首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work indicates that free radicals mediate sepsis-induced diaphragmatic dysfunction. These previous experiments have not, however, established the source of the responsible free radical species. In theory, this phenomenon could be explained if one postulates that sepsis elicits an upregulation of contraction-related free radical formation in muscle. The purpose of the present study was to test this hypothesis by examination of the effect of sepsis on contraction-related free radical generation [i.e. , formation of reactive oxygen species (ROS)] by the diaphragm. Rats were killed 18 h after injection with either saline or endotoxin. In vitro hemidiaphragms were then prepared, and ROS generation during electrically induced contractions (20-Hz trains delivered for 10 min) was assessed by measurement of the conversion of hydroethidine to ethidium. ROS generation was negligible in noncontracting diaphragms from both saline- and endotoxin-treated groups (2.0 +/- 0. 6 and 2.8 +/- 1.0 ng ethidium/mg tissue, respectively), but it was marked in contracting diaphragms from saline-treated animals (19.0 +/- 2.8 ng/mg tissue) and even more pronounced (30.0 +/- 2.8 ng/mg tissue) in diaphragms from septic animals (P < 0.01). This enhanced free radical generation occurred despite the fact that the force-time integral (i.e., the area under the curve of force vs. time) for control diaphragms was higher than that for the septic group. In additional studies, in which we altered the stimulation paradigm in control muscles to achieve a force-time integral similar to that achieved in septic muscles, an even greater difference between control and septic muscle ROS formation was observed. These data indicate that ROS formation during contraction is markedly enhanced in diaphragms from endotoxin-treated septic animals. We speculate that ROS generated in this fashion plays a central role in producing sepsis-related skeletal muscle dysfunction.  相似文献   

2.
Recent work indicates that respiratory muscles generate superoxide radicals during contraction (M. B. Reid, K. E. Haack, K. M. Francik, P. A. Volberg, L. Kabzik, and M. S. West. J. Appl. Physiol. 73: 1797-1804, 1992). The intracellular pathways involved in this process are, however, unknown. The purpose of the present study was to test the hypothesis that contraction-related formation of reactive oxygen species (ROS) by skeletal muscle is linked to activation of the 14-kDa isoform of phospholipase A(2) (PLA(2)). Studies were performed by using an in vitro hemidiaphragm preparation submerged in an organ bath, and formation of ROS in muscles was assessed by using a recently described fluorescent indicator technique. We examined ROS formation in resting and contracting muscle preparations and then determined whether contraction-related ROS generation could be altered by administration of various PLA(2) inhibitors: manoalide and aristolochic acid, both inhibitors of 14-kDa PLA(2); arachidonyltrifluoromethyl ketone (AACOCF(3)), an inhibitor of 85-kDa PLA(2); and haloenol lactone suicide substrate (HELSS), an inhibitor of calcium-independent PLA(2). We found 1) little ROS formation [2.0 +/- 0.8 (SE) ng/mg] in noncontracting control diaphragms, 2) a high level of ROS (20.0 +/- 2.0 ng/mg) in electrically stimulated contracting diaphragms (trains of 20-Hz stimuli for 10 min, train rate 0.25 s(-1)), 3) near-complete suppression of ROS generation in manoalide (3.0 +/- 0.5 ng/mg, P < 0. 001)- and aristolochic acid-treated contracting diaphragms (4.0 +/- 1.0 ng/mg, P < 0.001), and 4) no effect of AACOCF(3) or HELSS on ROS formation in contracting diaphragm. During in vitro studies examining fluorescent measurement of ROS formation in response to a hypoxanthine/xanthine oxidase superoxide-generating solution, manoalide, aristolochic acid, AACOCF(3), and HELSS had no effect on signal intensity. These data indicate that ROS formation by contracting diaphragm muscle can be suppressed by the administration of inhibitors of the 14-kDa isoform of PLA(2) and suggest that this enzyme plays a critical role in modulating ROS formation during muscle contraction.  相似文献   

