首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The phospholipid, sn-1,2-diacylglycerol, and calcium dependencies of rat brain protein kinase C were investigated with a mixed micellar assay (Hannun, Y., Loomis, C., and Bell, R.M. (1985) J. Biol. Chem. 260, 10039-10043). Protein kinase C activity was independent of the number of Triton X-100, phosphatidylserine (PS), and sn-1,2-dioleoylglycerol (diC18:1) mixed micelles. Activation was strongly dependent on the mole per cent of PS and diC18:1. Activity of protein kinase C was dependent on PS, diC18:1, and calcium in mixed micelles prepared from detergents other than Triton X-100. This is consistent with the micelle providing an inert surface into which the lipid cofactors partition. Molecular sieve chromatography provided direct evidence for the homogeneity of Triton X-100, PS, and diC18:1 mixed micelles. Mixing studies and surface dilution studies indicated that PS and diC18:1 rapidly equilibrate among the mixed micelles. At saturating calcium, the diC18:1 dependence was strongly dependent on the mole per cent PS present. At 10 mol % PS, 0.25 mol % diC18:1 gave maximal activity whereas 6 mol % PS and 6 mol % diC18:1 did not give maximal activity. diC18:1 dependencies were hyperbolic at all PS levels tested. The data support the conclusion that a single molecule of diC18:1/micelle is sufficient to activate monomeric protein kinase C. The mole per cent PS required for maximal activation was reduced markedly as the mole per cent diC18:1 increased. Under all conditions tested, the PS dependence of protein kinase C activation lagged until greater than 3 mol % PS was present. Then activation occurred in a cooperative manner with Hill numbers near 4. These data indicate that 4 or more molecules of PS are required to activate monomeric protein kinase C. PS was the most effective of all the phospholipids tested in the mixed micelle assay. diC18:1 was found to modulate the amount of calcium required for maximal activity. As the level of Ca2+ increased, the mole per cent PS required reached a limiting value of 3 mol %. A number of sn-1,2-diacylglycerols containing short chain fatty acids activated protein kinase C in a saturable manner in mixed micelles. The data are discussed in relation to a model for protein kinase activation.  相似文献   

2.
A mixed micellar assay for the binding of phorbol-esters to protein kinase C was developed to investigate the specificity and stoichiometry of phospholipid cofactor dependence and oligomeric state of protein kinase C (Ca2+/phospholipid-dependent enzyme) required for phorbol ester binding. [3H]Phorbol dibutyrate was bound to protein kinase C in the presence of Triton X-100 mixed micelles containing 20 mol % phosphatidylserine (PS) in a calcium-dependent manner with a Kd of 5 X 10(-9) M. The [3H]phorbol dibutyrate X protein kinase C . Triton X-100 . PS mixed micellar complex eluted on a Sephacryl S-200 molecular sieve at an Mr of approximately 200,000; this demonstrates that monomeric protein kinase C binds phorbol dibutyrate. This conclusion was supported by molecular sieve chromatography of a similar complex where Triton X-100 was replaced with beta-octylglucoside. Phorbol dibutyrate activation of protein kinase C in Triton X-100/PS mixed micelles occurred and was dependent on calcium. The PS dependence of both phorbol ester activation and binding to protein kinase C lagged initially and then was highly cooperative. The minimal mole per cent PS required was strongly dependent on the concentration of phorbol dibutyrate or phorbol myristic acetate employed. Even at the highest concentration of phorbol ester tested, a minimum of 3 mol % PS was required; this indicates that approximately four molecules of PS are required. [3H]Phorbol dibutyrate binding was independent of micelle number at 20 mol % PS. The phospholipid dependencies of phorbol ester binding and activation were similar, with PS being the most effective; anionic phospholipids (cardiolipin, phosphatidic acid, and phosphatidylglycerol were less effective, whereas phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin did not support binding or activation. sn-1,2-Dioleoylglycerol displaced [3H]phorbol dibutyrate quantitatively and competitively. The data are discussed in relation to a molecular model of protein kinase C activation.  相似文献   

