首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of O- and ring-alkylated derivatives of 4,5,6,7-tetrahydroisothiazolo[4,5-c]pyridin-3-ol was synthesized via treatment of appropriately substituted 4-benzylamino-1,2,5,6-tetrahydropyridine-3-carboxamides with hydrogen sulfide and subsequent ring closure by oxidation with bromine. The muscarinic receptor affinity as well as estimated relative efficacy and subtype selectivity of this series of bicyclic arecoline bioisosteres were determined using rat brain membranes and a number of tritiated muscarinic receptor ligands. The effects at the five cloned human muscarinic receptor subtypes of a selected series of chiral analogues, with established absolute stereochemistry, were studied using receptor selection and amplification technology (R-SAT). The potency, relative efficacy, and receptor subtype selectivity of these compounds were related to the structure of the O-substituents and the position and stereochemical orientation of the piperidine ring methyl substituents.  相似文献   

2.
In recent years, it has been hypothesized that muscarinic receptor-stimulated phosphoinositide (PI) metabolism may represent a relevant target for the developmental neurotoxicity of ethanol. Age-, brain region-, and receptor-specific inhibitory effects of ethanol on this system have been found, both in vitro and after in vivo administration. As a direct consequence of this action, alterations of calcium homeostasis would be expected, through alterations of inositol trisphosphate formation, which mediates intracellular calcium mobilization. In the present study, the effects of ethanol (50–500 mM) on carbachol-stimulated PI metabolism and free intracellular calcium levels were investigated in rat primary cortical cultures, by measuring release of inositol phosphates and utilizing the two calcium probes fluo-3 and indo-1 on an ACAS (Adherent Cell Analysis and Sorting) Laser Cytometer. Ethanol exerted a concentration-dependent inhibition of carbachol-stimulated PI metabolism. In addition, ethanol's inhibitory effect paralleled the temporal development of the muscarinic receptor signal transduction system, with the strongest inhibition (25–50%) occurring when maximal stimulation by carbachol occurs (days 5–7). Ethanol also exerted a concentration-dependent decrease in free intracellular calcium levels following carbachol stimulation. Both initial calcium spike amplitude, seen in all responsive cells, as well as the total number of cells responding to carbachol, were decreased by ethanol. The inhibitory effects of ethanol seemed dependent upon preincubation time, in that a longer preincubation (30 min) with the lowest dose (50 mM), showed almost the same decrease in responding cell number and reduction in spike amplitude in responding cells, as a shorter incubation (10 min) with the highest ethanol dose (500 mM). The specificity of the response to carbachol was demonstrated by blocking the response with 10 M atropine. Moreover, experiments with carbachol in calcium-free buffer with 1 mM EGTA indicated that the initial calcium spike was due to intracellular calcium mobilization from intracellular stores. Since calcium is believed to play important roles in cell proliferation and differentiation, these results support the hypothesis that this intracellular signal-transduction pathway may be a target for ethanol, contributing to its developmental neurotoxicity.  相似文献   

3.
We investigated the actions of two biologically active phorbol esters, phorbol dibutyrate (PDB) and phorbol myristate acetate (PMA), on receptor-stimulated phosphoinositide hydrolysis in rat aorta. We found both PDB and PMA potently inhibited norepinephrine (NE) stimulated PI hydrolysis in rat aortic rings. The biologically inactive phorbol, 4-alpha-phorbol was ineffective. In the presence of the calcium channel antagonist nitrendipine, PDB potently inhibited both the phasic and tonic components of NE-induced contraction. These results suggest a functional coupling between receptor-stimulated PI turnover and vascular contraction. They also suggest a mode of feed-back regulation in vascular tissue involving phorbol esters in receptor-stimulated PI hydrolysis.  相似文献   