3.
Mitochondrial nitric oxide metabolism in rat muscle during endotoxemia   总被引:2,自引:0,他引:2  
In this study, heart and diaphragm mitochondria produced 0.69 and 0.77 nmol nitric oxide (NO)/min mg protein, rates that account for 67 and 24% of maximal cellular NO production, respectively. Endotoxemia and septic shock occur with an exacerbated inflammatory response that damages tissue mitochondria. Skeletal muscle seems to be one of the main target organs in septic shock, showing an increased NO production and early oxidative stress. The kinetic properties of mitochondrial nitric oxide synthase (mtNOS) of heart and diaphragm were determined. For diaphragm, the KM values for O2 and L-Arg were 4.6 and 37 microM and for heart were 3.3 and 36 microM. The optimal pH for mtNOS activity was 6.5 for diaphragm and 7.0 for heart. A marked increase in mtNOS activity was observed in endotoxemic rats, 90% in diaphragm and 30% in heart. Diaphragm and heart mitochondrial O2*- and H2O2 production were 2- to 3-fold increased during endotoxemia and Mn-SOD activity showed a 2-fold increase in treated animals, whereas catalase activity was unchanged. One of the current hypotheses for the molecular mechanisms underlying the complex condition of septic shock is that the enhanced NO production by mtNOS leads to excessive peroxynitrite production and protein nitration in the mitochondrial matrix, causing mitochondrial dysfunction and contractile failure.  相似文献   

4.
Previous studies indicate that ATP formation by the electron transport chain is impaired in sepsis. However, it is not known whether sepsis affects the mitochondrial ATP transport system. We hypothesized that sepsis inactivates the mitochondrial creatine kinase (MtCK)-high energy phosphate transport system. To examine this issue, we assessed the effects of endotoxin administration on mitochondrial membrane-bound creatine kinase, an important trans-mitochondrial ATP transport system. Diaphragms and hearts were isolated from control (n = 12) and endotoxin-treated (8 mg.kg(-1).day(-1); n = 13) rats after pentobarbital anesthesia. We isolated mitochondria using techniques that allow evaluation of the functional coupling of mitochondrial creatine kinase MtCK activity to oxidative phosphorylation. MtCK functional activity was established by 1) determining ATP/creatine-stimulated oxygen consumption and 2) assessing total creatine kinase activity in mitochondria using an enzyme-linked assay. We examined MtCK protein content using Western blots. Endotoxin markedly reduced diaphragm and cardiac MtCK activity, as determined both by ATP/creatine-stimulated oxygen consumption and by the enzyme-linked assay (e.g., ATP/creatine-stimulated mitochondrial respiration was 173.8 +/- 7.3, 60.5 +/- 9.3, 210.7 +/- 18.9, was 67.9 +/- 7.3 natoms O.min(-1).mg(-1) in diaphragm control, diaphragm septic, cardiac control, and cardiac septic samples, respectively; P < 0.001 for each tissue comparison). Endotoxin also reduced diaphragm and cardiac MtCK protein levels (e.g., protein levels declined by 39.5% in diaphragm mitochondria and by 44.2% in cardiac mitochondria; P < 0.001 and P = 0.009, respectively, comparing sepsis to control conditions). Our data indicate that endotoxin markedly impairs the MtCK-ATP transporter system; this phenomenon may have significant effects on diaphragm and cardiac function.  相似文献   

5.
As recently demonstrated by our group (da-Silva, W. S., Gómez-Puyou, A., Gómez-Puyou, M. T., Moreno-Sanchez, R., De Felice, F. G., de Meis, L., Oliveira, M. F., and Galina, A. (2004) J. Biol. Chem. 279, 39846-39855) mitochondrial hexokinase activity (mt-HK) plays a preventive antioxidant role because of steady-state ADP re-cycling through the inner mitochondrial membrane in rat brain. In the present work we show that ADP re-cycling accomplished by the mitochondrial creatine kinase (mt-CK) regulates reactive oxygen species (ROS) generation, particularly in high glucose concentrations. Activation of mt-CK by creatine (Cr) and ATP or ADP, induced a state 3-like respiration in isolated brain mitochondria and prevention of H(2)O(2) production obeyed the steady-state kinetics of the enzyme to phosphorylate Cr. The extension of the preventive antioxidant role of mt-CK depended on the phosphocreatine (PCr)/Cr ratio. Rat liver mitochondria, which lack mt-CK activity, only reduced state 4-induced H(2)O(2) generation when 1 order of magnitude more exogenous CK activity was added to the medium. Simulation of hyperglycemic conditions, by the inclusion of glucose 6-phosphate in mitochondria performing 2-deoxyglucose phosphorylation via mt-HK, induced H(2)O(2) production in a Cr-sensitive manner. Simulation of hyperglycemia in embryonic rat brain cortical neurons increased both DeltaPsi(m) and ROS production and both parameters were decreased by the previous inclusion of Cr. Taken together, the results presented here indicate that mitochondrial kinase activity performed a key role as a preventive antioxidant against oxidative stress, reducing mitochondrial ROS generation through an ADP-recycling mechanism.  相似文献   

