首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Orientation disruptor (ord), a meiotic mutant that is recombination defective in females and disjunction defective in males and females, has been analyzed using serial section electron and light microscopy. From analysis of primary spermatocytes we have confirmed that ord males are defective in some aspect of the mechanism(s) that holds sister chromatids together during meiosis. In addition, we have determined that ord causes high frequencies of nondisjunction during spermatogonial mitotic divisions, as well as during the meiotic divisions. Mitotic nondisjunction involves the large autosomes more frequently than the sex chromosomes or chromosome 4 and results in high frequencies of primary spermatocytes that are either monosomic or trisomic for chromosome 2 or 3. Abnormalities in spermatocyte cyst formation are also observed in males homozygous for ord. These abnormalities include loss of regulation of meiotic synchrony and the number of gonial cell divisions.  相似文献   

3.
Dilys M. Parry 《Genetics》1973,73(3):465-486
mei-S282 is a female meiotic mutant isolated from a natural population of Drosophila melanogaster. It is a recessive mutation located at approximately map position 5 on the third chromosome which has two major effects. It causes a nonuniform decrease in recombination which is most drastic in distal chromosome regions and nondisjunction of all chromosome pairs is elevated at the first meiotic division. Nondisjunctional events are positively correlated; furthermore, nondisjoining chromosomes, themselves nonrecombinant, are preferentially recovered from cells in which nonhomologs are preferentially recovered from cells in which nonhomologs are also non-recombinant.-It is concluded that mei-S282 is a defect which occurs early in meiosis I prior to the time of exchange. In the mutant, the frequency of no-exchange tetrads for each of the major chromosomes is increased-and in cells which contain two or more no-exchange tetrads, an interaction between these chromosomes leads to correlated nondisjunction. mei-S282(+) then, is an exchange precondition necessary for the normal frequency and distribution of exchanges.  相似文献   

4.
The female meiotic mutant no distributive disjunction (symbol: nod) reduces the probability that a nonexchange chromosome will disjoin from either a nonexchange homolog or a nonhomolog; the mutant does not affect exchange or the disjunction of bivalents that have undergone exchange. Disjunction of nonexchange homologs was examined for all chromosome pairs; nonhomologous disjunction of the X chromosomes from the Y chromosome in XXY females, of compound chromosomes in females bearing attached-third chromosomes with and without a Y chromosome, and of the second chromosomes from the third chromosomes were also examined. The results suggest that the defect in nod is in the distributive pairing process. The frequencies and patterns of disjunction from a trivalent in nod females suggest that the distributive pairing process involves three separate events-pairing, orientation, and disjunction. The mutant nod appears to affect disjunction only.  相似文献   

5.
L. Sandler  Paul Szauter 《Genetics》1978,90(4):699-712
Crossing over was measured on the normally achiasmate fourth chromosome in females homozygous for one of our different recombination-defective meiotic mutants. Under the influence of those meiotic mutants that affect the major chromosomes by altering the spatial distribution of exchanges, meiotic fourth-chromosome recombinants were recovered irrespective of whether or not the meiotic mutant decreases crossing over on the other chromosomes. No crossing over, on the other hand, was detected on chromosome 4 in either wild type or in the presence of a meiotic mutant that decreases the frequency, but does not affect the spatial distribution, of exchange on the major chromosomes. It is concluded from these observations that (a) in wild type there are regional constraints on exchange that can be attenuated or eliminated by the defects caused by recombination-defective meiotic mutants; [b] these very constraints account for the absence of recombination on chromosome 4 in wild type; and [c] despite being normally achiasmate, chromosome 4 responds to recombination-defective meiotic mutants in the same way as do the other chromosomes.  相似文献   

