首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The apo 1.3S subunit of transcarboxylase contains the sequence Ala-87-Met-88-Lys-89-Met-90, and it is Lys-89 that is biotinated. This sequence is highly conserved in all the biotin enzymes that have been sequenced (with the exception of acetyl-CoA carboxylase from chicken liver, which has Val in place of Ala). The role of Met-88 and Met-90 in specifying Lys-89 for biotination by synthetase was examined by site-directed mutagenesis. Genes of the 1.3S subunit coding for Thr-88, Leu-88, or Leu-90 were generated by oligonucleotide-directed in vitro mutagenesis and expressed in Escherichia coli. The mutated apo 1.3S subunits were isolated and the biotination by homogeneous synthetase from Propionibacterium shermanii was compared with that of the apo wild-type subunit. The Vmax for the apo mutants was the same as that for the apo wild type, but when Leu was substituted for Met-88 or Met-90, the Km for the mutant was lower than that of the wild-type or mutant Thr-88. The activity of the synthetase of E. coli was determined by an in vivo assay. During the early log phase of growth, a smaller portion of mutants Thr-88 and Leu-90 was biotinated than with the wild-type or mutant Leu-88. When the cultures progressed to stationary phase, mutants and the wild type were biotinated to the same extent. The overall results show that Met-88 and Met-90 are not required for biotination of the apo 1.3S subunit by the synthetases.  相似文献   

4.
Site-directed mutagenesis of the ecoRII gene has been used to search for the active site of the EcoRII restriction endonuclease. Plasmids with point mutations in ecoRII gene resulting in substitutions of amino acid residues in the Asp110-Glu112 region of the EcoRII endonuclease (Asp110 --> Lys, Asn, Thr, Val, or Ile; Pro111 --> Arg, His, Ala, or Leu; Glu112 --> Lys, Gln, or Asp) have been constructed. When expressed in E. coli, all these plasmids displayed EcoRII endonuclease activity. We also constructed a plasmid containing a mutant ecoRII gene with deletion of the sequence coding the Gln109-Pro111 region of the protein. This mutant protein had no EcoRII endonuclease activity. The data suggest that Asp110, Pro111, and Glu112 residues do not participate in the formation of the EcoRII active site. However, this region seems to be relevant for the formation of the tertiary structure of the EcoRII endonuclease.  相似文献   

5.
The concentration of Ca2+ that produced 50% of the saturable intrinsic fluorescence change (C50) of wild-type (wt) recombinant (r) human protein C (PC) was 0.40 mM. The C50 for Ca2+ increased < 2.5-fold for the following r-PC variants (Gla is gamma-carboxyglutamic acid): [Gla6-->Asp]r-PC, [Gla7-->Asp]r-PC, [Gla14-->Asp]r-PC, [Gla19-->Asp]r-PC, or [Gla25-->Asp]r-PC, and approximately 4-6-fold for [Gla20-->Asp]r-PC and [Gla29-->Asp]r-PC. Much more dramatic increases in the C50 for Ca2+ were observed for [Gla16-->Asp]r-PC (> 75-fold) and [Gla26-->Asp]r-PC (ca. 30-fold). A substantially larger maximum fluorescence change (> 3-fold) as compared to that for wtr-PC, was also found in the case of the Ca2+/[Gla16-->Asp]r-PC complex, suggesting that the final Ca(2+)-induced conformation for this variant is dissimilar to that for wtr-PC and the above mutants. When a mutation was constructed at Arg15 ([Arg15-->Leu]r-PC), a residue conserved in all Gla-containing coagulation proteins, no fluorescence alteration occurred upon addition of Ca2+. The C50 for Ca2+ for promotion of the binding of the Ca(2+)-dependent, Gla-domain-directed, conformational monoclonal antibodies, JTC-1 and JTC-3, to wtr-PC was 3.0 and 4.0 mM, respectively. A similar C50 value was found for [Gla25-->Asp]r-PC. In the case of each antibody, approximately 4-6-fold higher C50 values for Ca2+ were found for the mutants; [Gla14-->Asp]r-PC, [Gla19-->Asp]r-PC, and [Gla29-->Asp]r-PC. Ca2+ did not promote binding of either of these antibodies to the following variants; [Gla6-->Asp]r-PC, [Gla7-->Asp] r-PC, [Arg15-->Leu]r-PC, [Gla16-->Asp]r-PC, [Gla20-->Asp]r-PC, and [Gla26-->Asp]r-PC. The results of this study suggest that adoption of the Ca(2+)-dependent conformation of PC is greatly dependent upon the presence of specific essential Gla residues, particularly those, namely Gla16 and Gla26, shown in the crystal structure of the prothrombin Gla domain/Ca2+ complex to be involved with coordination of Ca2+ ions not exposed to the surface. Of similar importance is Arg15. On the other hand, Gla residues at positions 14 and 19 are much less important in directing this same conformation. This finding is readily reconciled with the above crystal structure, which shows that these latter 2 residues are mainly responsible for coordination of a surface-exposed Ca2+ that is present at the end of the Ca(2+)-ion channel.  相似文献   