6.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.  相似文献   

7.
Characteristics of reactive oxygen species (ROS) production in isolated guinea-pig brain mitochondria respiring on alpha-glycerophosphate (alpha-GP) were investigated and compared with those supported by succinate. Mitochondria established a membrane potential (DeltaPsi(m)) and released H(2)O(2) in parallel with an increase in NAD(P)H fluorescence in the presence of alpha-GP (5-40 mm). H(2)O(2) formation and the increase in NAD(P)H level were inhibited by rotenone, ADP or FCCP, respectively, being consistent with a reverse electron transfer (RET). The residual H(2)O(2) formation in the presence of FCCP was stimulated by myxothiazol in mitochondria supported by alpha-GP, but not by succinate. ROS under these conditions are most likely to be derived from alpha-GP-dehydrogenase. In addition, huge ROS formation could be provoked by antimycin in alpha-GP-supported mitochondria, which was prevented by myxothiazol, pointing to the generation of ROS at the quinol-oxidizing center (Q(o)) site of complex III. FCCP further stimulated the production of ROS to the highest rate that we observed in this study. We suggest that the metabolism of alpha-GP leads to ROS generation primarily by complex I in RET, and in addition a significant ROS formation could be ascribed to alpha-GP-dehydrogenase in mammalian brain mitochondria. ROS generation by alpha-GP at complex III is evident only when this complex is inhibited by antimycin.  相似文献   

8.
Schild L  Reiser G 《The FEBS journal》2005,272(14):3593-3601
From in vivo models of stroke it is known that ischemia/reperfusion induces oxidative stress that is accompanied by deterioration of brain mitochondria. Previously, we reported that the increase in Ca2+ induces functional breakdown and morphological disintegration in brain mitochondria subjected to hypoxia/reoxygenation (H/R). Protection by ADP indicated the involvement of the mitochondrial permeability transition pore in the mechanism of membrane permeabilization. Until now it has been unclear how reactive oxygen species (ROS) contribute to this process. We now report that brain mitochondria which had been subjected to H/R in the presence of low micromolar Ca2+ display low state 3 respiration (20% of control), loss of cytochrome c, and reduced glutathione levels (75% of control). During reoxygenation, significant mitochondrial generation of hydrogen peroxide (H2O2) was detected. The addition of the membrane permeant superoxide anion scavenger TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) suppressed the production of H2O2 by brain mitochondria metabolizing glutamate plus malate by 80% under normoxic conditions. TEMPOL partially protected brain mitochondria exposed to H/R and low micromolar Ca2+ from decrease in state 3 respiration (from 25% of control to 60% of control with TEMPOL) and permeabilization of the inner membrane. Membrane permeabilization was obvious, because state 3 respiration could be stimulated by extramitochondrial NADH. Our data suggest that ROS and Ca2+ synergistically induce permeabilization of the inner membrane of brain mitochondria exposed to H/R. However, permeabilization can only partially be prevented by suppressing mitochondrial generation of ROS. We conclude that transient deprivation of oxygen and glucose during temporary ischemia coupled with elevation in cytosolic Ca2+ concentration triggers ROS generation and mitochondrial permeabilization, resulting in neural cell death.  相似文献   

