rCCS was found to be essential for binding to Cu/Zn SOD, which in turn activates Cu/Zn SOD.  相似文献   

14.
Copper chaperone for superoxide dismutase (CCS) is essential for transporting copper ion to Cu,Zn-superoxide dismutase (Cu,Zn-SOD). We cloned cDNAs for six primate species' CCSs. The total number of amino acid residues of primate CCSs is 274. Similarities between primates were over 96%. Important residues for the CCS function were well conserved. A phylogenetic tree of CCSs and Cu,Zn-SODs from various organisms showed that these two proteins were derived from a common ancestor, diverging very early on during eukaryote evolution. The high frequency of nonsynonymous substitutions was found in the lineage to Old World monkeys and apes. Expression of the CCS gene in various tissues of Japanese monkey was found to be high in the liver and adrenal gland, followed by the kidney and small intestine. Such expressional pattern was similar with that of Cu,Zn-SOD gene (Fukuhara et al., 2002).  相似文献   

15.
16.
Copper binding to the human copper chaperone for superoxide dismutase (hCCS) has been investigated by X-ray absorption spectroscopy. Stoichiometry measurements on the dialyzed, as-isolated protein indicated that up to 3.5 Cu ions bound per hCCS molecule. Reduction with either sodium dithionite or dithiothreitol decreased the copper binding ratio to 2 coppers per hCCS monomer. Analysis of the as-isolated EXAFS data indicated coordination of Cu by a mixture of S and N backscatterers, suggestive of heterogeneous binding of copper between Cu-cysteine binding sites of domain I or III and copper-histidine SOD1-like metal binding sites of domain II. The best fit was obtained with 1.6 Cu-S (cysteine) at 2.24 A (2sigma(2) = 0.011 A(2)) and 1.1 N (histidine) at 1.98 A (2sigma(2) = 0.005 A(2)). A peak of variable intensity in the Fourier transform (FT) of the as-isolated protein at 2.7 A was suggestive of the presence of a heavy atom scatterer such as Cu. Analysis of the dithionite- and DTT-reduced derivatives indicated that copper was lost from the histidine coordinating sites, resulting in a S-only environment with copper coordinated to three S backscatterers at 2. 26 A. The heavy atom scatterer peak was now prominent in the FT and could be well fit by a Cu-Cu interaction at 2.72 A. The data were best interpreted by a dinuclear mu(2)()-bridged cluster with doubly bridging cysteine ligands similar to the cluster proposed to exist in the cytochrome c oxidase chaperone COX17. Analysis of primary sequence and X-ray structural information on yeast CCS strongly suggests that this cluster bridges between domains I and III in hCCS. A mechanism for copper translocation is briefly discussed.  相似文献   

17.
The human copper chaperone for superoxide dismutase (hCCS) delivers the essential copper ion cofactor to copper,zinc superoxide dismutase (SOD1), a key enzyme in antioxidant defense. Mutations in SOD1 are linked to familial amyotrophic lateral sclerosis (FALS), a fatal neurodegenerative disorder. The molecular mechanisms by which SOD1 is recognized and activated by hCCS are not understood. To better understand this biochemical pathway, we have determined the X-ray structure of the largest domain of hCCS (hCCS Domain II) to 2. 75 A resolution. The overall structure is closely related to that of its target enzyme SOD1, consisting of an eight-stranded beta-barrel and a zinc-binding site formed by two extended loops. The first of these loops provides the ligands to a bound zinc ion, and is analogous to the zinc subloop in SOD1. The second structurally resembles the SOD1 electrostatic channel loop, but lacks many of the residues important for catalysis. Like SOD1 and yCCS, hCCS forms a dimer using a highly conserved interface. In contrast to SOD1, however, the hCCS structure does not contain a copper ion bound in the catalytic site. Notably, the structure reveals a single loop proximal to the dimer interface which is unique to the CCS chaperones.  相似文献   

