首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Morphological and biogeographical evidence suggests that theheavy-metal ecotype of Armeria maritima (Mill.) Willd. has evolvedfrom a hybrid group between the subspecies maritima from saltmarshes and the subspecies elongata from sandy soils. As partof a study on the ecotypic differentiation in A. maritima, Znresistance was compared in populations from these three ecotypes.To study the long-term growth response to elevated Zn concentrations,an artificial soil was made from ion-exchange resin embeddedin an inert sand matrix, in which metal ions were buffered byan ion-exchange system as in natural soils. In contrast to hydroponics,this artificial soil systems is suitable for long-term cultivationand it provides more reproducible growth conditions than a soilsystem. The long-term growth response in the artificial soilsystem was compared to the growth response to elevated Zn concentrationsin a sand nutrient-solution system. In short-term tests, populationsfrom non-metalliferous soils were more sensitive to Zn concentrationsof 1.0 mmol –1 than the heavy-metal populations. However,in long-term tests, the growth of adult plants from all populationswas not inhibited by Zn concentrations up to 2.8 mmol kg–1dry soil (equivalent 26% of cation-exchange capacity). The Znresistance of all populations could therefore be sufficientfor their survival on Zn mine soils. The discrepancy betweenlong-term tests and short-term tests is discussed with respectto the hypothesis that ‘sensitive’ populations maydiffer from ‘resistant’ populations in the expressionof Zn-resistance mechanisms. Key words: Armeria maritima, growth tests, heavymetal resistance, synthetic ionexchange resins, Zn  相似文献   

3.
Based on field measurements in two agriculturalecosystems, soil respiration and long-term response ofsoil organic carbon content (SOC) was modelled. Themodel predicts the influence of temperature increaseas well as the effects of land-use over a period ofthirty years in a northern German glacial morainelandscape. One of the fields carried a maizemonoculture treated with cattle slurry in addition tomineral fertilizer (maize monoculture), the otherwas managed by crop rotation and recieved organicmanure (crop rotation). The soils of both fieldswere classified as cambic Arenosols. The soilrespiration was measured in the fields by means of theopen dynamic inverted-box method and an infrared gasanalyser. The mean annual soil respiration rates were 268 (maizemonoculture) and 287 mg CO2 m-2 h-1(crop rotation). Factors controlling soil respirationwere soil temperature, soil moisture, root respirationand carbon input into the soil. Q10-valuesof soil respiration were generally higher in winterthan in summer. This trend is interpreted as anadaptive response of the soil microbial communities.In the model a novel mathematical approach withvariable Q10-values as a result oftemperature and moisture adjustment is proposed. Withthe calibrated model soil respiration and SOC werecalculated for both fields and simulations over aperiod of thirty years were established. Simulationswere based on (1) local climatic data, 1961 until1990, and (2) a regional climate scenario for northernGermany with an average temperature increase of 2.1 K.Over the thirty years period with present climateconditions, the SOC pool under crop rotation wasnearly stable due to the higher carbon inputs, whereasabout 16 t C ha-1 were lost under maizemonoculture. Under global warming the mean annualsoil respiration for both fields increased and SOCdecreased by ca. 10 t C ha-1 under croprotation and by more than 20 t C ha-1 undermaize monoculture. It was shown that overestimationof carbon losses in long-term prognoses can be avoidedby including a Q10-adjustment in soilrespiration models.  相似文献   

4.
The role of nitrification-denitrification in the loss of nitrogen from urea applied to puddled soils planted to rice and subjected to continuous and intermittent flooding was evaluated in three greenhouse pot studies. The loss of N via denitrification was estimated indirectly using the15N balance, after either first accounting for NH3 volatilization or by analyzing the15N balance immediately before and after the soil was dried and reflooded. When urea was broadcast and incorporated the loss of15N from the soil-plant systems depended on the soil, being about 20%–25% for the silt loams and only 10%–12% for the clay. Ammonia volatilization accounted for an average 20% of the N applied in the silt loam. Denitrification losses could not account for more than 10% of the applied N in any of the continuously flooded soil-plant systems under study and were most likely less than 5%. Intermittent flooding of soil planted to rice did not increase the loss of N. Denitrification appeared to be an important loss mechanism in continuously flooded fallow soils, accounting for the loss of approximately 40% of the applied15N. Loss of15N was not appreciably enhanced in fallow soils undergoing intermittent flooding. Apparently, nitrate formed in oxidized zones in the soil was readily denitrified in the absence of plant roots. Extensive loss (66%) of15N-labeled nitrate was obtained when 100 mg/pot of nitrate-N was applied to the surface of nonflooded soil prior to reflooding. This result suggests that rice plants may not compete effectively with denitrifiers if large quantities of nitrate were to accumulate during intermittent dry periods.  相似文献   