4.
We have previously reported that administration of ethanol (EtOH; 4 g/Kg/day) to rats from postnatal day 4 to day 10 causes microencephaly and decreases muscarinic receptor-stimulated inositol metabolism on days 7 and 10 (1). An identical exposure to EtOH of adult rats, which resulted in similar blood EtOH concentrations, did not have any effect on the same system. Initial in vitro studies have shown the presence of a differential sensitivity to EtOH of the phosphoinositide system coupled to muscarinic receptors during development (2). In the present study we have expanded these findings by investigating the concentration-, time-, and age-dependent effects of EtOH on accumulation of [3H]inositol phosphates ([3H]InsPs) in brain slices. EtOH caused a dose-dependent inhibition of carbachol-stimulated phosphoinositide metabolism in cerebral cortex slices from 7 day-old rats. When the time of incubation with EtOH was increased to 90 minutes, concentrations as low as 50 mM, which are reached following in vivo administration of EtOH, significantly inhibited the muscarinic response. The effect of EtOH was rather specific for the muscarinic receptors, since, even with longer incubation times, the accumulation of [3H]InsPs induced by norepinephrine or serotonin was inhibited only at concentrations of 150–500 mM. The effect of EtOH was more pronounced in cerebral cortex, hippocampus and cerebellum, and less in the brainstem. The potency of EtOH in inhibiting carbachol-stimulated phosphoinositide metabolism was also dependent on the age of the animals. Its effect was maximal in the 7 day-old rat and less pronounced in younger and older animals. These results confirm that the phosphoinositide system coupled to muscarinic receptors might represent a relevant target for the developmental neurotoxicity of EtOH.Presented in part at the 29th Annual Meeting of the Society of Toxicology (Toxicologist 1990; 10: 273).  相似文献   

5.
M C Sekar  B D Roufogalis 《Life sciences》1984,35(14):1527-1533
The effects of muscarinic and alpha-adrenergic receptor stimulation on phosphoinositide turnover in rat atria have been compared. Despite the similar densities of muscarinic receptors in rat left and right atria, 0.1 mM carbachol increased [32P]phosphate incorporation into phosphatidylinositol (PI) by 35% (p less than 0.05) in left atria but had no effect in right atria. By contrast to the small muscarinic receptor effect, stimulation of alpha 1-adrenergic receptors by 0.1 mM methoxamine produced a more than two fold increase in [32P]phosphate incorporation into PI in both left and right atria, despite the reported smaller density of alpha-adrenergic receptors in rat atria compared to muscarinic receptors. Enhanced phosphate labelling by methoxamine did not occur in phospholipids other than PI, and was blocked by the alpha-adrenergic antagonist, phentolamine (20 microM). The results indicate that the majority of the muscarinic receptors in rat atria are not coupled to phosphoinositide turnover. If indeed the observed enhancement in [32P]-phosphate labelling by carbachol reflects phosphoinositide turnover, and assuming equal coupling efficiencies of muscarinic and adrenergic receptors, it is calculated that not more than 2% of the muscarinic receptors in rat left atria are coupled to this response.  相似文献   

6.
Activation of cholinergic muscarinic receptors results in an increased turnover of membrane inositol phospholipids. In rat cerebral cortex slices, carbachol- and acetylcholine-induced inositol phosphates ([3H]InsPs) accumulation is maximal in 7 day-old rats and lowest in adults, while the density of muscarinic binding sites increases gradually with age, suggesting the presence of a more effective receptor-effector coupling during neonatal life. In the process of investigating the nature of such differential stimulation, we have studied the effects of potassium ions on muscarinic receptor-stimulated phosphoinositide metabolism during development. Increasing the concentration of K+ from 6 to 12 mM potentiated the stimulating effect of carbachol by 80–100% in adult animals, as previously shown, but only 10–20% in 7 day-old animals, without altering its EC50 values. The differential potentiation by K+ at these two ages was specific for muscarinic receptors, since norepinephrine-stimulated accumulation was potentiated only 18% and 12% in adult and 7 day-old rats, respectively. Two other monovalent cations, rubidium and cesium, had the same effect as K+ on carbachol-stimulated [3H]-InsPs accumulation. The effect of K+ was not antagonized by the K+ channel blocker 4-aminopyridine, but was antagonized by tetraethylammonium (TEA). TEA, however, also interacted with muscarinic binding sites. Omission of calcium from the incubation medium did not influence the potentiating effect of 12 mM K+. However, when EDTA (1 mM) was added, the stimulating effect of carbachol alone or carbachol + K+ was almost completely prevented. The potentiating effect of K+ during development was inversely proportional to the stimulation of phosphoinositide metabolism induced by carbachol. These results suggest that the mechanism responsible for the potentiating effect of K+ in adult rats might be already operating in neonatal animals.  相似文献   