9.
Exercise provides cardioprotection against ischemia-reperfusion injury, a process involving mitochondrial reactive oxygen species (ROS) generation and calcium overload. This study tested the hypotheses that isolated mitochondria from hearts of endurance-trained rats have decreased ROS production and improved tolerance against Ca(2+)-induced dysfunction. Male Fischer 344 rats were either sedentary (Sed, n = 8) or endurance exercise trained (ET, n = 11) by running on a treadmill for 16 wk (5 days/wk, 60 min/day, 25 m/min, 6 degrees grade). Mitochondrial oxidative phosphorylation measures were determined with glutamate-malate or succinate as substrates, and H(2)O(2) production and permeability transition pore (PTP) opening were determined with succinate. All assays were carried out in the absence and presence of calcium. In response to 25 and 50 microM CaCl(2), Sed and ET displayed similar decreases in state 3 respiration, respiratory control ratio, and ADP:O ratio. Ca(2+)-induced PTP opening was also similar. However, H(2)O(2) production by ET was lower than Sed (P < 0.05) in the absence of calcium (323 +/- 12 vs. 362 +/- 11 pmol.min(-1).mg protein(-1)) and the presence of 50 microM CaCl(2) (154 +/- 3 vs. 197 +/- 7 pmol.min(-1).mg protein(-1)). Rotenone, which blocks electron flow from succinate to complex 1, reduced H(2)O(2) production and eliminated differences between ET and Sed. Mitochondrial superoxide dismutase and glutathione peroxidase were not affected by exercise. Catalase activity was extremely low but increased 49% in ET (P < 0.05). In conclusion, exercise reduces ROS production in myocardial mitochondria through adaptations specific to complex 1 but does not improve mitochondrial tolerance to calcium overload.  相似文献   

10.
Mechanical ventilation (MV) is a life-saving intervention for patients in respiratory failure. However, prolonged MV causes the rapid development of diaphragm muscle atrophy, and diaphragmatic weakness may contribute to difficult weaning from MV. Therefore, developing a therapeutic countermeasure to protect against MV-induced diaphragmatic atrophy is important. MV-induced diaphragm atrophy is due, at least in part, to increased production of reactive oxygen species (ROS) from diaphragm mitochondria and the activation of key muscle proteases (i.e., calpain and caspase-3). In this regard, leakage of calcium through the ryanodine receptor (RyR1) in diaphragm muscle fibers during MV could result in increased mitochondrial ROS emission, protease activation, and diaphragm atrophy. Therefore, these experiments tested the hypothesis that a pharmacological blockade of the RyR1 in diaphragm fibers with azumolene (AZ) would prevent MV-induced increases in mitochondrial ROS production, protease activation, and diaphragmatic atrophy. Adult female Sprague-Dawley rats underwent 12 hours of full-support MV while receiving either AZ or vehicle. At the end of the experiment, mitochondrial ROS emission, protease activation, and fiber cross-sectional area were determined in diaphragm muscle fibers. Decreases in muscle force production following MV indicate that the diaphragm took up a sufficient quantity of AZ to block calcium release through the RyR1. However, our findings reveal that AZ treatment did not prevent the MV-induced increase in mitochondrial ROS emission or protease activation in the diaphragm. Importantly, AZ treatment did not prevent MV-induced diaphragm fiber atrophy. Thus, pharmacological inhibition of the RyR1 in diaphragm muscle fibers is not sufficient to prevent MV-induced diaphragm atrophy.  相似文献   

11.
The mitochondrial respiratory chain is a major source of reactive oxygen species (ROS) under pathological conditions including myocardial ischemia and reperfusion. Limitation of electron transport by the inhibitor rotenone immediately before ischemia decreases the production of ROS in cardiac myocytes and reduces damage to mitochondria. We asked if ROS generation by intact mitochondria during the oxidation of complex I substrates (glutamate, pyruvate/malate) occurred from complex I or III. ROS production by mitochondria of Sprague-Dawley rat hearts and corresponding submitochondrial particles was studied. ROS were measured as H2O2 using the amplex red assay. In mitochondria oxidizing complex I substrates, rotenone inhibition did not increase H2O2. Oxidation of complex I or II substrates in the presence of antimycin A markedly increased H2O2. Rotenone prevented antimycin A-induced H2O2 production in mitochondria with complex I substrates but not with complex II substrates. Catalase scavenged H2O2. In contrast to intact mitochondria, blockade of complex I with rotenone markedly increased H2O2 production from submitochondrial particles oxidizing the complex I substrate NADH. ROS are produced from complex I by the NADH dehydrogenase located in the matrix side of the inner membrane and are dissipated in mitochondria by matrix antioxidant defense. However, in submitochondrial particles devoid of antioxidant defense ROS from complex I are available for detection. In mitochondria, complex III is the principal site for ROS generation during the oxidation of complex I substrates, and rotenone protects by limiting electron flow into complex III.  相似文献   

