首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of CD4 T cell help in primary and secondary CD8 T cell responses to infectious pathogens remains incompletely defined. The primary CD8 T response to infections was initially thought to be largely independent of CD4 T cells, but it is not clear why some primary, pathogen-specific CD8 T cell responses are CD4 T cell dependent. Furthermore, although the generation of functional memory CD8 T cells is CD4 T cell help dependent, it remains controversial when the "help" is needed. In this study, we demonstrated that CD4 T cell help was not needed for the activation and effector differentiation of CD8 T cells during the primary response to vaccinia virus infection. However, the activated CD8 T cells showed poor survival without CD4 T cell help, leading to a reduction in clonal expansion and a diminished, but stable CD8 memory pool. In addition, we observed that CD4 T cell help provided during both the primary and secondary responses was required for the survival of memory CD8 T cells during recall expansion. Our study indicates that CD4 T cells play a crucial role in multiple stages of CD8 T cell response to vaccinia virus infection and may help to design effective vaccine strategies.  相似文献   

2.
Fully functional memory CD8 T cells in the absence of CD4 T cells   总被引:5,自引:0,他引:5  
The role of CD4 T cells in providing help to CD8 T cells in primary and secondary responses to infection remains controversial. Using recombinant strains of virus and bacteria expressing the same Ag, we determined the requirement for CD4 T cells in endogenous CD8 T cell responses to infection with vesicular stomatitis virus and Listeria monocytogenes (LM). Depletion of CD4 T cells had no effect on the frequency of primary or secondary vesicular stomatitis virus-specific CD8 T cells in either lymphoid or nonlymphoid tissues. In contrast, the primary LM-specific CD8 T cell response was CD4 T cell dependent. Surprisingly, the LM-specific CD8 T cell recall response was also CD4 T cell dependent, which correlated with a requirement for CD40/CD40L interactions. However, concomitant inhibition of CD40L and CD4 T cell removal revealed that these pathways may be operating independently. Importantly, despite the absence of CD4 T cells during the recall response or throughout the entire response, CD8 memory T cells were functional effectors and proliferated equivalently to their "helped" counterparts. These data call into question the contention that CD4 T cells condition memory CD8 T cells during the primary response and indicate that the principal role of CD4 T cells in generating CD8 memory cells after infection is augmentation of proliferation or survival through costimulatory signals.  相似文献   

3.
Memory CD8+ T cell responses have been considered to be independent of CD80/CD86-CD28 costimulation. However, recall responses are often severely blunted in CD28-/- mice. Whether this impairment represents a requirement for CD28 costimulation for proper memory CD8+ T cell development or a requirement during the recall response is unknown. Furthermore, how CD28 costimulation affects the phenotype and function of memory CD8+ T cells has not been characterized in detail. In this study, we investigate these questions by studying the role of the CD28 costimulatory pathway in memory CD8+ T cell responses to acute and persistent DNA virus infections. Memory CD8+ T cells against vaccinia virus (VV) infection which develop without CD28 costimulation exhibit lower expression of differentiation markers CD27 and CD122 (IL-15Rbeta). These memory CD8+ T cells also fail to produce IL-2. Our data indicate that for an optimal recall response, CD28 costimulation is required both for T cell priming and also during the recall response. Similar requirements were observed for memory CD8+ T cell responses during persistent infection with murine gammaherpesvirus 68 (MHV-68) infection, indicating CD28 may play the same role in both acute and persistent infections. Finally, we show deficits in the recall response are restored by IL-2 signaling during recall, but not during priming. The data presented show that CD28 costimulation not only controls the magnitude of the primary response but also affects development of memory CD8+ T cells and is required during the recall response in addition to initial T cell priming.  相似文献   