3.
Sphingosine inhibited protein kinase C activity and phorbol dibutyrate binding. When the mechanism of inhibition of activity and phorbol dibutyrate binding was investigated in vitro using Triton X-100 mixed micellar methods, sphingosine inhibition was subject to surface dilution; 50% inhibition occurred when sphingosine was equimolar with sn-1,2-dioleoylglycerol (diC18:1) or 40% of the phosphatidylserine (PS) present. Sphingosine inhibition was modulated by Ca2+ and by the mole percent of diC18:1 and PS present. Sphingosine was a competitive inhibitor with respect to diC18:1, phorbol dibutyrate, and Ca2+. Increasing levels of PS markedly reduced inhibition by sphingosine. Since protein kinase C activity shows a cooperative dependence on PS, the kinetic analysis of competitive inhibition was only suggestive. Sphingosine inhibited phorbol dibutyrate binding to protein kinase C but did not cause protein kinase C to dissociate from the mixed micelle surface. Sphingosine addition to human platelets blocked thrombin and sn-1,2-dioctanoylglycerol-dependent phosphorylation of the 40-kDa (47 kDa) dalton protein. Moreover, sphingosine was subject to surface dilution in platelets. The mechanism of sphingosine inhibition is discussed in relation to a previously proposed model of protein kinase C activation. The possible physiological role of sphingosine as a negative effector of protein kinase C is suggested and a plausible cycle for its generation is presented. The potential physiological significance of sphingosine inhibition of protein kinase C is further established in accompanying papers on HL-60 cells (Merrill, A. H., Jr., Sereni, A. M., Stevens, V. L., Hannun, Y. A., Bell, R. M., Kinkade, J. M., Jr. (1986) J. Biol. Chem. 261, 12010-12615) and human neutrophils (Wilson, E., Olcott, M. C., Bell, R. M., Merrill, A. H., Jr., and Lambeth, J. D. (1986) J. Biol. Chem. 261, 12616-12623). These results also suggest that sphingosine will be a useful inhibitor for investigating the function of protein kinase C in vitro and in living cells.  相似文献   

4.
Protein kinase C was purified from the cytosolic fraction of chicken gizzard by Ca2+ -dependent hydrophobic interaction chromatography, anion-exchange chromatography, and hydrophobic chromatography. The molecular weight was estimated as 61,500 by gel filtration and 80,000 by denaturing gel electrophoresis, indicating that the native enzyme is a monomer. Using the mixed micellar assay, with histone III-S as the substrate, protein kinase C required Ca2+, phospholipid, and diacylglycerol for activity, with half-maximal activation at approximately 5 x 10(-7) M Ca2+ in the presence of L-alpha-phosphatidyl-L-serine and 1,2-diolein. No activation by Ca2+ was observed in the absence of diacylglycerol. Protein kinase C requires free Mg2+, in addition to the MgATP2- substrate, for activity. The Km for ATP was determined to be 20 microM. Activity was sensitive to ionic strength, with half-maximal inhibition at 70 mM NaCl. Using the liposomal assay, phosphorylation of platelet P47 protein and smooth muscle vinculin was more strongly dependent on Ca2+ and lipids than was histone phosphorylation. Partial digestion of protein kinase C with trypsin yielded a constitutively active fragment. A heat-stable inhibitor and three major endogenous protein substrates of protein kinase C were also detected in chicken gizzard smooth muscle.  相似文献   

5.
The specificity of the phospholipid cofactor requirement of rat brain protein kinase C was investigated using Triton X-100 mixed micellar methods. Sixteen analogues of phosphatidylserine were prepared and tested for their ability to support protein kinase C activity, [3H]phorbol 12,13-dibutyrate binding, and protein kinase C binding to mixed micelles. Phosphatidylserinol, -L-serine methyl ester, -N-acetyl-L-serine, -2-hydroxyacetate, -3-hydroxypropionate, and -4-hydroxybutyrate did not activate protein kinase C in mixed micelles containing 2 mol % of sn-1,2-dioleoylglycerol. This indicates that both the carboxyl and amino moieties are important for activation. Phosphatidyl-D-serine and -L-homoserine were incapable of supporting full activation; this demonstrates stereospecificity and the importance of the distance between the phosphate and carboxyl and amino moieties. Since 1,2-rac-phosphatidyl-L-serine and 1,3-phosphatidyl-L-serine fully supported protein kinase C activity, the stereochemistry within the glycerol backbone at the interface was not necessary for maximal activation. Neither lysophosphatidyl-L-serine nor 1-oleoyl-2-acetyl-sn-glycero-3-phospho-L-serine supported protein kinase C activity implying that the interfacial conformation is critical to the activation process. The phospholipid dependencies of [3H]phorbol 12,13-dibutyrate binding and of protein kinase C binding to mixed micelles containing sn-1,2-dioleoylglycerol did not mirror those for activation. The data demonstrate that protein kinase C possesses a high degree of specificity with respect to phospholipid activation and implicate several functional groups within the phospho-L-serine polar head group in binding and activation.  相似文献   