18.
Copper,zinc superoxide dismutase (SOD1) in mammals is activated principally via a copper chaperone (CCS) and to a lesser degree by a CCS-independent pathway of unknown nature. In this study, we have characterized the requirement for CCS in activating SOD1 from Drosophila. A CCS-null mutant (Ccs(n)(29)(E)) of Drosophila was created and found to phenotypically resemble Drosophila SOD1-null mutants in terms of reduced adult life span, hypersensitivity to oxidative stress, and loss of cytosolic aconitase activity. However, the phenotypes of CCS-null flies were less severe, consistent with some CCS-independent activation of Drosophila SOD1 (dSOD1). Yet SOD1 activity was not detectable in Ccs(n)(29)(E) flies, due largely to a striking loss of SOD1 protein. In contrast, human SOD1 expressed in CCS-null flies is robustly active and rescues the deficits in adult life span and sensitivity to oxidative stress. The dependence of dSOD1 on CCS was also observed in a yeast expression system where the dSOD1 polypeptide exhibited unusual instability in CCS-null (ccs1Delta) yeast. The residual dSOD1 polypeptide in ccs1Delta yeast was nevertheless active, consistent with CCS-independent activation. Stability of dSOD1 in ccs1Delta cells was readily restored by expression of either yeast or Drosophila CCS, and this required copper insertion into the enzyme. The yeast expression system also revealed some species specificity for CCS. Yeast SOD1 exhibits preference for yeast CCS over Drosophila CCS, whereas dSOD1 is fully activated with either CCS molecule. Such variation in mechanisms of copper activation of SOD1 could reflect evolutionary responses to unique oxygen and/or copper environments faced by divergent species.  相似文献   

19.
The presence of the copper ion at the active site of human wild type copper-zinc superoxide dismutase (CuZnSOD) is essential to its ability to catalyze the disproportionation of superoxide into dioxygen and hydrogen peroxide. Wild type CuZnSOD and several of the mutants associated with familial amyotrophic lateral sclerosis (FALS) (Ala(4) --> Val, Gly(93) --> Ala, and Leu(38) --> Val) were expressed in Saccharomyces cerevisiae. Purified metal-free (apoproteins) and various remetallated derivatives were analyzed by metal titrations monitored by UV-visible spectroscopy, histidine modification studies using diethylpyrocarbonate, and enzymatic activity measurements using pulse radiolysis. From these studies it was concluded that the FALS mutant CuZnSOD apoproteins, in direct contrast to the human wild type apoprotein, have lost their ability to partition and bind copper and zinc ions in their proper locations in vitro. Similar studies of the wild type and FALS mutant CuZnSOD holoenzymes in the "as isolated" metallation state showed abnormally low copper-to-zinc ratios, although all of the copper acquired was located at the native copper binding sites. Thus, the copper ions are properly directed to their native binding sites in vivo, presumably as a result of the action of the yeast copper chaperone Lys7p (yeast CCS). The loss of metal ion binding specificity of FALS mutant CuZnSODs in vitro may be related to their role in ALS.  相似文献   

20.
Copper chaperone for SOD1 (CCS) specifically delivers copper (Cu) to copper, zinc superoxide dismutase (SOD1) in cytoplasm of mammalian cells. In the present study, small interfering RNA (siRNA) targeting CCS was introduced into metallothionein-knockout mouse fibroblasts (MT-KO cells) and their wild type cells (MT-WT cells) to reveal the interactive role of CCS with other Cu-regulating proteins, in particular, MT. CCS knockdown significantly decreased Ctr1, a Cu influx transporter, mRNA expression. On the other hand, Atp7a, a Cu efflux transporter, mRNA expression was increased 3.0 and 2.5 times higher than those of the control in MT-WT and MT-KO cells. These responses of Cu-regulating genes to the CCS knockdown reflected the presence of excess Cu in the cells. To evaluate the Atp7a function in the Cu-replete cells, siRNA of Atp7a and the other Cu transporter, Atp7b were introduced into MT-WT and MT-KO cells. The Atp7a knockdown significantly increased the intracellular Cu concentration, whereas the Atp7b knockdown had no affect. Although two MT isoforms were induced by the CCS knockdown in MT-WT cells, the expression and activity of SOD1 were maintained in both MT-WT and MT-KO cells even when CCS protein expression was reduced to 0.30-0.35 of control. This suggests that the amount of CCS protein exceeds that required to supply Cu to SOD1 in the cells. Further, the CCS knockdown induces Cu accumulation in cells, however, the Cu accumulation is ameliorated by the MT induction, the decrease of Ctr1 expression and the increase of Atp7a expression to maintain Cu homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号