4.
CD4(+) T cells promote effective CD8(+) T cell-mediated immunity, but the timing and mechanistic details of such help remain controversial. Furthermore, the extent to which innate stimuli act independently of help in enhancing CD8(+) T cell responses is also unresolved. Using a noninfectious vaccine model in immunocompetent mice, we show that even in the presence of innate stimuli, CD4(+) T cell help early after priming is required for generating an optimal pool of functional memory CD8(+) T cells. CD4(+) T cell help increased the size of a previously unreported population of IL-6Ralpha(high)IL-7Ralpha(high) prememory CD8(+) T cells shortly after priming that showed a survival advantage in vivo and contributed to the majority of functional memory CD8(+) T cells after the contraction phase. In accord with our recent demonstration of chemokine-guided recruitment of naive CD8(+) T cells to sites of CD4(+) T cell-dendritic cell interactions, the generation of IL-6Ralpha(high)IL-7Ralpha(high) prememory as well as functional memory CD8(+) T cells depended on the early postvaccination action of the inflammatory chemokines CCL3 and CCL4. Together, these findings support a model of CD8(+) T cell memory cell differentiation involving the delivery of key signals early in the priming process based on chemokine-guided attraction of naive CD8(+) T cells to sites of Ag-driven interactions between TLR-activated dendritic cells and CD4(+) T cells. They also reveal that elevated IL-6Ralpha expression by a subset of CD8(+) T cells represents an early imprint of CD4(+) T cell helper function that actively contributes to the survival of activated CD8(+) T cells.  相似文献   

5.
The mechanisms responsible for the generation and maintenance of T cell memory are unclear. In this study, we tested the role of IL-2 in allospecific CD8+ T cell memory by analyzing the long-term survival, phenotype, and functional characteristics of IL-2-replete (IL-2+/+) and IL-2-deficient (IL-2-/-) CD8+ TCR-transgenic lymphocytes in an adoptive transfer model. We found that IL-2 is not essential for the in vivo generation, maintenance, or recall response of CD8+ memory T cells. However, IL-2 increased the size of the CD8+ memory pool if present at the time of initial T cell activation but reduced the size of the pool if present during memory maintenance by inhibiting the proliferation of CD8+ memory T cells. Thus, IL-2-based vaccine strategies or immunosuppressive regimens that target IL-2 should take into account the divergent roles of IL-2 in CD8+ T cell immunity.  相似文献   

6.
CD4 T cell help plays an important role in promoting CD8 T cell immunity to pathogens. In models of infection with vaccinia virus (VV) and Listeria monocytogenes, CD4 T cell help is critical for the survival of activated CD8 T cells during both the primary and memory recall responses. Still unclear, however, is how CD4 T cell help promotes CD8 T cell survival. In this study, we first showed that CD4 T cell help for the CD8 T cell response to VV infection was mediated by IL-21, a cytokine produced predominantly by activated CD4 T cells, and that direct action of IL-21 on CD8 T cells was critical for the VV-specific CD8 T cell response in vivo. We next demonstrated that this intrinsic IL-21 signaling was essential for the survival of activated CD8 T cells and the generation of long-lived memory cells. We further revealed that IL-21 promoted CD8 T cell survival in a mechanism dependent on activation of the STAT1 and STAT3 pathways and subsequent upregulation of the prosurvival molecules Bcl-2 and Bcl-x(L). These results identify a critical role for intrinsic IL-21 signaling in CD8 T cell responses to an acute viral infection in vivo and may help design effective vaccine strategies.  相似文献   

7.

Background

We have previously demonstrated that temporary depletion of CD4 T cells in mice with progressive B16 melanoma, followed by surgical tumor excision, induces protective memory CD8 T cell responses to melanoma/melanocyte antigens. We also showed that persistence of these CD8 T cells is supported, in an antigen-dependent fashion, by concurrent autoimmune melanocyte destruction. Herein we explore the requirement of CD4 T cell help in priming and maintaining this protective CD8 T cell response to melanoma.

Methodology and Principal Findings

To induce melanoma/melanocyte antigen-specific CD8 T cells, B16 tumor bearing mice were depleted of regulatory T cells (Treg) by either temporary, or long-term continuous treatment with anti-CD4 (mAb clone GK1.5). Total depletion of CD4 T cells led to significant priming of IFN-γ-producing CD8 T cell responses to TRP-2 and gp100. Surprisingly, treatment with anti-CD25 (mAb clone PC61), to specifically deplete Treg cells while leaving help intact, was ineffective at priming CD8 T cells. Thirty to sixty days after primary tumors were surgically excised, mice completely lacking CD4 T cell help developed autoimmune vitiligo, and maintained antigen-specific memory CD8 T cell responses that were highly effective at producing cytokines (IFN-γ, TNF-α, and IL-2). Mice lacking total CD4 T cell help also mounted protection against re-challenge with B16 melanoma sixty days after primary tumor excision.

