首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alpha-ketoglutarate dehydrogenase complex from Escherichia coli catalyzes the hydrolysis of S-succinyl-CoA to succinate and CoASH. The reaction rate is dependent upon the presence of thiamin pyrophosphate and NADH, as well as the functional integrity of the alpha-lipoyl groups associated with the enzyme. The Km value for S-succinyl-CoA is 9.3 X 10(-5) M, and the maximum velocity is 0.02 mumol X min-1 X mg of protein-1 at pH 7 and 25 degrees C. This hydrolysis can be rationalized on the basis that succinyl thiamin pyrophosphate is generated under reductive succinylation conditions. Occasional diversion of succinyl thiamin pyrophosphate to hydrolysis produces succinate.  相似文献   

2.
D E Waskiewicz  G G Hammes 《Biochemistry》1982,21(25):6489-6496
The lipoic acids of the alpha-ketoglutarate dehydrogenase multienzyme complex from Escherichia coli have been modified with two fluorescent probes, N-(1-pyrenyl)-maleimide and 5-[[[(iodoacetyl)amino]ethyl]amino]-naphthylene-1-sulfonic acid. Time-resolved fluorescence polarization of partially labeled complexes (18-77% inhibition of enzyme activity) reveals a complex depolarization process: one component of the anisotropy is characterized by a rotational correlation time much longer than the time scale of the measurements (less than or equal to 400 ns), reflecting the overall rotation of the complex, while a second component of the anisotropy decays with a rotational correlation time of 320 (+/- 50) ns. This decay is essentially independent of viscosity and is consistent with a model in which the depolarization is due to the dissociation from and rotation of lipoic acids between binding sites on the multienzyme complex. The sum of the rate constants characterizing the association and dissociation with the binding sites is approximately 3 x 10(6) s-1. In addition, approximately 5% of the anisotropy of the N-(1-pyrenyl)maleimide-labeled complex decays with a rotational correlation time of 25 ns; this can be attributed to local motion of the probe. At high extents of N-(1-pyrenyl)maleimide labeling (90-95% inhibition of enzyme activity), the anisotropy decay can be described by a constant term plus a rotational correlation time of about 1 microseconds. The increase in the correlation time probably reflects interactions between pyrene moieties. The N-(1-pyrenyl)maleimide-labeled dihydrolipoyl transsuccinylase core of the multienzyme complex has been isolated, and the anisotropy is constant over the observed time range of 300 ns. This suggests that the native structure is necessary for observation of lipoic acid movement within the complex. Fluorescent-labeled limited trypsin digestion fragments of the alpha-ketoglutarate dehydrogenase complex also have been isolated, and anisotropy measurements reveal substantial mobility of the label within the fragments. The time-resolved anisotropy of FAD in the native complex and in the isolated dihydrolipoyl dehydrogenase indicates some rapid local mobility of the FAD (rotational correlation time of 12 ns) that is viscosity independent, as well as a component of the anisotropy that is constant over the 35-ns time scale of the experiments.  相似文献   

3.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli can bind up to 12 dimers of dihydrolipoyl dehydrogenase (E3) besides those already present. Maximal activity does not increase, however, when surplus E3 is present. This observation was previously interpreted to mean that the excess enzyme is inactive. We have now determined that if the reactions catalyzed by E3 are made rate-limiting, the excess E3 functions equivalently to that in the native complex.  相似文献   

4.
5.
Studies with alpha-ketoglutarate dehydrogenase mutants of Escherichia coli   总被引:10,自引:0,他引:10  
Summary Two classes of mutant lacking -ketoglutarate dehydrogenase complex activity were detected by biochemical analysis of strains of Escherichia coli requiring succinate for aerobic growth on glucose minimal medium. One class, designated sucA, lacked the -ketoglutarate decarboxylase component (E1) whereas the other class, sucB, lacked the dihydrolipoyl transsuccinylase component (E2). Studies with mixed cell-free extracts showed that the overall dehydrogenase activity could be reconstituted from several pairs of sucA plus sucB mutants but not from mixtures of mutants of the same class. Transduction analysis with phage P1 indicated close linkage between the two genes and their frequencies of cotransduction with gal were similar. The order of the two genes was also established as sucA (E1)-sucB(E2)...gal by reciprocal three-point crosses with several pairs of mutants.  相似文献   