12.
Santiago AP  Chaves EA  Oliveira MF  Galina A 《Biochimie》2008,90(10):1566-1577
Mitochondrial hexokinase (mt-HK) and creatine kinase (mt-CK) activities have been recently proposed to reduce the rate of mitochondrial ROS generation through an ADP re-cycling mechanism. Here, we determined the role of mt-HK and mt-CK activities in regulate mitochondrial ROS generation in rat brain, kidney, heart and liver, relating them to the levels of classical antioxidant enzymes. The activities of both kinases were significantly higher in the brain than in other tissues, whereas the activities of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were higher in both liver and kidney mitochondria. In contrast, manganese superoxide dismutase (Mn-SOD) activity was not significantly different among these tissues. Activation of mitochondrial kinases by addition of their substrates increased the ADP re-cycling and thus the respiration by enhancing the oxidative phosphorylation. Succinate induced hydrogen peroxide (H(2)O(2)) generation was higher in brain than in kidney and heart mitochondria, and the lowest in liver mitochondria. Mitochondrial membrane potential (DeltaPsi(m)) and H(2)O(2) production, decreased with additions of 2-DOG or Cr to respiring brain and kidney mitochondria but not to liver. The inhibition of H(2)O(2) production by 2-DOG and Cr correspond to almost 100% in rat brain and about 70% in kidney mitochondria. Together our data suggest that mitochondrial kinases activities are potent preventive antioxidant mechanism in mitochondria with low peroxidase activities, complementing the classical antioxidant enzymes against oxidative stress.  相似文献   

13.
Qin G  Liu J  Cao B  Li B  Tian S 《PloS one》2011,6(7):e21945
How the host cells of plants and animals protect themselves against fungal invasion is a biologically interesting and economically important problem. Here we investigate the mechanistic process that leads to death of Penicillium expansum, a widespread phytopathogenic fungus, by identifying the cellular compounds affected by hydrogen peroxide (H(2)O(2)) that is frequently produced as a response of the host cells. We show that plasma membrane damage was not the main reason for H(2)O(2)-induced death of the fungal pathogen. Proteomic analysis of the changes of total cellular proteins in P. expansum showed that a large proportion of the differentially expressed proteins appeared to be of mitochondrial origin, implying that mitochondria may be involved in this process. We then performed mitochondrial sub-proteomic analysis to seek the H(2)O(2)-sensitive proteins in P. expansum. A set of mitochondrial proteins were identified, including respiratory chain complexes I and III, F(1)F(0) ATP synthase, and mitochondrial phosphate carrier protein. The functions of several proteins were further investigated to determine their effects on the H(2)O(2)-induced fungal death. Through fluorescent co-localization and the use of specific inhibitor, we provide evidence that complex III of the mitochondrial respiratory chain contributes to ROS generation in fungal mitochondria under H(2)O(2) stress. The undesirable accumulation of ROS caused oxidative damage of mitochondrial proteins and led to the collapse of mitochondrial membrane potential. Meanwhile, we demonstrate that ATP synthase is involved in the response of fungal pathogen to oxidative stress, because inhibition of ATP synthase by oligomycin decreases survival. Our data suggest that mitochondrial impairment due to functional alteration of oxidative stress-sensitive proteins is associated with fungal death caused by H(2)O(2).  相似文献   

14.
Reactive oxygen species (ROS) have been widely implicated in the pathogenesis of various neurological diseases and aging. But the exact sites of ROS generation in brain tissue remained so far elusive. Here, we provide direct experimental evidence that at least 50% of total ROS generation in succinate-oxidizing homogenates of brain tissue can be attributed to complex I of mitochondrial respiratory chain. Applying quantitative methods for ROS detection we observed in different preparations from human, rat and mouse brain (digitonin-permeabilized tissue homogenates and isolated mitochondria) a linear relationship between rate of oxygen consumption and ROS generation with succinate as mitochondrial substrate. This quantitative relationship indicates, that under the particular conditions of oxygen saturation about 1% of the corresponding respiratory chain electron flow is redirected to form superoxide. Since we observed in mouse and rat brain mitochondria a unique dependency of both forward and reverse electron flow-dependent mitochondrial H(2)O(2) production on NAD redox state, we substantiated previous evidence that the FMN moiety of complex I is the major donor of electrons for the single electron reduction of molecular oxygen.  相似文献   