6.
Genetically susceptible C57BL/6 (B6) mice that are infected with the LP-BM5 isolate of murine retroviruses develop profound splenomegaly, lymphadenopathy, hypergammaglobulinemia, terminal B-cell lymphomas, and an immunodeficiency state bearing many similarities to the pathologies seen in AIDS. Because of these similarities, this syndrome has been called murine AIDS (MAIDS). We have previously shown that CD154 (CD40 ligand)-CD40 molecular interactions are required both for the initiation and progression of MAIDS. Thus, in vivo anti-CD154 monoclonal antibody (MAb) treatment inhibited MAIDS symptoms in LP-BM5-infected wild-type mice when either a short course of anti-CD154 MAb treatment was started on the day of infection or a course was initiated 3 to 4 weeks after LP-BM5 administration, after disease was established. Here, we further characterize this required CD154-CD40 interaction by a series of adoptive transfer experiments designed to elucidate which cellular subsets must express CD154 or CD40 for LP-BM5 to induce MAIDS. Specifically with regard to CD154 expression, MAIDS-insusceptible B6 nude mice reconstituted with highly purified CD4+ T cells from wild-type, but not from CD154 knockout, B6 donors displayed clear MAIDS after LP-BM5 infection. In contrast, nude B6 recipients that received CD8+ T cells from wild-type B6 donors did not develop MAIDS after LP-BM5 infection. B6 CD40 knockout mice, which are also relatively resistant to LP-BM5-induced MAIDS, became susceptible to LP-BM5-induced disease after reconstitution with highly purified wild-type B cells but not after receiving purified wild-type dendritic cells (DC) or a combined CD40+ population composed of DC and macrophages obtained from B6 SCID mouse donors. Based on these and other experiments, we thus conclude that the cellular basis for the requirement for CD154-CD40 interactions for MAIDS induction and progression can be accounted for by CD154 expression on CD4+ T cells and CD40 expression on B cells.  相似文献   

7.
High-affinity binding of basic fibroblast growth factor (bFGF) to the tyrosine kinase receptor requires cell-surface heparan sulfate proteoglycan or exogenous addition of heparin. The crystal structure of bFGF shows Arg40 and 45 on the surface opposite to the heparin-binding region, suggesting that these charged residues may be involved in the receptor binding. Therefore, these amino acids were mutated to aspartic acid separately or simultaneously, and also a simultaneous mutation to glutamic acid was introduced. These mutants displayed a mitogenic activity decreased greater than tenfold compared to the wild-type protein. Addition of heparin had no effect on the activity, while these mutants showed heparin-binding characteristics resembling those of the native sequence protein. The mutants exhibited decreased stability compared to the native sequence protein. Gradual changes in conformation were observed by circular dichroic and infrared spectroscopy. Heparin chromatography also showed the presence of denatured form for these mutants. However, in the presence of multivalent anions such as citrate, sucrose octasulfate, and heparin, the conformation of the mutants resembled that of the wild-type protein, as revealed by X-ray crystallography and circular dichroism spectra of the mutant with a Arg40 Asp substitution.Abbreviations FGF fibroblast growth factor - bFGF basic FGF - FBS fetal bovine serum - DMEM Dulbecco's Modified Eagles Medium - LMWH low-molecular-weight heparin - PBS phosphate-buffered saline - CD circular dichroism - FTIR Fourier transform infrared spectroscopy - MR molecular replacement - SIR single isomorphous replacement - EMTS ethylmercurithiosalicylate - SOS sucrose octasulfate  相似文献   

