首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yu H  Zeng G  Huang H  Xi X  Wang R  Huang D  Huang G  Li J 《Biodegradation》2007,18(6):793-802
The changes of microbial community during agricultural waste composting were successfully studied by quinone profiles. Mesophilic bacteria indicated by MK-7 and mesophilic fungi containing Q-9 as major quinone were predominant and seemed to be important during the initial stage of composting. Actinobacteria indicated by a series of partially saturated and long-chain menaquinones were preponderant during the thermophilic period. While Actinobacteria, fungi and some bacteria, especially those microbes containing MK-7(H4) found in Gram-positive bacteria with a low G+C content or Actinobacteria were found cooperate during the latter maturating period. Since lignocellulsoe is abundant in the agricultural wastes and its degradation is essential for the operation of composting, it’s important to establish the correlation between the quinone profiles changes and lignocellulose degradation. The microbes containing Q-9 or Q-10(H2) as major quinone were found to be the most important hemicellulose and cellulose degrading microorganisms during composting. While the microorganisms containing Q-9(H2) as major quinone and many thermophilic Actinobacteria were believed to be responsible for lignin degradation during agricultural waste composting.  相似文献   

2.
A comparative study of the lipid composition of 26 strains (including type strains) of marine Gammaproteobacteria belonging to the genera Shewanella, Alteromonas, Pseudoalteromonas, Marinobacterium, Microbulbifer, and Marinobacter was carried out. The bacteria exhibited genus-specific profiles of ubiquinones, phospholipids, and fatty acids, which can serve as reliable chemotaxonomic markers for tentative identification of new isolates. The studied species of the genus Shewanella were distinguished by the presence of two types of isoprenoid quinones, namely, ubiquinones Q-7 and Q-8 and menaquinones MK-7 and MMK-7; five phospholipids typical of this genus, namely, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), lyso-PE, and acyl-PG; and the fatty acids 15:0, 16:0, 16:1 (n-7), 17:1 (n-8), i-13:0, and i-15:0. The high level of branched fatty acids (38-45%) and the presence of eicosapentaenoic acid (4%) may serve as criteria for the identification of this genus. Unlike Shewanella spp., bacteria of the other genera contained a single type of isoprenoid quinone: Q-8 (Alteromonas, Pseudoalteromonas, Marinobacterium, and Microbulbifer) or Q-9 (Marinobacter). The phospholipid compositions of these bacteria were restricted to three components: two major phospholipids (PE and PG) and a minor phospholipid, bisphosphatidic acid (Alteromonas and Pseudoalteromonas) or DPG (Marinobacterium, Microbulbifer, and Marinobacter). The bacteria exhibited genus-specific profiles of fatty acids.  相似文献   

3.
Respiratory quinones were used as biomarkers to study bacterial community structures in activated sludge reactors used for enhanced biological phosphate removal (EBPR). We compared the quinone profiles of EBPR sludges and standard sludges, of natural sewage and synthetic sewage, and of plant scale and laboratory scale systems. Ubiquinone (Q) and menaquinone (MK) components were detected in all sludges tested at molar MK/Q ratios of 0.455 to 0.981. The differences in MK/Q ratios were much larger when we compared different wastewater sludges (i.e., raw sewage and synthetic sewage) than when we compared sludges from the EBPR and standard processes or plant scale and laboratory scale systems. In all sludges tested a Q with eight isoprene units (Q-8) was the most abundant quinone. In the MK fraction, either tetrahydrogenated MK-8 or MK-7 was the predominant type, and there was also a significant proportion of MK-6 to MK-8 in most cases. A numerical cluster analysis of the profiles showed that the sludges tested fell into two major clusters; one included all raw sewage sludges, and the other consisted of all synthetic sewage sludges, independent of the operational mode and scale of the reactors and the phosphate accumulation. These data suggested that Q-8-containing species belonging to the class Proteobacteria (i.e., species belonging to the beta subclass) were the major constituents of the bacterial populations in the EBPR sludge, as well as in standard activated sludge. Members of the class Actinobacteria (gram-positive bacteria with high DNA G+C contents) were the second most abundant group in both types of sludge. The bacterial community structures in activated sludge processes may be affected more by the nature of the influent wastewater than by the introduction of an anaerobic stage into the process or by the scale of the reactors.  相似文献   