6.
Certain lysophospholipids, lysophosphatidylcholine (lyso-PC) in particular, stimulated protein kinase C at low concentrations (less than 20 microM) but, conversely, inhibited it at high concentrations (greater than 30 microM). Protein kinase C stimulation by lyso-PC required the presence of phosphatidylserine (PS) and Ca2+ and was associated with a decreased Ka for PS and increased Ka for Ca2+ of the enzyme. Cardiolipin and phosphatidic acid could partially substitute for PS in supporting the stimulatory effect of lyso-PC. Lyso-PC also biphasically regulated protein kinase C activated by diolein. Of several synthetic lyso-PC preparations tested, the oleoyl, myristoyl and palmitoyl derivatives were most active. Data from the Triton X-100 mixed micellar assay indicated that 1.4 and 14.0 mol of lyso-PC/micelle produced a maximal stimulation and a complete abolishment of the stimulation of protein kinase C, respectively. Protein kinase C stimulation by lyso-PC, with a pH optimum of about 7.5, was observed for phosphorylation of histone H1, myelin basic protein, and the 35- and 47-kDa proteins from the rat brain, but not for that of other histone subfractions and protamine. Lyso-PC acted synergistically with diacylglycerol in stimulating protein kinase C, whereas the stimulation by lyso-PC was additive to that by oleic acid. Protein kinase C inhibitors (alkyllysophospholipid, sphingosine, tamoxifen, and polymyxin B) inhibited more potently the protein kinase C activity stimulated by PS/Ca2+/lyso-PC than that stimulated by PS/Ca2+. The stimulatory and inhibitory effects of lyso-PC were not observed for myosin light chain kinase and cAMP-dependent protein kinase, indicating a specificity of its actions. The present findings suggested that lyso-PC, likely derived from membrane PC by the action of phospholipase A2, might play a role in signal transduction via a dual regulation of protein kinase C, and that it could further modulate the enzyme and hence the cellular activity by interplaying with diacylglycerol and unsaturated fatty acid, the two other classes of cellular mediators also shown to be activators of protein kinase C.  相似文献   

7.
A Ca2+- and phospholipid-dependent protein kinase (protein kinase C) was partially purified from the media of bovine aortas by chromatography on DEAE-Sephacel and phenyl-Sepharose. Enzyme activity was characterized with both histone and a 47 kDa platelet protein (P47) as substrates, because the properties of protein kinase C can be modified by the choice of substrate. Both phosphatidylserine and Ca2+ were required for kinase activity. With P47 as substrate, protein kinase C had a Ka for Ca2+ of 5 microM. Addition of diolein to the enzyme assay caused a marked stimulation of activity, especially at low Ca2+ concentrations, but the Ka for Ca2+ was shifted only slightly, to 2.5 microM. With histone as substrate, the enzyme had a very high Ka (greater than 50 microM) for Ca2+, which was substantially decreased to 3 microM-Ca2+ by diolein. A Triton X-100 mixed-micelle preparation of lipids was also utilized to assay protein kinase C with histone as the substrate. Under these conditions kinase activity was almost totally dependent on the presence of diolein; again, diolein caused a large decrease in the Ka for Ca2+, from greater than 100 microM to 2.5 microM. The increased sensitivity of protein kinase C to Ca2+ with P47 rather than histone, and the ability of diacylglycerol to activate protein kinase C without shifting the Ka for Ca2+, when P47 is the substrate, illustrate that the mechanism of protein kinase C activation is influenced by the exogenous substrate used to assay the enzyme.  相似文献   