6.
7.
8.
Enzyme preparations from pig heart and Escherichia coli have been found to catalyze a NAD+- and CoASH-dependent oxidation of 2-keto-4-hydroxyglutarate. Several independent lines of evidence indicate that 2-keto-4-hydroxyglutarate is a substrate for the well-known α-ketoglutarate dehydrogenase complex of the citric acid cycle. The evidence includes (a) a constant ratio of specific activity values for the two substrates throughout purification, (b) identical elution profiles from a Ca3(PO4)2 gel-cellulose column, (c) the same sucrose density sedimentation patterns, (d) similar responses in controlled heat inactivation studies, and (e) identical pH-activity curves.  相似文献   

9.
Summary Spermatozoa from the cauda epididymidis of gossypol-treated rats exhibit distinctive departures from the morphology of spermatozoa from control rats: wrinkled and disorganized cell membrane in the head and tail regions, cell membrane missing from segments of the tail midpiece and principal piece regions, malformed heads, decapitate spermatozoa, retention of a cytoplasmic droplet at variable loci along tail midpieces, and looped tails. The observations suggest that gossypol exerts its contraceptive effect during spermatocytogenesis and spermiogenesis, including the posttesticular development and maturation of spermatozoa in the epididymis.  相似文献   

10.
Particle masses of the Escherichia coli pyruvate dehydrogenase (PDH) complex and its component enzymes have been measured by scanning transmission electron microscopy (STEM). The particle mass of PDH complex measured by STEM is 5.28 X 10(6) with a standard deviation of 0.40 X 10(6). The masses of the component enzymes together with their standard deviations are (2.06 +/- 0.26) X 10(5) for the dimeric pyruvate dehydrogenase (E1), (1.15 +/- 0.17) X 10(5) for dimeric dihydrolipoyl dehydrogenase (E3), and (2.20 +/- 0.17) X 10(6) for dihydrolipoyl transacetylase (E2), the 24-subunit core enzyme. The latter value corresponds to a subunit molecular weight of (9.17 +/- 0.71) X 10(4) for E2. The subunit molecular weight measured by polyacrylamide gel electrophoresis in sodium dodecyl sulfate is 8.6 X 10(4). STEM measurements on PDH complex incubated with excess E3 or E1 failed to detect any additional binding of E3 but showed that the complex would bind additional E1 under forcing conditions (high concentrations with glutaraldehyde). The additional E1 subunits were bound too weakly to represent binding sites in an isolated or isolable complex. The mass measurements by STEM are consistent with the subunit composition 24:24:12 when interpreted in the light of the flavin content of the complex and assuming 24 subunits in the core enzyme (E2).  相似文献   

11.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

12.
Chlorhexidine is widely used as a bacterial drug whose method of action has been well described in bacteria. Its fungicidal properties have been proved. We show here the effects of a sublethal dose of a preparation of digluconate of chlorhexidine on buddingCandida albicans. A fungistatic action is revealed by a decrease in the percentage of budding cells, and two main types of alterations can be observed with transmission electron microscopy (T.E.M.): a loss of cytoplasmic components and a coagulation of nucleoproteins. With scanning electron microscopy (S.E.M.), the cell walls show morphological modifications.  相似文献   

13.
Ultrastructural studies of hedgehog uteri (Erinaceus europaeus L.) have been made using animals in anestrus, in estrus and in estrus after sojourn of a week with a male. In estrus and anestrus the uterine epithelium is homogeneous, regularly interrupted by orifices of glands. It is composed of microvillous cells only. Microvilli decrease in number and length in anestrus. A new type of cell, a ciliated cell, appears after copulation. Probable correlation of ultrastructural aspects of endometrium with hormonal situation is discussed.  相似文献   