4.
The polar lipids of photosynthetic purple bacteria of the genera Chromatium, Thiocapsa, Thiocystis, Ectothiorhodospira, Rhodopseudomonas, Rhodospirillum, and Rhodomicrobium were analyzed. Characteristic compositions of the polar lipids were found for most of the Rhodospirillaceae and Chromatiaceae species. Phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin were the major phospholipids in most species. Phosphatidylcholine was present as a major component in all species of the genus Ectothiorhodospira, but was not detected in the remaining Chromatiaceae. It was also present in most of the Rhodospirillaceae species. No glycolipids were found in any of the Ectothiorhodospira species. In the Rhodospirillaceae, the glycolipids mono- and digalactosyl diglycerides were generally absent. Sulfoquinovosyl diglyceride was present in significant amounts in at least three species of the Rhodospirillaceae and may have been present in most of them, but only in traces. All of the Chromatiaceae species contained several glycolipids, one of which was similar to monogalactosyl diglyceride. Ornithine lipids were found in large amounts in most Rhodospirillaceae, but were absent in Ectothiorhodospira and in the other Chromatiaceae. The species examined could be divided into three groups on the basis of their lipid composition: (i) the genus Ectothiorhodospira; (ii) the remaining Chromatiaceae; and (iii) the Rhodospirillaceae. The data presented are compared with those available in the literature, and differences from other phototrophic organisms are discussed.  相似文献   

5.
The technique of DNA--DNA hybridization was used to study relations offween purple nonsulfur bacteria (the family Rhodospirillaceae). The level of homologies with Rhodopseudomonas sphaeroides 8259 was nearly the same for different species (8-17%) in the genus Rhodopseudomonas under the conditions optimal for hybridization. The same level of homologies was found for the DNA of Rhodospirillum rubrum, a species belonging to another genus of purple nonsulfur bacteria (13%). Rhodomicrobium vannielli was most remote from R. sphaeroides 8259 (3%). Similar results were obtained under other conditions of hybridization. The intraspecial heterogeneity of R. sphaeroides was studied in this work. The thermal stability of hybrid duplexes was analysed. The results are indicative of a considerable divergence of different R. sphaeroides strains (delta T50 = 2.1-11.6).  相似文献   

6.
In order to obtain basic information toward the bioremediation of dioxin-polluted soil, microbial communities in farmland soils polluted with high concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were studied by quinone profiling as well as conventional microbiological methods. The concentration of PCDD/Fs in the polluted soils ranged from 36 to 4,980 pg toxicity equivalent quality (TEQ) g(-1) dry weight of soil. There was an inverse relationship between the levels of PCDD/Fs and microbial biomass as measured by direct cell counting and quinone profiling. The most abundant quinone type detected was either MK-6 or Q-10. In addition, MK-8, MK-8(H2), and MK-9(H8) were detected in significant amounts. Numerical analysis of quinone profiles showed that the heavily polluted soils (> or = 1,430 pg TEQ g(-1)) contained different community structures from lightly polluted soils (< or = 56 pg TEQ g(-1)). Cultivation of the microbial populations in the heavily polluted soils with dibenzofuran or 2-chlorodibenzofuran resulted in enrichment of Q-10-containing bacteria. When the heavily polluted soil was incubated in static bottles with autoclaved compost as an organic nutrient additive, the concentrations of PCDD/Fs in the soil were decreased by 22% after 3 months of incubation. These results indicate that dioxin pollution exerted a significant effect on microbial populations in soil in terms of quantity, quality, and activity. The in situ microbial populations in the dioxin-polluted soil were suggested to have a potential for the transformation of PCDD/Fs and oxidative degradation of the lower chlorinated ones thus produced.  相似文献   