8.
Aminoacridines, potent inhibitors of protein kinase C   总被引:4,自引:0,他引:4  
Acridine orange, acridine yellow G, and related compounds potently inhibited protein kinase C (Ca2+/phospholipid-dependent enzyme) activity and phorbol dibutyrate binding. Inhibition was investigated in vitro using Triton X-100 mixed micellar assays (Hannun, Y. A., Loomis, C. R., and Bell, R. M. (1985) J. Biol. Chem. 260, 10039-10043 and Hannun, Y. A., and Bell, R. M. (1986) J. Biol. Chem. 261, 9341-9347). Inhibition by the acridine derivatives was subject to surface dilution; therefore, the relevant concentration unit is mol % rather than the bulk molar concentration. Fifty percent inhibition of protein kinase C activity occurred at concentrations of these compounds comparable to concentrations of sn-1,2-diacylglycerol (DAG) and phosphatidylserine (PS) required for enzyme activation (i.e. 1-6 mol %). The mechanism of inhibition appeared to be complex: both the catalytic and regulatory sites of protein kinase C were affected. Acridine orange was a competitive inhibitor with respect to MgATP when the catalytic fragment of protein kinase C was employed. Inhibition at the active site was overcome by the addition of Triton X-100 micelles or phospholipid vesicles. When the activity of intact protein kinase C was measured, inhibition was noncompetitive with respect to MgATP. Further kinetic analysis suggested a competitive type of inhibition with respect to PS and DAG implying an interaction of acridine compounds with the regulatory lipid cofactors or with the regulatory domain of protein kinase C. This was further supported by demonstrating inhibition of phorbol dibutyrate binding to both protein kinase C and the lipid-binding domain generated by trypsin hydrolysis. Acridine orange and acridine yellow G also inhibited thrombin-induced 40-kDa phosphorylation in human platelets and phorbol dibutyrate binding to platelets. These effects were also subject to surface dilution. These results suggest that acridine derivatives have multiple interactions with protein kinase C with the predominant effect being inhibition of activation within the regulatory domain of the enzyme. Some of the biologic effects of acridine derivatives including anti-tumor action may occur as a consequence of protein kinase C inhibition.  相似文献   

9.
Efficient delivery of hydrophobic water-insoluble substrates and cofactors to membrane-bound enzymes is a recurring problem which has impeded kinetic analyses. Kinetic analysis of the Escherichia coli sn-1,2-diacylglycerol kinase, an extremely hydrophobic integral membrane protein of 122 residues, was facilitated by the development of a mixed micellar assay. beta-Octyl glucoside micelles quantitatively solubilized diacylglycerol kinase from membranes of strains which overproduced the enzyme up to 250-fold and provided an effective method to disperse and deliver the hydrophobic water-insoluble substrate, sn-1,2-dioleoyglycerol. Diacylglycerol kinase was active in mixed micelles containing octyl glucoside and dioleoyglycerol. Several phospholipids stimulated activity up to 6-fold, suggesting a cofactor function. Activation by phospholipids was not stereospecific and was mimicked partially by fatty acids. Half-maximal activation was observed at 1 mol % cardiolipin, suggesting that a small number of phospholipids are sufficient to activate the enzyme. Activity was dependent on the mole fractions of dioleoylglycerol and phospholipid in the mixed micelles, but independent of micelle number. Several lines of evidence indicated that the transfer of diacylglycerol between micelles was much more rapid than its utilization by the enzyme. Diacylglycerol kinase exhibited Michaelis-Menten kinetics with respect to diacylglycerol and MgATP. A second Mg2+ ion (in addition to MgATP) was required for activity. When Mg2+ was excluded from the assay, Mn2+, Zn2+, Cd2+, and Co2+ supported activity to lesser extents. These data establish a suitable system for in-depth kinetic analysis of the E. coli diacylglycerol kinase and its phospholipid cofactor requirements.  相似文献   