Conclusions and Significance

This work establishes that CD4 T cell help is dispensable for the generation of protective memory T cell responses to melanoma. Our findings support further use of CD4 T cell depletion therapy for inducing long-lived immunity to cancer.  相似文献   

8.
In this study, we investigated whether B cells play a role in the induction and maintenance of CD8 T cell memory after immunization with an intracellular bacterium, Listeria monocytogenes. Our results show that B cells play a minimal role in the initial activation and Ag-driven expansion of CD8 T lymphocytes. However, absence of B cells results in increased death of activated CD8 T cells during the contraction phase, leading to a lower level of Ag-specific CD8 T cell memory. Once memory is established, B cells are no longer required for the long-term maintenance and rapid recall response of memory CD8 T cells. Increased contraction of Ag-specific CD8 T cells in B cell-deficient mice is not due to impaired CD4 T cell responses since priming of epitope-specific CD4 T cell responses is normal in B cell-deficient mice following L. monocytogenes infection. Furthermore, no exaggerated contraction of Ag-specific CD8 T cells is evident in CD4 knockout mice. Thus, B cells play a specific role in modulating the contraction of CD8 T cell responses following immunization. Elucidation of factors that regulate the death phase may allow us to manipulate this process to increase the level of immunological memory and thus, vaccine efficacy.  相似文献   

9.
The extent to which the progeny of one primary memory CD8 T cell differs from the progeny of one naive CD8 T cell of the same specificity remains an unresolved question. To explore cell-autonomous functional differences between naive and memory CD8 T cells that are not influenced by differences in the priming environment, an experimental model has been developed in which physiological numbers of both populations of cells were cotransferred into naive hosts before Ag stimulation. Interestingly, naive CD8 T cells undergo greater expansion in numbers than do primary memory CD8 T cells after various infections or immunizations. The intrinsic ability of one naive CD8 T cell to give rise to more effector CD8 T cells than one memory CD8 T cell is independent of the number and quality of primary memory CD8 T cells present in vivo. The sustained proliferation of newly activated naive CD8 T cells contributed to their greater magnitude of expansion. Additionally, longitudinal analyses of primary and secondary CD8 T cell responses revealed that on a per-cell basis naive CD8 T cells generate higher numbers of long-lived memory cells than do primary memory CD8 T cells. This enhanced "memory generation potential" of responding naive CD8 T cells occurred despite the delayed contraction of secondary CD8 T cell responses. Taken together, the data in this study revealed previously unappreciated differences between naive and memory CD8 T cells and will help further define the functional potential for both cell types.  相似文献   

10.
For optimal quality, memory CD8(+) T cells require CD4(+) T cell help. We have examined whether CD4(+) T cells require CD27 to deliver this help, in a model of intranasal OVA protein immunization. CD27 deficiency reduced the capacity of CD4(+) T cells to support Ag-specific CD8(+) T cell accumulation at the tissue site after primary and secondary immunization. CD27-dependent CD4(+) T cell help for the memory CD8(+) T cell response was delivered during priming. It did not detectably affect formation of CD8(+) memory T cells, but promoted their secondary expansion. CD27 improved survival of primed CD4(+) T cells, but its contribution to the memory CD8(+) T cell response relied on altered CD4(+) T cell quality rather than quantity. CD27 induced a Th1-diagnostic gene expression profile in CD4(+) T cells, which included the membrane molecule MS4A4B. Accordingly, CD27 increased the frequency of IFN-gamma- and IL-2-producing CD4(+) T cells. It did not affect CD40L expression. Strikingly, MS4A4B was also identified as a unique marker of CD8(+) memory T cells that had received CD27-proficient CD4(+) T cell help during the primary response. This apparent imprinting effect suggests a role for MS4A4B as a downstream effector in CD27-dependent help for CD8(+) T cell memory.  相似文献   