7.
Other investigators have isolated soluble, low-potential, c-type cytochromes (cytochrome c3) from a few photosynthetic procaryotes, i.e., a cyanobacterium and two species of purple nonsulfur bacteria. However, such cytochromes appeared to be absent from other purple bacteria, including Rhodospirillum rubrum and Chromatium vinosum. We now report evidence for the presence of low-potential c-type cytochromes in these two species, in which they were found to be bound to the photosynthetic membranes. Evidence for a membrane-bound, low-potential c-type cytochrome was also found in Rhodopseudomonas sphaeoides. The low-potential c-type cytochrome of R. rubrum was solubilized by a Triton X-100 treatment of chromatophores and was partly purified. It was found to have a molecular weight of about 17,000, a midpoint oxidation-reduction potential of -192 mV, and an alpha-absorption peak at 552 nm. It appears that low-potential c-type cytochromes may be present in all purple photosynthetic bacteria, of both the sulfur and the nonsulfur types.  相似文献   

8.
True marine and halophilic anoxygenic phototrophic bacteria   总被引:7,自引:0,他引:7  
Anoxygenic phototrophic bacteria are widely distributed in marine sediments and shallow waters of the coastal zone, where they often form intensely colored mass developments. The phototrophic bacteria have adapted to the whole spectrum of salt concentrations, from freshwater to saturated brines, and it is apparent that individual species have adapted well to particular habitats and mineral salts compositions, both qualitatively and quantitatively. This adaptation is reflected not only in the demand for defined ranges of salt concentrations, but also in the phylogenetic relationships of these bacteria, as established by 16S rDNA sequences. Major phylogenetic branches of purple sulfur bacteria are represented by: (1) marine and extremely halophilic Ectothiorhodospiraceae, (2) truly marine and halophilic Chromatiaceae and (3) freshwater Chromatiaceae, some of which are tolerant to low salt concentrations and are successful competitors in brackish and marine habitats. Quite similarly, salt-dependent green sulfur bacteria form distinct phylogenetic lines. In addition, also among the phototrophic alpha-Proteobacteria (purple nonsulfur bacteria), distinct phylogenetic lines of salt-dependent species are recognized. Available data give rise to the assumption that salt concentrations of natural habitats are an important selective factor that determines the development of a selected range of phototrophic bacteria in an exclusive way. As a consequence, the salt responses of these bacteria are reflected in their phylogenetic relationships.  相似文献   

9.
Seasonal studies of the anoxygenic phototrophic bacterial community of the water column of the saline eutrophic meromictic Lake Shunet (Khakassia) were performed in 2002 (June) and 2003 (February-March and August). From the redox zone down, the lake water was of dark green color. Green sulfur bacteria predominated in every season. The maximum number of green sulfur bacteria was 10(7) cells/ml in summer and 10(6) cells/ml in winter. A multi-syringe stratification sampler was applied for the study of the fine vertical distribution of phototrophs in August 2003; the sampling was performed every five centimeters. A five-centimeter-thick pink-colored water layer inhabited by purple sulfur bacteria was shown to be located above the layer of green bacteria. The species composition and ratio of purple bacterial species depended on the sampling depth and on the season. In summer, the number of purple sulfur bacteria in the layer of pink water was 1.6 x 10(8) cells/ml. Their number in winter was 3 x 10(5) cells/ml. In the upper oxygen-containing layer of the chemocline the cells of purple nonsulfur bacteria were detected in summer. The maximum number of nonsulfur purple bacteria, 5 x 10(2) cells/ml, was recorded in August 2003. According to the results of the phylogenetic analysis of pure cultures of the isolated phototrophic bacteria, which were based on 16S rDNA sequencing, green sulfur bacteria were close to Prosthecochloris vibrioformis, purple sulfur bacteria, to Thiocapsa and Halochromatium species, and purple nonsulfur bacteria, to Rhodovulum euryhalinum and Pinkicyclus mahoneyensis.  相似文献   

