首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The human pituitary tumor transforming gene (hPTTG) serves as a marker for malignancy grading in several cancers, hPTTG is in volved in multiple cellular pathways including cell transformation, apoptosis, DNA repair, genomic instability, mitotic control and angiogenesis induction. However, the molecular mechanisms underlying hPTTG regulation have not been fully explored. In this study, we found that overexpression of histone acetyltransferase (HAT) p300 upregulated hPTTG at the levels of promoter activity, mRNA and protein expression. Moreover, the HAT activity of p300 was critical for its regulatory function. Chromatin immunoprecipitation (ChIP)analysis revealed that overexpression of p300 elevated the level of histone H3 acetylation on the hPTTG promoter. Additionally, the NF-Y sites at the hPTTG promoter exhibited a synergistic effect on upregulation of hPTTG through interacting with p300. We also found thattreatment of 293T cells with the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) increased hPTTG promoter activity. Meanwhile, we provided evidence that HDAC3 decreased hPTTG promoter activity. These data implicate an important role of the histone acetylation modification in the regulation of hPTTG.  相似文献   

6.
7.
8.
9.
The human pituitary tumor transforming gene (hPTTG) serves as a marker for malignancy grading in several cancers, hPTTG is involved in multiple cellular pathways including cell transformation, apoptosis, DNA repair, genomic instability, mitotic control and angiogenesis induction. However, the molecular mechanisms underlying hPTTG regulation have not been fully explored. In this study, we found that overexpression of histone acetyltransferase (HAT) p300 upregulated hPTTG at the levels of promoter activity, mRNA and protein expression. Moreover, the HAT activity of p300 was critical for its regulatory function. Chromatin immunoprecipitation (CHIP) analysis revealed that overexpression of p300 elevated the level of histone H3 acetylation on the hPTTG promoter. Additionally, the NF-Y sites at the hPTTG promoter exhibited a synergistic effect on upregulation of hPTTG through interacting with p300. We also found that treatment of 293T cells with the histone deacetylase (HDAC) inhibitor Tfichostatin A (TSA) increased hPTTG promoter activity. Meanwhile, we provided evidence that HDAC3 decreased hPTTG promoter activity. These data implicate an important role of the histone acetylafion modification in the regulation of hPTTG.  相似文献   

10.
Superoxide dismutase 3 (SOD3) is a SOD isozyme and plays a key role in extracellular redox homeostasis. We previously demonstrated that histone acetylation is involved in 12-O-tetra-decanoylphorbol-13-acetate (TPA)-elicited SOD3 expression in human monocytic THP-1 cells; however, the molecular mechanisms responsible for its expression have not yet been elucidated in detail. The results of the present study demonstrated that the binding of histone deacetylase 1 (HDAC1) to the SOD3 promoter region contributed to SOD3 silencing in basal THP-1 cells. On the other hand, the dissociation of HDAC1 from the SOD3 promoter region and the enrichment of p300, a histone acetyltransferase (HAT), within that region were observed in TPA-induced THP-1 cells. Myocyte enhancer factor 2 (MEF2) functions as a scaffold protein that interacts with histone deacetylases (HDAC) or HAT and regulates gene expression. The present results showed that the MEF2A and MEF2D function as mediators for TPA-elicited SOD3 expression by interacting with HDAC or p300. Additionally, the knockdown of MEF2A or MEF2D in human skin fibroblasts suppressed SOD3 expression at the mRNA and protein levels. Our results provide an insight into epigenetic regulation of redox gene expression, and may ultimately contribute to suppressing the progression of tumours and vascular diseases.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号