8.
The expression of CD154 (CD40 ligand) by activated T lymphocytes plays a central role in humoral and cellular immunity. The fundamental importance of this protein in mounting an immune response has made it an attractive target for immunomodulation. Several studies have demonstrated that CD154 expression is regulated at the level of mRNA turnover in a manner distinct from other cytokine genes. We have purified, sequenced, and characterized the two major proteins that bind the CD154 3' untranslated region (3'UTR) as members of the polypyrimidine tract binding protein (PTB) family. One of these proteins is a previously unreported alternatively spliced PTB isoform, which we call PTB-T. These proteins interact with a polypyrimidine-rich region within the CD154 3'UTR that lacks any known cis-acting instability elements. The polypyrimidine-rich region of the CD154 3'UTR was both necessary and sufficient to mediate changes in reporter gene expression and mRNA accumulation, indicating the presence of a novel cis-acting instability element. The presence of a cis-acting instability element in the polypyrimidine-rich region was confirmed using a tetracycline-responsive reporter gene approach. The function of this cis-acting element appears to be dependent on the relative cytoplasmic levels of PTB and PTB-T. Cotransfection of vectors encoding PTB-T consistently decreased the CD154 3'UTR-dependent luciferase expression. In contrast, transfection of plasmids encoding PTB tended to increase CD154 3'UTR-dependent luciferase expression. Thus, the CD154 3'UTR contains a novel cis-acting element whose function is determined by the binding of PTB and PTB-T. These data identify a specific pathway that regulates CD154 expression that can potentially be selectively targeted for the treatment of autoimmune disease and allograft rejection.  相似文献   

9.
CD154 (CD40 ligand)   总被引:10,自引:0,他引:10  
CD40 ligand, a type II transmembrane protein recently renamed CD154, was originally considered restricted to activated T lymphocytes, functioning as a mediator of T cell-dependent B cell activation, proliferation, and differentiation. However, the spectrum of CD154 expression and function has broadened considerably during recent years, establishing new roles as a central mediator of immunity and inflammation for this member of the tumor necrosis factor (TNF) gene superfamily. The emerging picture indicates that ligation of the receptor CD40 via CD154, most potently in its trimeric form, functions in two ways. CD154 modulates physiologic processes, such as T cell-mediated effector functions and general immune responses required for appropriate host defense, but also triggers the expression of pro-inflammatory mediators, such as cytokines, adhesion molecules, and matrix degrading activities, all of which are associated with the pathogenesis of chronic inflammatory diseases, e.g., autoimmune disorders, arthritis, atherosclerosis, and cancer. Accordingly, CD40/CD154 interactions have advanced as a potential therapeutic target for these diseases, whereby two opposing strategies, interruption as well as enhancement of CD40 signaling, are explored for beneficial outcomes.  相似文献   

10.
CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body’s defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system.  相似文献   

11.
In haem-regulated phosphodiesterase (PDE) from Escherichia coli (Ec DOS), haem is bound to the PAS domain, and the redox state of the haem iron regulates catalysis by the PDE domain. We generated mutants of Asp40, which forms a hydrogen bond with His77 (a proximal haem axial ligand) via two water molecules, and a salt bridge with Arg85 at the protein surface. The redox potential of haem was markedly increased from 67 mV vs. the standard hydrogen electrode in the wild-type enzyme to 95 mV and 114 mV in the Ala and Asn mutants, respectively. Additionally, the auto-oxidation rate of Ec DOS PAS was significantly increased from 0.0053 to 0.051 and 0.033 min(-1), respectively. Interestingly, the catalytic activities of the Asp40 mutants were abolished completely. Thus, Asp40 appears to play a critical role in the electronic structure of the haem iron and redox-dependent catalytic control of the PDE domain. In this report, we discuss the mechanism of catalytic control of Ec DOS, based on the physico-chemical characteristics of the Asp40 mutants.  相似文献   

12.
Models for the binding of the sarcin-ricin loop (SRL) of 28S ribosomal RNA to ricin A chain (RTA) suggest that several surface exposed arginine residues surrounding the active site cleft make important interactions with the RNA substrate. The data presented in this study suggest differing roles for these arginyl residues. Substitution of Arg48 or Arg213 with Ala lowered the activity of RTA 10-fold. Furthermore, substitution of Arg213 with Asp lowered the activity of RTA 100-fold. The crystal structure of this RTA variant showed it to have an unaltered tertiary structure, suggesting that the positively charged state of Arg213 is crucial for activity. Substitution of Arg258 with Ala had no effect on activity, although substitution with Asp lowered activity 10-fold. Substitution of Arg134 prevented expression of folded protein, suggesting a structural role for this residue. Several models have been proposed for the binding of the SRL to the active site of RTA in which the principal difference lies in the conformation of the second 'G' in the target GAGA motif in the 28S rRNA substrate. In one model, the sidechain of Asn122 is proposed to make interactions with this G, whereas another model proposes interactions with Asp75 and Asn78. Site-directed mutagenesis of these residues of RTA favours the first of these models, as substitution of Asn78 with Ser yielded an RTA variant whose activity was essentially wild-type, whereas substitution of Asn122 reduced activity 37.5-fold. Substitution of Asp75 failed to yield significant folded protein, suggesting a structural role for this residue.  相似文献   