10.
A comparative study of the lipid composition of 26 strains (including type strains) of marine Gammaproteobacteria belonging to the genera Shewanella, Alteromonas, Pseudoalteromonas, Marinobacterium, Microbulbifer, and Marinobacter was carried out. The bacteria exhibited genus-specific profiles of ubiquinones, phospholipids, and fatty acids, which can serve as reliable chemotaxonomic markers for tentative identification of new isolates. The studied species of the genus Shewanella were distinguished by the presence of two types of isoprenoid quinones, namely, ubiquinones Q-7 and Q-8 and menaquinones MK-7 and MMK-7; five phospholipids typical of this genus, namely, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), lyso-PE, and acyl-PG; and the fatty acids [15:0, 16:0, 16:1 (n-7), 17:1 (n-8), i-13:0, and i-15:0]. The high level of branched fatty acids (38–45%) and the presence of eicosapentaenoic acid (4%) may serve as criteria for the identification of this genus. Unlike Shewanella spp., bacteria of the other genera contained a single type of isoprenoid quinone: Q-8 (Alteromonas, Pseudoalteromonas, Marinobacterium, and Microbulbifer) or Q-9 (Marinobacter). The phospholipid compositions of these bacteria were restricted to three components: two major phospholipids (PE and PG) and a minor phospholipid, bisphosphatidic acid (Alteromonas and Pseudoalteromonas) or DPG (Marinobacterium, Microbulbifer, and Marinobacter). The bacteria exhibited genus-specific profiles of fatty acids.  相似文献   

11.
Bacterial respiratory quinones were used as biomarkers for studying the bacterial population structure, especially the content of Acinetobacter species, in a laboratory-scale anaerobic-aerobic activated sludge system and in the standard aerobic system. All tested sludges contained both ubiquinone and menaquinone, with a molar ratio of about 1:0.5. High-performance liquid chromatography showed that ubiquinone with eight isoprene units (Q-8) was present as the predominant ubiquinone, Q-10 was the second most common type, and Q-9 and other homologs were minor components in the anaerobic-aerobic sludge and the standard aerobic sludge. Bacteriological examination indicated that, in both sludge systems, Q-8-containing bacteria constituted a large proportion of the aerobic heterotrophic bacterial flora, but only a few strains with Q-9 were found. These findings demonstrate that the population of Acinetobacter species, which contain Q-9 as the major quinone, is negligible in those environments. The present results suggest that the introduction of anaerobic conditions into the aerobic batch process has little influence on the bacterial community structure.  相似文献   

12.
High-potential iron-sulfur protein (HiPIP) has recently been shown to function as a soluble mediator in photosynthetic electron transfer between the cytochrome bc1 complex and the reaction-center bacteriochlorophyll in some species of phototrophic proteobacteria, a role traditionally assigned to cytochrome c2. For those species that produce more than one high-potential electron carrier, it is unclear which protein functions in cyclic electron transfer and what characteristics determine reactivity. To establish how widespread the phenomenon of multiple electron donors might be, we have studied the electron transfer protein composition of a number of phototrophic proteobacterial species. Based upon the distribution of electron transfer proteins alone, we found that HiPIP is likely to be the electron carrier of choice in the purple sulfur bacteria in the families Chromatiaceae and Ectothiorhodospiraceae, but the majority of purple nonsulfur bacteria are likely to utilize cytochrome c2. We have identified several new species of phototrophic proteobacteria that may use HiPIP as electron donor and a few that may use cytochromes c other than c2. We have determined the amino acid sequences of 14 new HiPIPs and have compared their structures. There is a minimum of three sequence categories of HiPIP based upon major insertions and deletions which approximate the three families of phototrophic proteobacteria and each of them can be further subdivided prior to construction of a phylogenetic tree. The comparison of relationships based upon HiPIP and RNA revealed several discrepancies.  相似文献   