6.
Paul Szauter 《Genetics》1984,106(1):45-71
The frequency of crossing over per unit of physical distance varies systematically along the chromosomes of Drosophila melanogaster . The regional distribution of crossovers in a series of X chromosomes of the same genetic constitution, but having different sequences, was compared in the presence and absence of normal genetically mediated regional constraints on exchange. Recombination was examined in Drosophila melanogaster females homozygous for either normal sequence X chromosomes or any of a series of X chromosome inversions. Autosomally, these females were either (1) wild type, (2) homozygous for one of several recombination-defective meiotic mutations that attenuate the normal regional constraints on exchange or (3) heterozygous for the multiply inverted chromosome TM2. The results show that the centromere, the telomeres, the heterochromatin and the euchromatic-heterochromatic junction do not serve as elements that respond to genic determinants of the regional distribution of exchanges. Instead, the results suggest that there are several elements sparsely distributed in the X chromosome euchromatin. Together with the controlling system affected by recombination-defective meiotic mutations, these elements specify the regional distribution of exchanges. The results also demonstrate that the alteration in the distribution of crossovers caused by inversion heterozygosity (the interchromosomal effect) results from the response of a normal controlling system to an overall increase in the frequency of crossing over, rather than from a disruption of the system of regional constraints on exchange that is disrupted by meiotic mutations. The mechanisms by which regional constraints on exchange might be established are discussed, as is the possible evolutionary significance of this system.  相似文献   

7.
Bruce S. Baker 《Genetics》1975,80(2):267-296
The effects of a male-specific meiotic mutant, paternal loss (pal), in D. melanogaster have been examined genetically. The results indicate the following. (1) When homozygous in males, pal can cause loss, but not nondisjunction, of any chromosome pair. The pal-induced chromosome loss produces exceptional progeny that apparently failed to receive one, or more, paternal chromosomes and, in addition, mosaic progeny during whose early mitotic divisions one or more paternal chromosomes were lost. (2) Only paternally derived chromosomes are lost. (3) Mitotic chromosome loss can occur in homozygous pal+ progeny of pal males. (4) Chromosomes differ in their susceptibility to pal-induced loss. The site responsible for the insensitivity vs. sensitivity of the X chromosome to pal mapped to the basal region of the X chromosome at, or near, the centromere. From these results, it is suggested that pal+ acts in male gonia to specify a product that is a component of, or interacts with, the centromeric region of chromosomes and is necessary for the normal segregation of paternal chromosomes. In the presence of pal, defective chromosomes are produced and these chromosomes tend to get lost during the early cleavage divisions of the zygote. (5) The loss of heterologous chromosome pairs is not independent; there are more cases of simultaneous loss of two chromosomes than expected from independence. Moreover, an examination of cases of simultaneous somatic loss of two heterologs reveals an asymmetry in the early mitotic divisions of the zygote such that when two heterologs are lost at a somatic cleavage division, almost invariably one daughter nucleus fails to get either, and the other daughter nucleus receives its normal chromosome complement. It is suggested that this asymmetry is not a property of pal but is rather a normal process that is being revealed by the mutant. (6) The somatic loss of chromosomes in the progeny of pal males allows the construction of fate maps of the blastoderm. Similar fate maps are obtained using data from gynandromorphs and from marked Y chromosome (nonsexually dimorphic) mosaics.  相似文献   

8.
Sex Chromosome Meiotic Drive in DROSOPHILA MELANOGASTER Males   总被引:5,自引:5,他引:0       下载免费PDF全文
McKee B 《Genetics》1984,106(3):403-422
In Drosophila melanogaster males, deficiency for X heterochromatin causes high X-Y nondisjunction and skewed sex chromosome segregation ratios (meiotic drive). Y and XY classes are recovered poorly because of sperm dysfunction. In this study it was found that X heterochromatic deficiencies disrupt recovery not only of the Y chromosome but also of the X and autosomes, that both heterochromatic and euchromatic regions of chromosomes are affected and that the "sensitivity" of a chromosome to meiotic drive is a function of its length. Two models to explain these results are considered. One is a competitive model that proposes that all chromosomes must compete for a scarce chromosome-binding material in Xh(-) males. The failure to observe competitive interactions among chromosome recovery probabilities rules out this model. The second is a pairing model which holds that normal spermiogenesis requires X-Y pairing at special heterochromatic pairing sites. Unsaturated pairing sites become gametic lethals. This model fails to account for autosomal sensitivity to meiotic drive. It is also contradicted by evidence that saturation of Y-pairing sites fails to suppress meiotic drive in Xh(- ) males and that extra X-pairing sites in an otherwise normal male do not induce drive. It is argued that meiotic drive results from separation of X euchromatin from X heterochromatin.  相似文献   

9.
The behaviour of two "meiotic drive" systems, Segregation-Distorter (SD) and the sex chromosome sc(4)sc(8) has been examined in the same meiocyte. It has been found that the two systems interact in a specific way. When the distorting effects of SD and sc(4)sc(8) are against each other, there is no detectable interaction. Each system is apparently oblivious to the presence of the other, gametes being produced according to independence expectations. However when the affected chromosomes are at the same meiotic pole an interaction occurs; the survival probability of the gamete containing both distorted chromosomal products is increased, rather than being decreased by the combined action of two systems.  相似文献   