11.
Vaccine-induced memory T cells localized at mucosal sites can provide rapid protection from viral infection. All-trans-retinoic acid (ATRA) has been shown to act physiologically to induce the expression of gut-homing receptors on lymphocytes. We tested whether the administration of exogenous ATRA during a systemic vaccination of mice could enhance the generation of mucosal CD8(+) T cell immunity, which might represent a strategy for establishing better protection from viral infection via mucosal routes. ATRA induced the expression of CCR9 and α4β7 on both mouse and human CD8(+) T cells activated in vitro. The administration of ATRA to mice during in vivo priming with a replication-defective recombinant adenovirus vector expressing the lymphocytic choriomeningitis virus glycoprotein (LCMVgp) (Ad5gp) increased numbers of both effector and memory T cells in intestinal mucosal tissues and showed higher frequencies of systemic central memory-like T cells that exhibited enhanced proliferation during boosting immunization with recombinant modified vaccinia virus Ankara expressing LCMVgp (MVAgp). Mice that received ATRA during Ad5gp vaccination were more resistant to intravaginal challenge by recombinant vaccinia virus expressing LCMVgp (VVgp), reflecting in part stronger T cell recall responses in situ. Thus, ATRA appears to be useful as an adjuvant during vaccination to increase memory T cell responses and protection from viral infection at mucosal sites and may facilitate the development of more effective vaccines against mucosally transmitted pathogens such as HIV.  相似文献   

12.
The CD154/CD40 interaction is an important pathway of CD4 T cell help for CD8 T cell responses. In this study, we address the role of CD70, a member of the TNF superfamily and the ligand for the T cell costimulatory receptor CD27, in CD40-mediated priming of CD8 T cells. Using an agonistic anti-CD40 mAb to mimic the CD154/CD40 interaction we demonstrate that the priming of OT-I TCR transgenic or endogenous mouse OVA-specific CD8 T cells is critically dependent on CD70/CD27 interaction. CD70 blockade inhibited CD40-mediated clonal expansion of CD8 T cells and reduced the number of memory CD8 T cells generated. Furthermore, CD70 blockade during the initial priming of CD8 T cells inhibited the ability of memory CD8 T cells to expand in response to a second encounter with Ag. Our data indicate that CD70 expression on APCs plays a key role in CD40-dependent CD8 T cell responses.  相似文献   

13.
Rapid proliferation is one of the important features of memory CD8(+) T cells, ensuring rapid clearance of reinfection. Although several cytokines such as IL-15 and IL-7 regulate relatively slow homeostatic proliferation of memory T cells during the maintenance phase, it is unknown how memory T cells can proliferate more quickly than na?ve T cells upon antigen stimulation. To examine antigen-specific CD8(+) T cell proliferation in recall responses in vivo, we targeted a model antigen, ovalbumin(OVA), to DEC-205(+) dendritic cells (DCs) with a CD40 maturation stimulus. This led to the induction of functional memory CD8(+) T cells, which showed rapid proliferation and multiple cytokine production (IFN-gamma, IL-2, TNF-alpha) during the secondary challenge to DC-targeted antigen. Upon antigen-presentation, IL-18, an IFN-gamma-inducing factor, accumulated at the DC:T cell synapse. Surprisingly, IFN-gamma receptors were required to augment IL-18 production from DCs. Mice genetically deficient for IL-18 or IFN-gamma-receptor 1 also showed delayed expansion of memory CD8(+) T cells in vivo. These results indicate that a positive regulatory loop involving IFN-gamma and IL-18 signaling contributes to the accelerated memory CD8(+) T cell proliferation during a recall response to antigen presented by DCs.  相似文献   

14.
CD8(+) T cells respond to IL-2 produced both endogenously and by CD4(+) Th during an antiviral response. However, IL-2R signals can potentially promote CD8(+) T cell death as well as proliferation, making it unclear whether IL-2R signals provide a predominantly positive or negative effect upon CD8(+) T cell responses to viral infection. To more precisely define the direct role of IL-2R signaling on CD8(+) T cells during the response to a virus, we examined the effect of delivering augmented IL-2R signals selectively to CD8(+) T cells responding to lymphocytic choriomeningitis virus infection. Although naive CD8(+) T cells are competent to produce IL-2, CD8(+) T cells lose this capacity upon differentiation into effector CD8(+) T cells. However, effector CD8(+) T cells do retain the capacity to produce GM-CSF upon Ag stimulation. Thus, to deliver enhanced autocrine IL-2R signals to CD8(+) T cells, we established a transgenic mouse strain expressing a chimeric GM-CSF/IL-2R (GMIL2R). As GM-CSF production is Ag dependent, the GMIL2R delivers an augmented IL-2R signal exclusively to CD8(+) T cells responding to Ag. Following lymphocytic choriomeningitis virus infection, GMIL2R transgenic mice exhibited an increase in both the peak CD8(+) T cell response achieved and the size of the resulting memory pool established. Upon secondary viral challenge, the GMIL2R also enhanced the proliferative response of memory CD8(+) T cells. Thus, our findings indicate that IL-2 delivery to responding CD8(+) T cells is a limiting factor in both the acute and memory antiviral responses.  相似文献   