7.
Administration of methylazoxymethanol (MAM; 25 mg/kg) to pregnant rats at gestational day 15 (GD 15) induces a marked reduction of telencephalic areas of the offspring brain. Previous neurochemical studies demonstrated a marked cholinergic hyperinnervation in the cerebral cortex of microencephalic rats. In this study we have evaluated whether this cholinergic hyperinnervation could result in altered functionality of muscarinic receptors. Acetylcholinesterase activity (AChE) was increased by 69% in the cerebral cortex of MAM treated rats confirming a relative hyperinnervation, whereas in the hippocampus and striatum no significant changes were observed. Despite the marked hyperinnervation, in the cerebral cortex of microencephalic rats neither muscarinic receptor-stimulated phosphoinositide metabolism nor muscarinic, receptor density were altered. No differences in receptor density were also observed in the hippocampus and striatum. Chronic diisopropylfluorophosphate (DFP) administration induced a marked decrease of AChE activity and down-regulation of muscarinic receptors whereas atropine administration resulted in receptor up-regulation in cerebral cortex, striatum and hippocampus of both control and MAM rats. The results confirm a relative cholinergic hyperinnervation in the cerebral cortex of microencephalic rats and demonstrate that the regulation of muscarinic receptor-stimulated phosphoinositide metabolism and muscarinic receptor plasticity is not modified in a condition of increased cholinergic presynaptic terminals.  相似文献   

8.
The effect of praziquantel on phosphoinositide turnover was examined in Schistosoma mansoni to determine if this anthelminthic modulates signal transduction pathways in parasites. Adult worms were radiolabeled with [3H]myoinositol for 24 hr and total inositol phosphate levels determined in the presence of praziquantel. Praziquantel inhibited inositol phosphate turnover when activated with NaF plus AlCl3 or with the nonhydrolyzable guanine nucleotide-binding protein analogue GTP gamma S. Furthermore, praziquantel decreased basal turnover of inositol phosphates. Inhibition was seen in both male and female worms as well as in schistosomula. These data indicate that inhibition of phosphoinositide turnover may contribute to the effect of praziquantel on parasite survival within the definitive host.  相似文献   