13.
Bacterial respiratory quinones were used as biomarkers for studying the bacterial population structure, especially the content of Acinetobacter species, in a laboratory-scale anaerobic-aerobic activated sludge system and in the standard aerobic system. All tested sludges contained both ubiquinone and menaquinone, with a molar ratio of about 1:0.5. High-performance liquid chromatography showed that ubiquinone with eight isoprene units (Q-8) was present as the predominant ubiquinone, Q-10 was the second most common type, and Q-9 and other homologs were minor components in the anaerobic-aerobic sludge and the standard aerobic sludge. Bacteriological examination indicated that, in both sludge systems, Q-8-containing bacteria constituted a large proportion of the aerobic heterotrophic bacterial flora, but only a few strains with Q-9 were found. These findings demonstrate that the population of Acinetobacter species, which contain Q-9 as the major quinone, is negligible in those environments. The present results suggest that the introduction of anaerobic conditions into the aerobic batch process has little influence on the bacterial community structure.  相似文献   

14.
Summary The bacteriochlorophylls a of 60 strains belonging to 13 different species of the purple nonsulfur bacteria (Rhodospirillaceae) were studied with respect to the nature of the esterifying alcohol. The new bacteriochlorophyll aGg containing all-trans-geranylgeraniol is the main bacteriochlorophyll in all strains of Rhodospirillum rubrum. Rhodospirillum photometricum contains the new and the classical bacteriochlorophyll aP (phytol as esterifying alcohol) in nearly equal amounts. The strains of all other species contain the classical bacteriochlorophyll aP.  相似文献   

15.
Seasonal studies of the anoxygenic phototrophic bacterial community of the water column of the saline eutrophic meromictic Lake Shunet (Khakassia) were performed in 2002 (June) and 2003 (February–March and August). From the redox zone down, the lake water was of dark green color. Green sulfur bacteria predominated in every season. The maximum number of green sulfur bacteria was 107 cells/ml in summer and 106 cells/ml in winter. A multi-syringe stratification sampler was applied for the study of the fine vertical distribution of phototrophs in August 2003; the sampling was performed every 5 cm. A 5-cm-thick pink-colored water layer inhabited by purple sulfur bacteria was shown to be located above the layer of green bacteria. The species composition and ratio of purple bacterial species depended on the sampling depth and on the season. In summer, the number of purple sulfur bacteria in the layer of pink water was 1.6 × 108 cells/ml. Their number in winter was 3 × 105 cells/ml. In the upper oxygen-containing layer of the chemocline the cells of purple nonsulfur bacteria were detected in summer. The maximum number of nonsulfur purple bacteria, 5 × 102 cells/ml, was recorded in August 2003. According to the results of the phylogenetic analysis of pure cultures of the isolated phototrophic bacteria, which were based on 16S rDNA sequencing, green sulfur bacteria were close to Prosthecochloris vibrioformis, purple sulfur bacteria, to Thiocapsa and Halochromatium species, and purple nonsulfur bacteria, to Rhodovulum euryhalinum and Pinkicyclus mahoneyensis.  相似文献   

16.
Although the polypeptides of core light-harvesting complexes (LH1) from many purple nonsulfur bacteria have been well characterized, little information is available on the polypeptides of LH1 from purple sulfur photosynthetic organisms. We present here the results of isolation and characterization of LH1 polypeptides from two purple sulfur bacteria, Thermochromatium (Tch.) tepidum and Allochromatium (Ach.) vinosum. Native LH1 complexes were extracted and purified in a reaction center (RC)-associated form with the Qy absorption at 914 nm and 889 nm for Tch. tepidum and Ach. vinosum, respectively. Three components were confirmed from reverse-phase HPLC for the LH1 apopolypeptides of Tch. tepidum. The beta-polypeptide was found to be methylated at N-terminus, and two alpha-polypeptides were identified with one of them being modified by a formyl group at the N-terminal methionine residue. Two alpha- and two beta-polypeptides were confirmed for the LH1 complex of Ach. vinosum, and their primary structures were precisely determined. Homologous and hybrid reconstitution abilities were examined using bacteriochlorophyll a and separated alpha- and beta-polypeptides. The beta-polypeptide from Tch. tepidum was capable of forming uniform structural subunit not only with the alpha-polypeptide of Tch. tepidum but also with the alpha-polypeptide from a nonsulfur bacterium Rhodospirillum rubrum. The alpha-polypeptide alone or beta-polypeptide alone appeared only to result in incomplete subunits in the reconstitution experiments.  相似文献   