10.
M H Lee  R M Bell 《Biochemistry》1992,31(22):5176-5182
The mechanism of protein kinase C (PKC) activation by phosphatidyl-L-serine (PS) is highly specific and occurs with high cooperativity [Lee, M.-H., & Bell, R. M. (1989) J. Biol. Chem. 264, 14797-14805]. To further investigate the multiplicity and specificity of PS cofactor requirement, some of the PS molecules present in Triton X-100 mixed micelles were substituted with nonactivating phospholipids devoid of required amino or carboxyl functional groups. The ability of these phospholipids to spare or reduce the mole percent of PS required was determined. Addition of phosphatidyl-(3-hydroxypropionate) (PP) or phosphatidate (PA) reduced the mole percent of PS required for maximal activity from 10 to 4 mol %, and also reduced the cooperativity of activation with PS. In contrast, phosphatidylethanolamine did not alter the dependence on PS. Phosphatidylethanol (P-Et) reduced the PS requirement to 2-4 mol % and cooperatively less efficiently than PP or PA. Phosphatidylglycerol and phosphatidylinositol resemble P-Et in their ability to reduce PS requirements and cooperativity. Therefore, it appears that the ability of phospholipids to substitute for PS in PKC activation depends on the negative charge in the phospholipid head group and the efficiency of substitution appears to be directly related to the negative charge density. The presence of two acyl groups within the phospholipid cofactor proved important since lyso-PS and lyso-PA replaced a portion of PS molecules required less efficiently than P-Et. Sodium oleate and sodium dodecyl sulfate behaved like lyso-PS. When other anionic lipids are present, approximately four molecules of PS per micelle are required for maximal PKC activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Protein kinase C has been shown to be a phospholipid/Ca2+-dependent enzyme activated by diacylglycerol (Nishizuka, Y. (1984) Nature 308, 693-697; Nishizuka, Y. (1984) Science 225, 1365-1370). We have reported that unsaturated fatty acids (oleic acid and arachidonic acid) can activate protein kinase C independently of Ca2+ and phospholipid (Murakami, K., and Routtenberg, A. (1985) FEBS Lett. 192, 189-193). This study shows that other cis-fatty acids such as linoleic acid also fully activate protein kinase C in the same manner. None of the saturated fatty acids (C:4 to C:18) nor the detergents (sodium dodecyl sulfate and Triton X-100) tested here were as effective as oleic acid. Unlike oleic acid, these detergents strongly inhibited protein kinase C activity induced by Ca2+/phosphatidylserine (PS) and diacylglycerol. Lowering the critical micelle concentration of oleic acid by increasing ionic strength also strongly inhibited oleic acid activation of protein kinase C activity. Dioleoylphosphatidylserine activated protein kinase C effectively (Ka = 7.2 microM). On the other hand, dimyristoylphosphatidylserine, which contains saturated fatty acids at both acyl positions, failed to activate protein kinase C even in the presence of Ca2+. These observations suggest that: protein kinase C activation by free fatty acid is specific to the cis-form and is not due to their detergent-like action, cis-fatty acid activation is due to the direct interaction of protein kinase C with the monomeric form of cis-fatty acids and not with the micelles of fatty acids, and cis-fatty acids at acyl positions in PS are also important for Ca2+/PS activation of protein kinase C.  相似文献   