15.
It is now well established that viral infections can induce large expansions of Ag-specific CD8(+) T cells. These cells divide very rapidly with an estimated doubling time of approximately 6 h. When virus is cleared, the vast majority of these effector CD8 T cells undergo apoptosis. The remaining memory cells persist at constant levels and provide the basis for the accelerated recall response upon rechallenge. The molecular mechanisms that control the rapid proliferation and death of Ag-specific T cells are poorly understood. Because of its important role in controlling cell proliferation and death, we examined antiviral immune responses in p53(-/-) mice using lymphocytic choriomeningitis virus. We found that effector CD8 and CD4 responses were comparable but that memory levels were slightly higher in -/- mice compared with +/+ mice. The lack of a major difference in virus-specific T cell responses between +/+ and -/- mice suggests that p53 only plays a minor role in regulating the proliferation, apoptosis, and maintenance of Ag-specific T cells. Thus, it appears that the primary function of p53 is in controlling "illegitimate" proliferation and tumor development and not in regulating Ag-specific T cell responses.  相似文献   

16.
Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway   总被引:2,自引:0,他引:2  
The CD28/B7 costimulatory pathway is generally considered dispensable for memory T cell responses, largely based on in vitro studies demonstrating memory T cell activation in the absence of CD28 engagement by B7 ligands. However, the susceptibility of memory CD4 T cells, including central (CD62L(high)) and effector memory (T(EM); CD62L(low)) subsets, to inhibition of CD28-derived costimulation has not been closely examined. In this study, we demonstrate that inhibition of CD28/B7 costimulation with the B7-binding fusion molecule CTLA4Ig has profound and specific effects on secondary responses mediated by memory CD4 T cells generated by priming with Ag or infection with influenza virus. In vitro, CTLA4Ig substantially inhibits IL-2, but not IFN-gamma production from heterogeneous memory CD4 T cells specific for influenza hemagglutinin or OVA in response to peptide challenge. Moreover, IL-2 production from polyclonal influenza-specific memory CD4 T cells in response to virus challenge was completely abrogated by CTLA4Ig with IFN-gamma production partially inhibited. When administered in vivo, CTLA4Ig significantly blocks Ag-driven memory CD4 T cell proliferation and expansion, without affecting early recall and activation. Importantly, CTLA4Ig treatment in vivo induced a striking shift in the phenotype of the responding population from predominantly T(EM) in control-treated mice to predominantly central memory T cells in CTLA4Ig-treated mice, suggesting biased effects of CTLA4Ig on T(EM) responses. Our results identify a novel role for CD28/B7 as a regulator of memory T cell responses, and have important clinical implications for using CTLA4Ig to abrogate the pathologic consequences of T(EM) cells in autoimmunity and chronic disease.  相似文献   

17.
The role of CD4 help during CD8 memory differentiation has been clearly demonstrated in different experimental models. However, the mechanisms involved to mediate CD4 help and the extent of its effects remain largely unknown. Using gene analysis at a single cell level, which allows the study of gene expression in terms of frequency, intensity and coxpression, we show that unhelped CD8 T cells harbor severe defects in the expression of crucial genes involved in proliferation, survival, and cytotoxic functions, the three main characteristics of CD8 memory differentiation described so far. Importantly, during secondary response, unhelped CD8 T cells exhibit blockade in all cytotoxic pathways (perforin, Fas ligand, IFN-gamma), demonstrating the highly ubiquitous effect of CD4 help. Secondly, resting unhelped CD8 T cells extinguish the majority of their stimulated genes, showing that CD4 help favors the persistence of gene expression. Indeed, during secondary response, unhelped CD8 T cells exhibit a profile very similar to naive T cells, demonstrating that no instructive program has been imprinted in these cells. Finally unhelped CD8 T cells exhibit a higher sensitivity to immunoregulatory genes during secondary immune response. Therefore, these results characterize the multiple effects of CD4 help on CD8 memory differentiation and provide important insights for the understanding of protective memory responses.  相似文献   