10.
A new mutant, mit (mitotic loss inducer), is described. The mutant is recessive and maternal in action, producing gynandromorphs and haplo-4 mosaics among the progeny of homozygous mit females. Mosaic loss of maternal or paternal chromosomes can occur. The probabilities of either maternal or paternal X chromosome loss are equal. mit has been mapped to approximately 57 on the standard X chromosome map.-Using gyandromorphs generated by mit, a morphogenetic fate map, placing the origins of 40 cuticular structures on the blastoderm surface, has been constructed. This fate map is consistent with embryological data and with the two other fate maps generated in different ways.  相似文献   

11.
Paralog, a Control Mutant in DROSOPHILA MELANOGASTER   总被引:3,自引:1,他引:2       下载免费PDF全文
The genetic properties of a pleiotropic mutant mapping at 1.4 ± 0.1 in band 3B3 or its adjacent interbands on the X chromosome are described. The mutation is expressed autonomously in germ line cells, where it is recessive and has antimorphic properties. At 29°, the mutation blocks oocyte differentiation, causing female sterility. At lower temperatures, it disturbs the maternal information in the egg; as a result, the progeny lack germ line cells (grandchildless phenotype) and exhibit defects of the cuticular pattern. The mutation is also expressed in somatic cells through zygotic interactions with neighboring regions, including 3A2, 3A3 (zeste), 3C1–2, 3C4 and 3C6–8 (Notch). We interpret the data by postulating that the expression of sets of dispersed genes might be controlled by the local topology of the chromosome, itself constrained by pairing of dispersed repeated elements. We call the mutation paralog.  相似文献   

12.
A total of 209 ethyl methanesulfonate-treated X chromosomes were screened for meiotic mutants that either (1) increased sex or fourth chromosome nondisjunction at either meiotic division in males; (2) allowed recombination in such males; (3) increased nondisjunction of the X chromosome at either meiotic division in females; or (4) caused such females, when mated to males heterozygous for Segregation-Distorter (SD) and a sensitive homolog to alter the strength of meiotic drive in males.-Twenty male-specific meiotic mutants were found. Though the rates of nondisjunction differed, all twenty mutants were qualitatively similar in that (1) they alter the disjunction of the X chromosome from the Y chromosome; (2) among the recovered sex-chromosome exceptional progeny, there is a large excess of those derived from nullo-XY as compared to XY gametes; (3) there is a negative correlation between the frequency of sex-chromosome exceptional progeny and the frequency of males among the regular progeny. In their effects on meiosis these mutants are similar to In(1)sc(4L)sc(8R), which is deleted for the basal heterochromatin. These mutants, however, have normal phenotypes and viabilities when examined as X/0 males, and furthermore, a mapping of two of the mutants places them in the euchromatin of the X chromosome. It is suggested that these mutants are in genes whose products are involved in insuring the proper functioning of the basal pairing sites which are deleted in In(1)sc(4L)sc(8R), and in addition that there is a close connection, perhaps causal, between the disruption of normal X-Y pairing (and, therefore, disjunction) and the occurrence of meiotic drive in the male.-Eleven mutants were found which increased nondisjunction in females. These mutants were characterized as to (1) the division at which they acted; (2) their effect on recombination; (3) their dominance; (4) their effects on disjunction of all four chromosome pairs. Five female mutants caused a nonuniform decrease in recombination, being most pronounced in distal regions, and an increase in first division nondisjunction of all chromosome pairs. Their behavior is consistent with the hypothesis that these mutants are defective in a process which is a precondition for exchange. Two female mutants were allelic and caused a uniform reduction in recombination for all intervals (though to different extents for the two alleles) and an increase in first-division nondisjunction of all chromosomes. Limited recombination data suggest that these mutants do not alter coincidence, and thus, following the arguments of Sandler et al. (1968), are defective in exchange rather than a precondiiton for exchange. A single female mutant behaves in a manner that is consistent with it being a defect in a gene whose functioning is essential for distributive pairing. Three of the female meiotic mutants cause abnormal chromosome behavior at a number of times in meiosis. Thus, nondisjunction at both meiotic divisions is increased, recombinant chromosomes nondisjoin, and there is a polarized alteration in recombination.-The striking differences between the types of control of meiosis in the two sexes is discussed and attention is drawn to the possible similarities between (1) the disjunction functions of exchange and the process specified by the chromosome-specific male mutants; and (2) the prevention of functional aneuploid gamete formation by distributive disjunction and meiotic drive.  相似文献   