13.
CD40-CD154 interaction is pivotal for cell-mediated immunity. There are contradictory reports on whether HIV-1 infection impairs CD154 induction. The interaction between CD40 and CD154 is important not only because it results in activation of APCs but also because it controls CD154 by diminishing expression of this molecule. Compared with healthy controls, CD4(+) T cells from HIV-1(+) patients had impaired induction of CD154 when T cell activation was mediated by CD40(+) APCs. In contrast, T cell activation in the absence of these cells resulted in normal CD154 expression. CD154 induction in HIV-1(+) patients and controls were similar upon blockade of CD40-CD154 binding. Defective regulation of CD154 appeared to occur downstream of the control of mRNA levels because up-regulation of CD154 mRNA was not impaired by HIV-1 infection. This work identifies CD40 as a mediator of impaired CD154 induction in HIV-1 infection and explains why this defect was not detected by studies where T cell activation was triggered independently of CD40(+) APCs. In addition, dysregulation of CD154 in HIV-1 infection likely contributes to immunodeficiency because diminished expression of CD154 induced by CD40 is of functional relevance, resulting in decreased dendritic cell maturation.  相似文献   

14.
CD40 expression on the surface of B lymphocytes is essential for their biological function and fate decision. The engagement of CD40 with its cognate ligand, CD154, leads to a sequence of cellular events in B lymphocytes, including CD40 cytoplasmic translocation, a temporal and spatial organization of effector molecules, and a cascade of CD40-induced signal transduction. The JLP scaffold protein was expressed in murine B lymphocytes. Using B lymphocytes from jlp-deficient mice, we observed that JLP deficiency resulted in defective CD40 internalization upon CD154/CD40 engagement. Examination of interactions and co-localization among CD40, JLP, dynein, and Rab5 in B lymphocytes suggested that CD40 internalization is a process of JLP-mediated vesicle transportation that depends on Rab5 and dynein. JLP deficiency also diminished CD40-dependent activation of MAPK and JNK, but not NF-κB. Inhibiting vesicle transportation from the direction of cell periphery to the cell center by a dynein inhibitor (ciliobrevin D) impaired both CD154-induced CD40 internalization and CD40-dependent MAPK activities in B lymphocytes. Collectively, our data demonstrate a novel role of the JLP scaffold protein in the bridging of CD154-triggered CD40 internalization and CD40-dependent signaling in splenic B lymphocytes.  相似文献   

15.
16.
17.
Transmembrane proteins of the tetraspanin superfamily are associated with various integrins and modulate their function. We performed mutagenesis analysis to establish structural requirements for the interaction of CD151 with the alpha3beta1 integrin and with other tetraspanins. Using a panel of CD151/CD9 chimeras and CD151 deletion mutants we show that the minimal region, which confers stable (e.g. Triton X-100-resistant) association of the tetraspanin with alpha3beta1, maps within the large extracellular loop (LECL) of CD151 (the amino acid sequence between residues Leu(149) and Glu(213)). Furthermore, the substitution of 11 amino acids (residues 195-205) from this region for a corresponding sequence from CD9 LECL or point mutations of cysteines in the conserved CCG and PXXCC motifs abolish the interaction. The removal of the LECL CD151 does not affect the association of the protein with other tetraspanins (e.g. CD9, CD81, CD63, and wild-type CD151). On the other hand, the mutation of the CCG motif selectively prevents the homotypic CD151-CD151 interaction but does not influence the association of the mutagenized CD151 with other tetraspanins. These results demonstrate the differences in structural requirements for the heterotypic and homotypic tetraspanin-tetraspanin interactions. Various deletions involving the small extracellular loop and the first three transmembrane domains prevent surface expression of the CD151 mutants but do not affect the CD151-alpha3beta1 interaction. The CD151 deletion mutants are accumulated in the endoplasmic reticulum and redirected to the lysosomes. The assembly of the CD151-alpha3beta1 complex occurs early during the integrin biosynthesis and precedes the interaction of CD151 with other tetraspanins. Collectively, these data show that the incorporation of CD151 into the "tetraspanin web" can be controlled at various levels by different regions of the protein.  相似文献   