15.
Brain hexokinase is associated with the outer membrane of mitochondria, and its activity has been implicated in the regulation of ATP synthesis and apoptosis. Reactive oxygen species (ROS) are by-products of the electron transport chain in mitochondria. Here we show that the ADP produced by hexokinase activity in rat brain mitochondria (mt-hexokinase) controls both membrane potential (Deltapsi(m)) and ROS generation. Exposing control mitochondria to glucose increased the rate of oxygen consumption and reduced the rate of hydrogen peroxide generation. Mitochondrial associated hexokinase activity also regulated Deltapsi(m), because glucose stabilized low Deltapsi(m) values in state 3. Interestingly, the addition of glucose 6-phosphate significantly reduced the time of state 3 persistence, leading to an increase in the Deltapsi(m) and in H(2)O(2) generation. The glucose analogue 2-deoxyglucose completely impaired H(2)O(2) formation in state 3-state 4 transition. In sharp contrast, the mt-hexokinase-depleted mitochondria were, in all the above mentioned experiments, insensitive to glucose addition, indicating that the mt-hexokinase activity is pivotal in the homeostasis of the physiological functions of mitochondria. When mt-hexokinase-depleted mitochondria were incubated with exogenous yeast hexokinase, which is not able to bind to mitochondria, the rate of H(2)O(2) generation reached levels similar to those exhibited by control mitochondria only when an excess of 10-fold more enzyme activity was supplemented. Hyperglycemia induced in embryonic rat brain cortical neurons increased ROS production due to a rise in the intracellular glucose 6-phosphate levels, which were decreased by the inclusion of 2-deoxyglucose, N-acetyl cysteine, or carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Taken together, the results presented here indicate for the first time that mt-hexokinase activity performed a key role as a preventive antioxidant against oxidative stress, reducing mitochondrial ROS generation through an ADP-recycling mechanism.  相似文献   

16.
Impaired electron transport chain function has been related to increases in reactive oxygen species (ROS) generation. Here we analyzed different pet mutants of Saccharomyces cerevisiae in order to determine the relative contribution of respiratory chain components in ROS generation and removal. We found that the maintenance of respiration strongly prevented mitochondrial H(2)O(2) release and increased cellular H(2)O(2) removal. Among all respiratory-deficient strains analyzed, cells lacking cytochrome c (cyc3 point mutants) presented the highest level of H(2)O(2) synthesis, indicating that the absence of functional cytochrome c in mitochondria leads to oxidative stress. This finding was supported by the presence of high levels of catalase and peroxidase activity despite the lack of respiration. Furthermore, the addition of exogenous cytochrome c to isolated yeast mitoplasts significantly reduced H(2)O(2) detection in a manner enhanced by cytochrome c reduction and the presence of a functional respiratory chain. Together, our results indicate that the maintenance of electron transport by cytochrome c prevents ROS generation by the respiratory chain.  相似文献   

17.
Mitochondria are proposed to play an important role in hypoxic cell signaling. One currently accepted signaling paradigm is that the mitochondrial generation of reactive oxygen species (ROS) increases in hypoxia. This is paradoxical, because oxygen is a substrate for ROS generation. Although the response of isolated mitochondrial ROS generation to [O(2)] has been examined previously, such investigations did not apply rigorous control over [O(2)] within the hypoxic signaling range. With the use of open-flow respirometry and fluorimetry, the current study determined the response of isolated rat liver mitochondrial ROS generation to defined steady-state [O(2)] as low as 0.1 microM. In mitochondria respiring under state 4 (quiescent) or state 3 (ATP turnover) conditions, decreased ROS generation was always observed at low [O(2)]. It is concluded that the biochemical mechanism to facilitate increased ROS generation in response to hypoxia in cells is not intrinsic to the mitochondrial respiratory chain alone but may involve other factors. The implications for hypoxic cell signaling are discussed.  相似文献   