9.
10.
We have explored the hypothesis that the apparent greater efficiency of cholecystokinin (CCK-8) receptor-second messenger coupling compared with that of muscarinic receptor in Flow 9000 cells is due to differential feedback inhibitory control mechanisms. Pretreatment of Flow 9000 cells with the tumour-promoting protein kinase C (PKC)-activating agent 12-O-tetradecanoylphorbol 13-acetate (TPA) produced a time- and dose-dependent inhibition of CCK-8 and acetylcholine (ACh) stimulation of inositol phosphate production. The inhibition by TPA of ACh-induced PI (phosphoinositide) response involved reduction of the maximal response, but no change in the concentration of ACh required to evoke a half-maximal response. In contrast, TPA inhibition of CCK-8 responses could be overcome by increasing the CCK-8 concentrations. Flow 9000 cells pretreated with TPA exhibited a 52-68% reduction in [3H]quinuclidinyl benzilate ([3H]QNB) binding capacity, whereas [125I]CCK-8 binding was unchanged. In saponin-permeabilized Flow 9000 cells, TPA pretreatment had no effect on guanosine 5'-[gamma-thio]triphosphate (GTP[S])-induced inositol phosphate formation, indicating that G-protein linkage to phosphoinositidase C (PIC) was not affected. However, TPA significantly inhibited the potentiating effect of GTP[S] on CCK-8 and ACh activation of PI response, suggesting that the coupling between the receptors and the G-protein was impaired. The PKC-activator 1-oleoyl-2-acetylglycerol (OAG), a diacylglycerol analogue, also significantly reduced CCK-8 and ACh stimulation of inositol phosphate accumulation in these cells. Our results are consistent with the hypothesis that muscarinic activation of PI hydrolysis is subjected to rapid feedback inhibition via the 1,2-diacylglycerol-PKC pathway. CCK-receptor activation of PI turnover is modulated to a lesser extent, and this may partially explain apparent differences in the efficiency of receptor-second messenger coupling. It is proposed that TPA acting through PKC exerts its inhibitory action on muscarinic-agonist-mediated PI response mainly at the receptor level, whereas the inhibitory effect on CCK-8 response is at a site close to the receptor-G-protein coupling step.  相似文献   

11.
Centrally acting cholinomimetic drugs like arecoline stimulate active ion transport processes in the synaptic region. Regarding the connection between cellular metabolism and active Na"-K+-transport the effect of arecoline on the cerebral metabolic status was proved. Arecoline decreased the level of high energic phosphates and glycogen (energy charge diminished from 0,57 to 0,48) and increased the glucose consumption and lactate production. Thus, the increased rate of CoA acetylation via oxidative breakdown of pyruvate seems to be prerequisite for the cholinergically stimulated ACh synthesis.  相似文献   

12.
Gonadotropin-releasing hormone (Gn-RH) stimulates phosphoinositide metabolism in granulosa cells by binding to its specific receptor, and suppresses gonadotropin-induced steroidogenesis. Incubation of immature rat granulosa cells with Gn-RH stimulated time-sequential [32P]phosphate incorporation into phosphatidic acid (PA) and phosphatidylinositol (PI) in a dose-dependent manner; EC50 was at 10 nM. Concurrent exposure to estradiol-17 beta (E2) (100 nM) and Gn-RH (1 microM) augmented 32P-labeling of PI by 5-fold, while Gn-RH alone induced 3.5-fold increase in PI-labeling. In cells preincubated with E2 for 48 h, Gn-RH provoked a 7-fold [32P]phosphate incorporation into PI, suggesting the induction by E2 of Gn-RH-responsible phosphoinositide turnover. E2 alone provoked a low but significant increase in basal labeling rate of PA and PI. Progesterone failed to mimic the action of E2. Essentially similar results were also obtained in mature rat granulosa cells. These results indicate that E2 augments Gn-RH-stimulated phospholipid turnover in granulosa cells, and suggest that estrogens within the microenvironment of the ovary may exert a local autoregulatory effect on their own production pathway through accelerating Gn-RH action to attenuate steroidogenesis.  相似文献   

13.
We have employed a neutral-pH extraction technique to look for inositol 1,2-cyclic phosphate derivatives in [3H]inositol-labelled parotid gland slices stimulated with carbachol. The incubations were terminated by adding cold chloroform/methanol (1:2, v/v), the samples were dried under vacuum and inositol phosphates were extracted from the dried residues by phenol/chloroform/water partitioning. Water-soluble inositol metabolites were separated by h.p.l.c. at pH 3.7. 32P-labelled inositol phosphate standards (inositol 1-phosphate, inositol 1,2-cyclic phosphate, inositol 1,4,5-trisphosphate and inositol 1,2-cyclic 4,5-trisphosphate) were quantitively recovered through both extraction and chromatography steps. Treatment of inositol cyclic phosphate standards with 5% (w/v) HClO4 for 10 min prior to chromatography resulted in formation of the expected non-cyclic compounds. [3H]Inositol 1-phosphate and [3H]inositol 1,4,5-trisphosphate were both present in parotid gland slices and both increased during stimulation with 1 mM-carbachol. There was no evidence for significant quantities of [3H]inositol 1,2-cyclic phosphate or [3H]inositol 1,2-cyclic 4,5-trisphosphate in control or carbachol-stimulated glands. Parotid gland homogenates rapidly converted inositol 1,4,5-trisphosphate to inositol bisphosphate and inositol tetrakisphosphate, but metabolism of the inositol cyclic trisphosphate was much slower. The results suggest that inositol 1,4,5-trisphosphate, but not inositol 1,2-cyclic 4,5-trisphosphate, is the water-soluble product of muscarinic receptor-stimulated phospholipase C in rat parotid glands.  相似文献   