18.
Critical role of OX40 in CD28 and CD154-independent rejection   总被引:20,自引:0,他引:20  
Blocking both CD28 and CD154 costimulatory pathways can induce transplant tolerance in some, but not all, transplant models. Under stringent conditions, however, this protocol often completely fails to block allograft rejection. The precise nature of such CD28/CD154 blockade-resistant rejection is largely unknown. In the present study we developed a new model in which both CD28 and CD154, two conventional T cell costimulatory molecules, are genetically knocked out (i.e., CD28/CD154 double-knockout (DKO) mice) and used this model to examine the role of novel costimulatory molecule-inducible costimulator (ICOS), OX40, 4-1BB, and CD27 in mediating CD28/CD154-independent rejection. We found that CD28/CD154 DKO mice vigorously rejected fully MHC-mismatched DBA/2 skin allografts (mean survival time, 12 days; n = 6) compared with the wild-type controls (mean survival time, 8 days; n = 7). OX40 costimulation is critically important in skin allograft rejection in this model, as blocking the OX40/OX40 ligand pathway, but not the ICOS/ICOS ligand, 4-1BB/4-1BBL, or CD27/CD70 pathway, markedly prolonged skin allograft survival in CD28/CD154 DKO mice. The critical role of OX40 costimulation in CD28/CD154-independent rejection is further confirmed in wild-type C57BL/6 mice, as blocking the OX40/OX40 ligand pathway in combination with CD28/CD154 blockade induced long term skin allograft survival (>100 days; n = 5). Our study revealed a key cellular mechanism of rejection and identified OX40 as a critical alternative costimulatory molecule in CD28/CD154-independent rejection.  相似文献   

19.
The reduction or absence of TCR zeta-chain (zeta) expression in patients with systemic lupus erythematosus (SLE) is thought to be a factor in the pathogenesis of SLE. We previously reported a splice variant of zeta mRNA that lacks the 36-bp exon 7 (zeta mRNA/exon 7(-)) and is accompanied by the down-regulation of zeta protein in T cells from SLE patients. In this study, we show that EX7- mutants (MA5.8 cells deficient in zeta protein that have been transfected with zeta mRNA/exon 7(-)) exhibit a reduction in the expression of TCR/CD3 complex and zeta protein on their cell surface as well as a reduction in the production of IL-2 after stimulation with anti-CD3 Ab, compared with that in wild-type (WT) mutants (MA5.8 cells transfected with the WT zeta mRNA). Furthermore, real-time PCR analyses demonstrated that zeta mRNA/exon 7(-) in EX7- mutants was easily degraded compared with zeta mRNA by the WT mutants. Pulse-chase experiment showed zeta protein produced by this EX7- mutants was more rapidly decreased compared with the WT mutants. Thus, the lower stability of zeta mRNA/exon 7(-) might also be responsible for the reduced expression of the TCR/CD3 complex, including zeta protein, in SLE T cells.  相似文献   

20.
CD154 (CD40 ligand, gp39) interaction with its receptor CD40 has been shown to be critically important for the generation of cell-mediated as well as humoral immunity. It has been proposed that ligation of CD40 on APCs, presumably by activated Th cells, leads to increased APC function as defined by up-regulation of costimulatory molecules and enhancement of IL-12 production. In this report, we directly examined the contribution of the CD154:CD40 pathway in a murine model of allograft rejection. Generation of both the CTL and alloantibody responses following injection with allogeneic P815 tumor cells was severely compromised in CD154 knockout mice and wild-type C57BL/6 mice treated with the anti-CD154 mAb, MR1. Splenic production of IL-2, IFN-gamma, and TNF was significantly suppressed from CD154-deficient mice, indicating a lack of T cell priming. However, splenic cells from CD154 knockout mice induced comparable levels of CD86 expression and IL-12 production when compared with their wild-type littermates. The treatment of CD154-/- mice with the agonistic anti-CD40 mAb, FGK45, generated activated APCs yet failed to restore either the CTL or alloantibody responses to P815. Likewise, immunization with B7-transfected P815 tumor cells failed to generate expansion of the CTL effector population in CD154-/- mice. These results suggest that the generation of allograft immunity is dependent on the interaction of CD154 with CD40 but not primarily for the activation of APCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号