13.
14.
Studies of the meiotic distribution of compound-3 chromosomes in males and females of Drosophila melanogaster provided the following results. (1) From females homozygous for the standard arrangement of all chromosomes other than C(3L) and C(3R), less than 5% of the gametes recovered were nullosomic or disomic for compound-3 chromosomes. The frequency of nonsegregation differed between strains, but within a given strain it remained relatively constant. (2) According to egg-hatch frequencies, C(3L) and C(3R) segregate independently during spermatogenesis. (3) In females, structurally heterozygous second chromosomes occasion a marked increase in the recovery of nonsegregational progeny; in males, rearranged seconds have no apparent influence on the distribution of compound thirds. (4) The highest frequencies of nonsegregational progeny were recovered from C(3L);C(3R) females carrying compound-X (plus free Y) chromosomes. (5) In comparing the recovery of nonsegregating compound thirds to the recovery of rearranged heterologs, a definite nonrandom distribution was realized in several crosses. These results are examined in reference to the concepts of distributive pairing (Grell 1962). Moreover, considering the structural nature of compound autosomes, we propose that nonhomologous (distributive) pairing is a property of the centromeric region and suggest that rearrangements involving breaks in this region possibly alter the effectiveness of distributive pairing forces.  相似文献   

15.
A new method is proposed to distinguish between meiotic and premeiotic exchange events in Drosophila melanogaster males associated with male recombination activities. The method was applied to data that have accumulated in this laboratory during the past five years, and it was concluded that a large fraction, perhaps the overwhelming majority, of the male recombinants were due to exchange events that took place before meiosis.  相似文献   

16.
17.
Joseph O''Tousa 《Genetics》1982,102(3):503-524
The effects of a female-specific meiotic mutation, altered disjunction (ald: 361), are described. Although ald females show normal levels of meiotic exchange, sex- and 4th-chromosome nondisjunction occurs at an elevated level. A large proportion of the nondisjunction events is the result of nonhomologous disjunction of the sex and 4th chromosomes. These nonhomologous disjunction events, and probably all nondisjunction events occurring in ald females, are the result of two anomalies in chromosome behavior: (1) X chromosomes derived from exchange tetrads undergo nonhomologous disjunction and (2) the 4th chromosomes nonhomologously disjoin from larger chromosomes. There is at best a marginal effect of ald on the meiotic behavior of chromosomes 2 or 3. The results suggest that the ald+ gene product acts to prevent the participation of exchange X chromosomes and all 4th chromosomes in nonhomologous disjunction events. The possible role of ald+ in current models of the disjunction process is considered.  相似文献   

18.
mei-G87 is a recessive meiotic mutant that increases second chromosome nondisjunction in both males and females. A significant proportion of the diplo-2 exceptions are equational. In females, diplo-2 reductional exceptions are usually noncrossovers, but, in equational exceptions, crossover frequency and distribution are the same as that found in the haplo-2 controls. The frequencies of nondisjunction are relatively low: 0.6% in females and 1.3% in males. Nondisjunction frequency is affected by environmental conditions (possibly humidity). The defect in mei-G87, as in other "second division" mutants, appears to be a failure to maintain sister-chromatid cohesion. mei-G87 increases nondisjunction of only the second chromosome. This may indicate either a weak mutant with only the second chromosome being sensitive enough to misbehave or it may indicate that chromosome-specific regions responsible for sister-chromatid cohesion exist.  相似文献   

19.
Carpenter AT  Baker BS 《Genetics》1982,101(1):81-89
The effects of eight recombination-defective meiotic mutants on crossing over within the X heterochromatin were examined. Since none permit substantial frequencies of exchange within heterochromatin although six lessen or abolish constraints on the location of exchanges within euchromatin, the systems that prohibit exchange within heterochromatin and that govern where exchanges will occur in euchromatin are under separate genetic control.—A minor component of the effects of mei-218 is the production of nonhomologous exchanges; of mei-9 is the recovery of deleted chromatids; and of mei-41 is the recovery of deleted chromatids and/or a low frequency of heterochromatic exchanges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号