18.
Repeated static contractions (RSC) induce large fluctuations in tissue oxygen tension and increase the generation of reactive oxygen species (ROS). This study investigated the effect of RSC on muscle contractility, mitochondrial respiratory function, and in vitro sarcoplasmic reticulum (SR) Ca(2+) kinetics in human muscle. Ten male subjects performed five bouts of static knee extension with 10-min rest in between. Each bout of RSC (target torque 66% of maximal voluntary contraction torque) was maintained to fatigue. Muscle biopsies were taken preexercise and 0.3 and 24 h postexercise from vastus lateralis. Mitochondria were isolated and respiratory function measured after incubation with H(2)O(2) (HPX) or control medium (Con). Mitochondrial function was not affected by RSC during Con. However, RSC exacerbated mitochondrial dysfunction during HPX, resulting in decreased respiratory control index, decreased mitochondrial efficiency (phosphorylated ADP-to-oxygen consumed ratio), and increased noncoupled respiration (HPX/Con post- vs. preexercise). SR Ca(2+) uptake rate was lower 0.3 vs. 24 h postexercise, whereas SR Ca(2+) release rate was unchanged. RSC resulted in long-lasting changes in muscle contractility, including reduced maximal torque, low-frequency fatigue, and faster torque relaxation. It is concluded that RSC increases mitochondrial vulnerability toward ROS, reduces SR Ca(2+) uptake rate, and causes low-frequency fatigue. Although conclusive evidence is lacking, we suggest that these changes are related to increased formation of ROS during RSC.  相似文献   

19.
Recent studies have indicated that free radicals may play an important role in the development of muscle dysfunction in many pathophysiological conditions. Because the degree of muscle dysfunction observed in some of these conditions appears to be both free radical dependent and modulated by extracellular calcium concentrations, we thought that there may be a link between these two phenomena; i.e., the propensity of a muscle to generate free radicals may be dependent on extracellular calcium concentrations. For this reason, we compared formation of reactive oxygen species (ROS; i.e., free radicals) by electrically stimulated rat diaphragms (trains of 20-Hz stimuli for 10 min, train rate 0.25 trains/s) incubated in organ baths filled with physiological solutions containing low (1 mM), normal (2.5 mM), or high (5 mM) calcium levels. Generation of ROS was assessed by measuring the conversion of hydroethidine to ethidium. We found ROS generation with contraction varied with the extracellular calcium level, with low ROS production (3.18 +/- 0.40 ng ethidium/mg tissue) for low-calcium studies and with much higher ROS generation for normal-calcium (18. 90 +/- 2.70 ng/mg) or high-calcium (19.30 +/- 4.50 ng/mg) studies (P < 0.001). Control, noncontracting diaphragms (in 2.5 mM calcium) had little ROS production (3.40 +/- 0.80 ng/mg; P < 0.001). To further investigate this issue, we added nimodipine (20 microM), an L-type calcium channel blocker, to contracting diaphragms (2.5 mM calcium bath) and found that nimodipine also suppressed ROS formation (2.56 +/- 0.85 ng ethidium/mg tissue). These data indicate that ROS generation by the contracting diaphragm is strongly influenced by extracellular calcium concentrations and may be dependent on calcium transport through L-type calcium channels.  相似文献   

20.
Mitochondrial production of reactive oxygen species (ROS) at Complex I of the electron transport chain is implicated in the etiology of neural cell death in acute and chronic neurodegenerative disorders. However, little is known regarding the regulation of mitochondrial ROS production by NADH-linked respiratory substrates under physiologically realistic conditions in the absence of respiratory chain inhibitors. This study used Amplex Red fluorescence measurements of H2O2 to test the hypothesis that ROS production by isolated brain mitochondria is regulated by membrane potential (DeltaPsi) and NAD(P)H redox state. DeltaPsi was monitored by following the medium concentration of the lipophilic cation tetraphenylphosphonium with a selective electrode. NAD(P)H autofluorescence was used to monitor NAD(P)H redox state. While the rate of H2O2 production was closely related to DeltaPsi and the level of NAD(P)H reduction at high values of DeltaPsi, 30% of the maximal rate of H2O2 formation was still observed in the presence of uncoupler (p-trifluoromethoxycarbonylcyanide phenylhydrazone) concentrations that provided for maximum depolarization of DeltaPsi and oxidation of NAD(P)H. Our findings indicate that ROS production by mitochondria oxidizing physiological NADH-dependent substrates is regulated by DeltaPsi and by the NAD(P)H redox state over ranges consistent with those that exist at different levels of cellular energy demand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号