12.
M H Lee  R M Bell 《Biochemistry》1991,30(4):1041-1049
The mechanism of protein kinase C (PKC) activation by phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol (PI) was investigated by using Triton X-100 mixed micellar methods. The activation of PKC by PIP2, for which maximal activity was 60% of that elicited by sn-1,2-diacyglycerol (DAG), was similar to activation by DAG in several respects: (1) activation by PIP2 and DAG required phosphatidylserine (PS) as a phospholipid cofactor, (2) PIP2 and DAG reduced the concentration of Ca2+ and PS required for activation, (3) the concentration dependences of activation by PIP2 and DAG depended on the concentration of PS, and (4) PIP2 and DAG complemented one another to achieve maximal activation. On the other hand, PIP2 activation of PKC differed from activation by DAG in several respects. With increasing concentrations of PIP2, (1) the optimal concentration of PS required was constant at 12 mol%, (2) the maximal activity at 12 mol% PS increased, and (3) the cooperativity for PS decreased. PIP2 did not inhibit [3H]phorbol 12,13-dibutyrate (PDBu) binding of PKC at saturating levels of PS; however, at subsaturating levels of PS, PIP2 enhanced [3H]PDBu binding by acting as a phospholipid cofactor. PIP did not function as an activator but served as a phospholipid cofactor in the presence of PS. While PIP2, PIP, and PI did not support DAG-dependent PKC activation as phospholipid cofactors, their presence reduced the amount of PS required for maximal activation to as low as 2 mol% from 8 mol%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To investigate the importance of the physical state of phospholipids for activation of protein kinase C, we have used short chain phospholipids, which, depending on their concentration, can exist as either monomers or micelles. We previously reported that short chain phosphatidylcholines (PC) can activate protein kinase C at concentrations that correlate with the critical micelle concentration of the activating lipid (Walker, J. M., and Sando, J. J. (1988) J. Biol. Chem. 263, 4537-4540). We have now expanded this work to short chain phosphatidylserine (PS) systems in order to examine the role of Ca2(+)-phospholipid interactions in the activation process. Short chain PS were synthesized from corresponding PC and purified by reverse-phase high pressure liquid chromatography. Use of the short chain system has revealed significant differences in the activation of type II and type III protein kinase C isozymes. The type II isozyme required Ca2+ in the presence of long chain PS vesicles; in the presence of the short chain phospholipid micelles (PC or PS), most of the activity was Ca2+ independent. Addition of diacylglycerol caused a small increase in type II activity in all phospholipid systems. In contrast, type III protein kinase C was Ca(+)-dependent in all of the lipid systems. The concentration of Ca2+ required to activate type III protein kinase C was independent of the phospholipid type despite large differences in the ability of these lipids to bind Ca2+. This isozyme required diacylglycerol only in the PC micelle system or with vesicles composed of long chain saturated PS. The presence of short chain PS micelles or long chain PS with unsaturated fatty acyl chains rendered this Ca2(+)-dependent protein kinase C virtually diacylglycerol independent. These results are consistent with a model in which type II protein kinase C requires Ca2+ primarily for membrane association, a requirement which is bypassed with the micelle system, whereas type III protein kinase C has an additional Ca2+ requirement for activity that does not involve Ca2(+)-phospholipid interactions.  相似文献   

14.
Inhibition of the insulin receptor tyrosine kinase by sphingosine.   总被引:1,自引:0,他引:1  
R S Arnold  A C Newton 《Biochemistry》1991,30(31):7747-7754
Sphingosine inhibits autophosphorylation of the insulin receptor tyrosine kinase in vitro and in situ. This lysosphingolipid has been shown previously to inhibit the Ca2+/lipid-dependent protein kinase C. Here we show that insulin-dependent autophosphorylation of partially purified insulin receptor is half-maximally inhibited by 145 microM sphingosine (9 mol %) in Triton X-100 micelles. Half-maximal inhibition of protein kinase C autophosphorylation occurs with 60 microM sphingosine (3.4 mol %) in Triton X-100 mixed micelles containing phosphatidylserine and diacylglycerol. Sphingomyelin does not inhibit significantly the insulin receptor, suggesting that, as with protein kinase C, the free amino group may be essential for inhibition. Similar to the effects observed for protein kinase C, inhibition of the insulin receptor kinase by sphingosine is reduced in the presence of other lipids. However, the reduction displays a marked dependence on the lipid species: phosphatidylserine, but not a mixture of lipids compositionally similar to the cell membrane, markedly reduces the potency of sphingosine inhibition. The inhibition occurs at the level of the protein/membrane interaction: a soluble form of the insulin receptor comprising the cytoplasmic kinase domain is resistant to sphingosine inhibition. Lastly, sphingosine inhibits the insulin-stimulated rate of tyrosine phosphorylation of the insulin receptor in NIH 3T3 cells expressing the human insulin receptor. These results suggest that sphingosine alters membrane function independently of protein kinase C.  相似文献   