5.
Nannipieri  P.  Falchini  L.  Landi  L.  Benedetti  A.  Canali  S.  Tittarelli  F.  Ferri  D.  Convertini  G.  Badalucco  L.  Grego  S.  Vittori-Antisari  L.  Raglione  M.  Barraclough  D. 《Plant and Soil》1999,208(1):43-56
The N uptake by crops, soil distribution and recovery of 15N labelled urea-N (100 kg N ha-1) were investigated in a sorghum-wheat rotation in two silty clay soils (Foggia and Rieti Casabianca) and one silt loam soil (Rieti Piedifiume) under different mediterranean conditions. Non-exchangeable labelled NH4-N represented an important pool at both Rieti sites with higher values (p<0.05) under sorghum (14.0 and 24.6% of the urea N in the 0-20 cm layer at the end of the cropping season) than wheat whereas it was much less important in the Foggia soil (10.0% in the surface soil under sorghum). This is probably related to the clay minerals composition of the three soils; because vermiculite was present in both Rieti sites but not in the Foggia soil. At harvest from 4.4 to 5.3% of the urea N initially applied was present as microbial biomass N in the surface soil layer with no generally significant differences due to location and type of crops. Both sorghum and wheat N yields were higher in the driest site (Foggia) probably due to better light conditions, higher temperatures and irrigation during summer of the sorghum cropping period. The recovery of plant fertilizer N (about 21% for sorghum and 27% for wheat) and the percentage of N in the plant derived from the fertilizer (NDFF) were the lowest at Rieti-Casabianca probably as the result of the protection of immobilized fertilizer N against microbial mineralization by the swelling clays. The fertilizer N unaccounted for was nil or very low (10.8% at Rieti-Casabianca under wheat and 11.8 and 4.9% at Rieti-Piedifiume under sorghum and wheat, respectively). Urea-N losses occurred when Rieti Piedifiume and Rieti Casabianca soils were kept bare. In this case the urea N unaccounted for ranged from 12 to 56% of the urea N with higher losses in Rieti-Piedifiume than in Rieti-Casabianca. The higher recoveries in the latter soil were probably confirmed by the stabilizing effect of clays on the immobilized urea N. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Aims This study was conducted to determine the responses of nutrients in plants and rhizospheric soils to climate in alpine-cold desert on the Qinghai-Xizang Plateau. Methods Tissue samples for two dominant plant species, Hippophae rhamnoides subsp. sinensis and Artemisia desertorum, and associated rhizospheric soil samples were collected from sites representing semi-Arid and sub-humid climates in the alpine-cold desert on the Qinghai-Xizang Plateau. Measurements were made on the contents of carbon, nitrogen and phosphorus in roots and shoots, as well as on organic carbon, total nitrogen, total phosphate, ammonium nitrogen, nitrate nitrogen and available phosphate in rhizospheric soils in the 0-10 cm and 10-20 cm layer. The relationship between nutrients in plant tissues and rhizospheric soils and the influencing factors were analyzed. Important findings There were significant differences between the semi-Arid and the sub-humid sites in tissue nutrients and rhizospheric soil nutrients for the two specie. Specifically, the contents of carbon, nitrogen, phosphorus in plant tissues differed significantly between the semi-Arid and the sub-humid sites. Soil organic carbon, total nitrogen, ammonium nitrogen, nitrate nitrogen and available phosphate for the rhizosphere of A. desertorum were significantly higher on site under sub-humid climate than that under semi-Arid climate; whereas the trend was reversed for the rhizosphere of H. rhamnoides subsp. sinensis. We found significant relationships between the tissue nutrients and soil nutrients, and significantly different plant nutrient ratios between the two species. There were negative correlations between tissues and rhizosheric soils in N:P ratio for A. desertorum and C:N ratio for H. rhamnoides subsp. sinensis under different climates. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