14.
Zhang XG  Coté GG  Crain RC 《Planta》2002,215(2):312-318
Mesophyll cells of Zinnia elegans L., cultured in the presence of phytohormones, will transdifferentiate and undergo programmed cell death to become tracheary elements, thick-walled cells of the xylem. This system is a model system for study of plant cell development and differentiation. We report that a high concentration of extracellular Ca(2+) is necessary during the first 6 h of culturing for tracheary elements to form. Extracellular Ca(2+) is still required at later times, but at a much lower concentration. When cells transdifferentiate in adequate Ca(2+), microsomal phospholipase C activity increases and levels of inositol 1,4,5-trisphosphate rise at about hour 4 of culturing. The production of inositol 1,4,5-trisphosphate appears to be important for tracheary element formation, since inhibitors of phospholipase C inhibit both inositol 1,4,5-trisphosphate production and tracheary element formation. Pertussis toxin, an inhibitor of GTP-binding proteins, inhibits transdifferentiation and eliminates inositol 1,4,5-trisphosphate production. Tracheary element formation was not completely abolished by inhibitors that eliminated inositol 1,4,5-trisphosphate production, suggesting the involvement of other pathways in regulating transdifferentiation.  相似文献   

15.
Okadaic acid is a potent and specific inhibitor of protein phosphatases 1 and 2A which seems to be useful for identifying biological processes that are controlled by reversible phosphorylation of proteins. We report here that okadaic acid inhibits in isolated hepatocytes the stimulations of phosphoinositide turnover induced by epinephrine, angiotensin II and vasopressin. Mastoparan, a peptide toxin from wasp venom that mimics receptors by activating G-proteins, also stimulates the accumulation of inositol phosphates in hepatocytes. Interestingly, this action of mastoparan was also inhibited by okadaic acid. Our data indicate that okadaic acid inhibits the phosphoinositide turnover signal transduction system in hepatocytes at a level distal to the receptors.  相似文献   

16.
The ability of muscarinic receptors, present in either the cell surface or sequestered compartments of intact human SK-N-SH neuroblastoma cells, to stimulate phosphoinositide hydrolysis has been examined. When cells were first exposed to carbachol for 1 h at 37 degrees C, approximately 50% of the cell surface receptors became sequestered, and this was accompanied by a comparable reduction in the subsequent ability of muscarinic agonists to stimulate phosphoinositide turnover, as monitored by the release of labeled inositol phosphates at 10 degrees C. At this temperature, muscarinic receptor cycling between the two cell compartments is prevented. Upon warming the carbachol-pretreated cells to 37 degrees C, receptor cycling is reinitiated and stimulated phosphoinositide turnover is fully restored within 5-8 min. When measured at 10 degrees C, the reduction of stimulated phosphoinositide turnover observed following carbachol pretreatment was similar in magnitude for both hydrophilic (carbachol, oxotremorine-M) and lipophilic (arecoline, oxotremorine-2, and L-670,548) agonists. The loss of response for both groups of agonists could be prevented if the incubation temperature was maintained at 37 degrees C, rather than at 10 degrees C. At the latter temperature carbachol pretreatment of SK-N-SH cells reduced the maximum release of inositol phosphates elicited by either carbachol or L-670,548 but not the agonist concentrations required for half-maximal stimulation. Radioligand binding studies, carried out at 10 degrees C, indicate that following receptor sequestration, significantly higher concentrations of carbachol were required to occupy the available muscarinic receptor sites. In contrast the lipophilic full agonist L-670,548 recognized receptors present in control and carbachol-pretreated cells with comparable affinities. Analysis of the inositol lipids present after carbachol pretreatment indicate that only a minimal depletion of the substrates necessary for phospholipase C activation had occurred. The results indicate that the agonist-induced sequestration of muscarinic receptors from the cell surface results in a loss of stimulated phosphoinositide hydrolysis when measured under conditions in which the return of the sequestered receptors to the cell surface is prevented. Thus, only those receptors present at the cell surface are linked to phospholipase C activation.  相似文献   