15.
Assembly of the tight junction: the role of diacylglycerol   总被引:27,自引:11,他引:16       下载免费PDF全文
Extracellular Ca2+ triggers assembly and sealing of tight junctions (TJs) in MDCK cells. These events are modulated by G-proteins, phospholipase C, protein kinase C (PKC), and calmodulin. In the present work we observed that 1,2-dioctanoylglycerol (diC8) promotes the assembly of TJ in low extracellular Ca2+, as evidenced by translocation of the TJ-associated protein ZO-1 to the plasma membrane, formation of junctional fibrils observed in freeze-fracture replicas, decreased permeability of the intercellular space to [3H]mannitol, and reorganization of actin filaments to the cell periphery, visualized by fluorescence microscopy using rhodamine-phalloidin. In contrast, diC8 in low Ca2+ did not induce redistribution of the Ca-dependent adhesion protein E-cadherin (uvomorulin). Extracellular antibodies to E-cadherin block junction formation normally induced by adding Ca2+. diC8 counteracted this inhibition, suggesting that PKC may be in the signaling pathway activated by E-cadherin-mediated cell-cell adhesion. In addition, we found a novel phosphoprotein of 130 kD which coimmunoprecipitated with the ZO-1/ZO-2 complex. Although the assembly and sealing of TJs may involve the activation of PKC, the level of phosphorylation of ZO-1, ZO-2, and the 130-kD protein did not change after adding Ca2+ or a PKC agonist. The complex of these three proteins was present even in low extracellular Ca2+, suggesting that the addition of Ca2+ or diC8 triggers the translocation and assembly of preformed TJ subcomplexes.  相似文献   

16.
We studied the influence of platelet-derived growth factor (PDGF) on diacylglycerol phosphorylation in Swiss 3T3 cells. Rates of incorporation of 32P into phosphatidic acid (PA) and phosphatidylinositol (PtdIns) were determined in prelabeled cells into which sn-1,2-didecanoylglycerol (diC10) had been introduced. PDGF stimulated the formation of [32P]PA and -PtdIns from endogenous substrates but decreased the formation of [32P]PA10 and -PtdIns10. Direct measurements of diacylglycerol phosphorylation in lysates of quiescent and stimulated cells showed that PDGF stimulated the phosphorylation of endogenous diacylglycerol 2-fold in parallel with diacylglycerol accumulation but decreased by 50% the phosphorylation of diC10. Total diacylglycerol kinase activity, measured in a mixed micellar assay, was not changed by PDGF treatment. The maximum activity of diacylglycerol kinase exceeded that needed to phosphorylate all of the endogenous diacylglycerol, suggesting that the PDGF-dependent increase in diacylglycerol mass would account for the increase in PA formation. The increased mass of diacylglycerol also could explain the inhibition of diC10 phosphorylation, via substrate competition. The predominant species of endogenous diacylglycerol was 1-stearoyl-2-arachidonoyl-glycerol (18:0/20:4 diacylglycerol). In mixed micelles, the rate of phosphorylation of 18:0/20:4 diacylglycerol was 8-fold higher than that of diC10, and the 18:0/20:4 species competed with diC10 for phosphorylation. Studies showed that a membrane-bound enzyme accounted for the PDGF effect on PA formation; there was no evidence for translocation of cytosolic enzyme to the membrane. The results support these conclusions: 1) PDGF stimulates the phosphorylation of cellular diacylglycerol by promoting a transient accumulation of this lipid. 2) The stimulated phosphorylation is catalyzed by a diacylglycerol kinase that preferentially phosphorylates 18:0/20:4 diacylglycerol over diC10. 3) The diacylglycerol kinase responsible for the PDGF effect is membrane-bound.  相似文献   

17.
Anti-IgG treatment activated latent EBV genomes in 50 to 70% of the cells of the Burkitt's lymphoma cell line Akata. The EBV-activating role of intracellular Ca2+, as potentiated by diacylglycerol (DAG) and suppressed by cAMP, was analyzed in the cells through effects of agonists and antagonists of these second messenger pathways. Early Ag (EA) was induced in 10% of cells with the calcium ionophore A23187 (A23187). EA induction with anti-IgG or A23187 was blocked by a calmodulin antagonist, trifluoperazine. The DAG pathway had a potentiating but not direct effect on EBV activation because: 1) the DAG analog, dioctanoylglycerol (diC8), an agonist for protein kinase C, alone induced only 2% EA-positive cells, 2) diC8 synergized with A23187 for EA induction, and 3) the protein kinase C antagonist, staurosporine, almost completely inhibited EA induction by anti-IgG. When cells were reincubated in medium with fresh diC8 and A23187 at 3, 6, 9, and 12 h, EA induction at 24 h reached the levels seen with anti-IgG stimulation. A cAMP-mediated pathway suppressed EBV activation because dibutyryl cAMP or 8-bromo-cAMP, plus blockage of phosphodiesterase by theophylline, or use of forskolin, inhibited EA induction with anti-IgG. Although the principal stimulatory role in EBV activation of a Ca2(+)-mediated, second messenger pathway, as synergized by DAG and inhibited by cAMP, was established, we did not explain the significant lag in EA induction by A23187 and diC8 as compared with anti-IgG induction of EA. We conclude that EBV genome activation with anti-IgG is mediated by Ca2+/calmodulin and DAG pathways in Akata cells, that the cAMP pathway suppresses EA induction by anti-IgG, and that a mechanism regulating the speed of EA induction remains unexplained.  相似文献   