18.
Rapid development of T cell memory   总被引:2,自引:0,他引:2  
Prime-boost immunization is a promising strategy for inducing and amplifying pathogen- or tumor-specific memory CD8 T cell responses. Although expansion of CD8 T cell populations following the second Ag dose is integral to the prime-boost strategy, it remains unclear when, after priming, memory T cells become competent to proliferate. In this study, we show that Ag-specific CD8 T cells with the capacity to undergo extensive expansion are already present at the peak of the primary immune response in mice. These early memory T cells represent a small fraction of the primary immune response and, at early time points, their potential to proliferate is obscured by large effector T cell populations that rapidly clear Ag upon reimmunization. With sufficient Ag boosting, however, secondary expansion of these memory cells can be induced as early as 5-7 days following primary immunization. Importantly, both early and delayed boosting result in similar levels of protective immunity to subsequent pathogen challenge. Early commitment and differentiation of memory T cells during primary immunization suggest that a short duration between priming and boosting is feasible, providing potential logistic advantages for large-scale prime-boost vaccination of human populations.  相似文献   

19.
CD4 T cell-dependent CD8 T cell maturation   总被引:7,自引:0,他引:7  
We have investigated the contribution of CD4 T cells to the optimal priming of functionally robust memory CD8 T cell subsets. Intranasal infection of CD4 T cell-deficient (CD4(-/-)) mice with lymphocytic choriomeningitis virus resulted in the elaboration of virus-specific CD8 T cell responses that cleared the infection. However, by comparison with normal mice, the virus-specific CD8 T cells in CD4(-/-) mice were quantitatively and qualitatively different. In normal mice, lymphocytic choriomeningitis virus-specific memory CD8 T cells are CD44(high), many are CD122(high), and a majority of these cells regain expression of CD62L overtime. These cells produce IFN-gamma and TNF-alpha, and a subset also produces IL-2. In the absence of CD4 T cell help, a distinct subset of memory CD8 T cells develops that remains CD62L(low) up to 1 year after infection and exhibits a CD44(int)CD122(low) phenotype. These cells are qualitatively different from their counterparts in normal hosts, as their capacity to produce TNF-alpha and IL-2 is diminished. In addition, although CD4-independent CD8 T cells can contain the infection following secondary viral challenge, their ability to expand is impaired. These findings suggest that CD4 T cell responses not only contribute to the optimal priming of CD8 T cells in chronically infected hosts, but are also critical for the phenotypic and functional maturation of CD8 T cell responses to Ags that are more rapidly cleared. Moreover, these data imply that the development of CD62L(high) central memory CD8 T cells is arrested in the absence of CD4 T cell help.  相似文献   

20.
Microbial infection during various stages of human development produces widely different clinical outcomes, yet the links between age-related changes in the immune compartment and functional immunity remain unclear. The ability of the immune system to respond to specific antigens and mediate protection in early life is closely correlated with the level of diversification of lymphocyte antigen receptors. We have previously shown that the neonatal primary CD8+ T cell response to replication competent virus is significantly constricted compared to the adult response. In the present study, we have analyzed the subsequent formation of neonatal memory CD8+ T cells and their response to secondary infectious challenge. In particular, we asked whether the less diverse CD8+ T cell clonotypes that are elicited by neonatal vaccination with replication competent virus are ‘locked-in’ to the adult memory T cell, and thus may compromise the strength of adult immunity. Here we report that neonatal memory CD8+ T cells mediate poor recall responses compared to adults and are comprised of a repertoire of lower avidity T cells. During a later infectious challenge the neonatal memory CD8+ T cells compete poorly with the fully diverse repertoire of naïve adult CD8+ T cells and are outgrown by the adult primary response. This has important implications for the timing of vaccination in early life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号