17.
We have performed quantum mechanical calculations for retinal model compounds to establish the rotational energy barriers for the C5-, C9-, and C13-methyl groups known to play an essential role in rhodopsin activation. Intraretinal steric interactions as well as electronic effects lower the rotational barriers of both the C9- and C13-methyl groups, consistent with experimental 2H NMR data. Each retinal methyl group has a unique rotational behavior which must be treated individually. These results are highly relevant for the parameterization of molecular mechanics force fields which form the basis of molecular dynamics simulations of retinal proteins such as rhodopsin.  相似文献   

18.
J H?ggblad  E Heilbronn 《FEBS letters》1988,235(1-2):133-136
ATP, a trigger of P2-purinoceptor-mediated polyphosphoinositide (PI) turnover in cultured myotubes, increased cytosolic calcium levels in a time- and dose-dependent manner (quin2 fluorescence). The calcium was released from intracellular stores, as acute addition of 5 mM EGTA was without significant effect. Adenosine 5'-(3-thiotriphosphate) and 5'-adenylyl imidodiphosphate also increased intracellular levels of inositol phosphates (InsP) and cytosolic calcium levels. Treatment with cholera or pertussis toxin of myotube cultures did not affect the P2-purinoceptor-mediated InsP increase although PI turnover in permeabilized myotubes was stimulated by guanosine 5'-(3-thiotriphosphate). The results suggest that myotube P2-purinoceptors trigger PI turnover and increase intracellular free calcium levels, via a mechanism insensitive to ADP-ribosylation, by cholera or pertussis toxin of guanyl nucleotide-binding (G) proteins. However, the presence of a phospholipase C-coupled G-protein was otherwise demonstrated.  相似文献   

19.
A study was made of the effect of irradiation with a superlethal dose of 9.288 C/kg on oxidative phosphorylation in morphologically and functionally different parts of the central nervous system. The CNS-syndrome was shown to develop against the background of a pronounced injury to energy processes in the brain. It is supposed that the impairment of the energy supply of active ion transport systems plays an important role in the dysfunction of the brain induced by high-level radiation.  相似文献   

20.
1. Tritiation of arecoline hydrochloride by catalytic exchange in aqueous media (done by The Radiochemical Centre) gave arecaidine hydrochloride of high specific radioactivity; this on treatment with diazomethane gave [(3)H]arecoline, which was oxidized with peroxyacetic acid to [(3)H]arecoline 1-oxide. 2. Arecoline 1-oxide gave arecaidine 1-oxide on acid hydrolysis and 1,2-dihydro-1-methylnicotinic acid methyl ester on thermal decomposition. 3. [(3)H]Arecoline hydrochloride was metabolized in the rat into the (3)H-labelled derivatives of arecoline 1-oxide, arecaidine 1-oxide, arecaidine, N-acetyl-S-(3-carboxy-1-methylpiperid-4-yl)-l-cysteine and an unidentified metabolite; some unchanged arecoline was also excreted. [(3)H]Arecoline 1-oxide gave the same metabolities, but in different amounts. 4. The possible relevance of these findings to betel-nut carcinogenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号