18.
Myristate (C14:0) was found to significantly activate partially purified rat brain Ca(2+)- and phospholipid-dependent protein kinase (PKC). The Ka value, the concentration needed for half maximum activation, for C14:0 in the presence of 1 microM Ca2+ and 20 microM phosphatidylserine (PS) was 20 microM. This activation required Ca2+ and acidic phospholipid and was associated with a decreased Ka for Ca2+ of the enzyme to 10 microM in an analogous fashion as dioleoylglycerol (DO) or phorbol myristate acetate (PMA). The phospholipid requirement for the activation was concentration dependent and was inhibited by 1-(5-isoquinolinesulfonyl)-methylpiperazine dihydrochloride (H-7), a inhibitor of this enzyme. The concentration of H-7 required for half inhibition of the enzyme was about 15 microM and maximum inhibition was about 75%. The concentration profile of cytoplasmic proteins phosphorylated by C14:0-activated PKC was similar to that by PMA-activated PKC. The 47 kDa protein of guinea pig neutrophil was also phosphorylated by the C14:0-activated PKC. It is further discussed whether PKC can function as signal transduction for stimulus-mediated generation of superoxide in neutrophils.  相似文献   

19.
Glycogen synthase from skeletal muscle was phosphorylated by a Ca2+, calmodulin-dependent protein kinase from brain, with concomitant inactivation. About 0.7 mol phosphate/mol subunit was sufficient for a maximal inactivation of glycogen synthase. Further phosphorylation of the enzyme had no effect on the activity. The concentrations required to give half-maximal phosphorylation and inactivation of glycogen synthase were 1.1 and 0.5 microM for Ca2+, and 22 and 11 nM for calmodulin, respectively. The molar ratio of the subunit of the protein kinase to calmodulin was 2-3:1 for half-maximal phosphorylation and inactivation of glycogen synthase. The Km values for glycogen synthase and ATP were 3.6 and 114 microM, respectively, for phosphorylation. Phosphate was incorporated into sites Ia, Ib, and 2 on glycogen synthase, and site 2 was the most rapidly phosphorylated. These results indicate that the brain Ca2+, calmodulin-dependent protein kinase is probably involved in glycogen metabolism in the brain as a glycogen synthase kinase.  相似文献   

20.
Long-chain cis-unsaturated fatty acids could substitute for phosphatidylserine and activate bovine aortic protein kinase C in assays with histone as substrate. The optimal concentration was 24-40 microM for oleic, linoleic and arachidonic acids. With arachidonic acid, the Ka for Ca2+ was 130 microM and kinase activity was maximal at 0.5 mM-Ca2+. Diolein only slightly activated the oleic acid-stimulated enzyme at low physiological Ca2+ concentrations (0.1 and 10 microM). Oleic acid also stimulated kinase C activity, determined with a Triton X-100 mixed-micellar assay. Under these conditions, the fatty acid activation was absolutely dependent on the presence of diolein, but a Ca2+ concentration of 0.5 mM was still required for maximum kinase C activity. The effect of fatty acids on protein kinase C activity was also investigated with the platelet protein P47 as a substrate, since the properties of kinase C can be influenced by the choice of substrate. In contrast with the results with histone, fatty acids did not stimulate the phosphorylation of P47 by the aortic protein kinase C. Activation of protein kinase C by fatty acids may allow the selective phosphorylation of substrates, but the physiological significance of fatty acid activation is questionable because of the requirement for high concentrations of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号