14.
Altered energy metabolism is characteristic of many neurodegenerative disorders. Reductions in the key mitochondrial enzyme complex, the alpha-ketoglutarate dehydrogenase complex (KGDHC), occur in a number of neurodegenerative disorders including Alzheimer's Disease (AD). The reductions in KGDHC activity may be responsible for the decreases in brain metabolism, which occur in these disorders. KGDHC can be inactivated by several mechanisms, including the actions of free radicals (Reactive Oxygen Species, ROS). Other studies have associated specific forms of one of the genes encoding KGDHC (namely the DLST gene) with AD, Parkinson's disease, as well as other neurodegenerative diseases. Reductions in KGDHC activity can be plausibly linked to several aspects of brain dysfunction and neuropathology in a number of neurodegenerative diseases. Further studies are needed to assess mechanisms underlying the sensitivity of KGDHC to oxidative stress and the relation of KGDHC deficiency to selective vulnerability in neurodegenerative diseases.  相似文献   

15.
E Stofft  J Graf 《Acta anatomica》1983,116(2):114-125
Guinea pigs (pirbright white) were subjected to fixed mechanical stress in an endless-belt experiment. Shoulder, elbow, hip, and knee joints were taken and the articular cartilage was prepared for examination with the scanning electron microscope. Ultrastructural findings of cartilage surfaces were described, using different techniques for preparation and fixation. Mechanically stressed animals showed defects in their superficial 'chondrosynovial membrane' with visible fibre networks.  相似文献   

16.
The activity of alpha-ketoglutarate dehydrogenase complex from pigeon breast muscle is controlled by ADP and the reaction products, i. e. succinyl-CoA and NADH. ADP activates the alpha-ketoglutarate dehydrogenase component of the complex, whereas NADH inhibits alpha-ketoglutarate dehydrogenase and lipoyl dehydrogenase. In the presence of NADH the kinetic curve of the complex with respect to alpha-ketoglutarate and NAD and the dependence of upsilon versus [NAD] and upsilon versus [Lip (SH)2] in the lipoyl dehydrogenase reaction are S-shaped. In the absence of inhibitor ADP had no activating effect on lipoyl dehydrogenase; however, in the presence of NADH ADP decreases the cooperativity for NAD. The cooperative kinetics of the constituent enzymes of the complex are indicative of its allosteric properties. Isolation of the alpha-ketoglutarate dehydrogenase complex and its lipoyl dehydrogenase and alpha-ketoglutarate dehydrogenase components in a desensitized state confirms their allosteric nature. It is assumed that NADH effects of isolated alpha-ketoglutarate dehydrogenase is due to a shift in the equilibrium between different oligomeric forms of the enzyme.  相似文献   

17.
18.
The self-association of Escherichia coli alpha-ketoglutarate dehydrogenase complex (KGDC) purified by a column Chromatographic technique, was characterized by light-scattering photometry. The complex adopts a solution conformation somewhat larger than that observed in the electron microscope. The evidence suggests a nonideal indefinite self-association model for KGDC in KCl, phosphate buffer. The KGDC monomer has a molecular charge of about -3 x 10(2) at neutral pH. The self-association is promoted by increasing KCl concentrations, pH (in the range from 6.3 to 7.4) and temperature (from 20 to 30 degrees C). The effects of pH changes suggest a release of protons during the self-association and a minor 'preferential' interaction of phosphate ions. For the association of one monomer to the aggregate at neutral pH and 25 degrees C. DeltaG degrees = -7.8 kcal mol(-1). DeltaH degrees = 24 kcal mol(-1) and DeltaS degrees = 1.1 x 10(2) cal mol(-1) K(-1). These data indicate that hydrophobic interactions drive the association. Thermodynamically, the self-association of KGDC is a complex phenomenon and may serve to stabilize the enzyme complex in solution.  相似文献   

19.
The morphological character of vegetative mycelium was studied in eight species of higherBasidiomycetes by scanning electron microscopy. Morphology and variability of anastomoses, hyphal outgrowths, ornamentation and exudates, together with other irregularities in the form of hyphae are described and discussed from the point of view of their possible significance in the culture identification and taxonomic exploitation at the species level. Some of the morphological structures as observed in the scanning electron microscope are described here for the first time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号