17.
Thioredoxin was isolated from a photosynthetic purple nonsulfur bacterium, Rhodospirillum rubrum, and its primary structure was determined by high-performance tandem mass spectrometry. The sequence identity of R. rubrum thioredoxin to Escherichia coli thioredoxin was intermediate to those of the Chlorobium thiosulfatophilum and Chromatium vinosum proteins. The results indicate that R. rubrum has an NADP-thioredoxin system similar to that of other photosynthetic purple bacteria.  相似文献   

18.
From the sulphur-dependent, anaerobically grown archaebacterium Sulfolobus ambivalens Caldariella quinone, CQ-6(12H) and the new Sulfolobus quinone SQ-6(12H), 6-(3,7,11,15,19,23-hexamethyltetracosyl)-5-methyl-benz[b]thioph en-4, 7-quinone have been isolated as main components. Lower homologues SQ-5-(10H), SQ-4(8H), SQ-3(6H), phylloquinone-like species CQ-6(10H), SQ-6(10H) and the menaquinone MK-6(12H) are present as minor components. The results are compared with those from Sulfolobus acidocaldarius. Thermococcus celer, Desulfurococcus mucosus and Desulfurococcus mobilis do not contain quinones in comparable amounts.  相似文献   

19.
Sediment samples collected from coastal lagoons on the French Mediterranean (Prévost Lagoon) and Atlantic coasts (Arcachon Bay and Certes fishponds) have been studied in order to determine the population densities and the species diversity of the different groups of anoxygenic phototrophic bacteria (purple sulfur bacteria, purple nonsulfur bacteria and green sulfur bacteria) present in these ecosystems. Several strains of each group were isolated in pure culture and characterized by their physiological properties. The occurrence of purple nonsulfur bacteria in organic rich sediments of the Arcachon Bay and the dominance of purple sulfur bacteria in the Prévost lagoon and Certes fishponds are discussed with respect to their community structure and abundance. The diversity differences of the phototrophic bacterial strains isolated from both environments are also discussed.  相似文献   

20.
F H Yildiz  H Gest    C E Bauer 《Journal of bacteriology》1991,173(13):4163-4170
A genetic system has been developed for studying bacterial photosynthesis in the recently described nonsulfur purple photosynthetic bacterium Rhodospirillum centenum. Nonphotosynthetic mutants of R. centenum were obtained by enrichment for spontaneous mutations, by ethyl methanesulfonate mutagenesis coupled to penicillin selection on solid medium, and by Tn5 transposition mutagenesis with an IncP plasmid vector containing a temperature-sensitive origin of replication. In vivo and in vitro characterization of individual strains demonstrated that 38 strains contained mutations that blocked bacteriochlorophyll a biosynthesis at defined steps of the biosynthetic pathway. Collectively, these mutations were shown to block seven of eight steps of the pathway leading from protoporphyrin IX to bacteriochlorophyll a. Three mutants were isolated in which carotenoid biosynthesis was blocked early in the biosynthetic pathway; the mutants also exhibited pleiotropic effects on stability or assembly of the photosynthetic apparatus. Five mutants failed to assemble a functional reaction center complex, and seven mutants contained defects in electron transport as shown by an alteration in cytochromes. In addition, several regulatory mutants were isolated that acquired enhanced repression of bacteriochlorophyll in response to the presence of molecular oxygen. The phenotypes of these mutants are discussed in relation to those of similar mutants of Rhodobacter and other Rhodospirillum species of purple photosynthetic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号