7.
Soil solution chemistry, soil acidity andcomposition of adsorbed cations were determinedin two soil profiles developed under a mixedspruce (Picea abies and Piceasitchensis) stand and in one soil profiledeveloped under an oak (Quercus robur)stand. Soils under spruce were classified asSpodosols and soils under oak were classifiedas Inceptisols. All profiles were developed inthe same parent material; a Saahlian sandy tillcontaining less than 2% clay. In the mineralsoil, the contribution from mineral surfaces tothe total cation-exchange capacity (CECt)was estimated to be less than 3%. Soilsolution pH and the percent base saturation ofCECt [%BS = 100 (2Ca + 2Mg + Na + K)CECt –1] were substantially lower inthe upper 35–40 cm of the two Spodosols, ascompared to the Inceptisol. The total amount ofsoil adsorbed base cations (BC) did not differamong the three profiles on an area basis downto 1 m soil depth. Thus, soil acidification ofCECt due to net losses of BC could notexplain differences in soil pH and %BS amongthe soil profiles. A weak acid analogue, takingthe pH-effect of metal complexation intoconsideration, combined with soil solutionionic strength as a covariate, could describeboth the pH variation by depth within soilprofiles and pH differences between theInceptisol and the two Spodosol profiles. Ourresults confirm and extend earlier findingsfrom O and E horizons of Spodosols that theextent to which organic acid groups react withAl minerals to form Al-SOM complexes is a majorpH-buffering process in acidic forest soils. Wesuggest that an increasing Al-saturation of SOMis the major reason for the widely observed pHincrease by depth in acidic forest soils with apH less than approximately 4.5. Our resultsstrongly imply that changes in mass of SOM, theionic strength in soil solution and therelative composition of soil adsorbed Al and Hneed to be considered when the causality behindchanges in pH and base saturation isinvestigated.  相似文献   

8.
9.
Land is used for agricultural production, industrial development, urban construction, and environmental beautiflcation, thus soil environment is an important component of living ecosystems for human survival. The contamination of soil ecosystems is harmful to human sustainability by inducing ground-water, surface water, and air pollution, which result from leaching, transportation and volatilization of soil pollutants. In addition, soil contamination results in a reduction in crop production, poor quality of agricultural products, and the spoilage of human health through consumption of these low-quality foods. Some new-type diseases such as SARS, AIDS, and en-dotoxin shock can abruptly take place on a large scale due to soil contamination under certain conditions.  相似文献   

10.
The efficacy of cleanup methods in reducing gasoline contamination at spill sites is typically determined by measuring benzene, toluene, xylene (BTX), and total petroleum hydrocarbon (TPH) concentrations in soil samples. Although these values may provide a direct measurement of soil contamination, they may not be indicative of what is transferred to percolating water. This study addresses this issue by measuring TPH, toluene, m‐ and p‐xylene, and naphthalene levels in gasoline‐contaminated soil columns before and after forced‐air venting and relating these values to the aqueous‐phase concentrations measured when water is percolated through the same columns.

Sandy soils with and without organic matter were packed into glass columns. The soils were brought to residual water and residual gasoline saturations by applying a vacuum to a ceramic pressure plate at the column bottom. Venting was performed by passing clean, moist air through the columns. The columns were subsequently leached under unsaturated conditions.

Soil samples were taken from the bottom of the columns upon completion of the venting or leaching phases of the experiments. Toluene, m‐ and p‐xylene, naphthalene, and TPH values were measured in soil samples extracted with either freon or methanol. Aqueous phase concentrations of these compounds were predicted using measured soil concentrations and either Raoult's law or organic matter‐water and fuel‐water partitioning theory (Boyd and Sun, 1990). The predicted results were compared with measured leachate concentrations from the same columns.

Mole fractions estimated from soil concentrations and TPH values used in Raoult's law gave good predictions of aqueous phase concentrations for compounds that had a high mole fraction in the residual nonaqueous phase liquid (NAPL). For compounds at low concentrations in the residual NAPL, an approach using a distribution coefficient that accounted for both the organic matter and residual NAPL in the soil provided better estimates than those based on Raoult's law.  相似文献   


11.
Bench‐scale laboratory experiments were conducted to evaluate the effectiveness of air stripping for in situ remediation of benzene‐contaminated soils. Several parametric studies were performed to evaluate the effect of soil grain size, air injection flow rate, and air inlet temperature on the benzene recovery efficiency.

An increase in soil grain size produced a significant increase in benzene recovery efficiency especially during the early stages of air injection. After 2 h of treatment, an increase in soil grain size from D50 = 0.31 mm to D50 = 1.20 mm resulted in an increase in benzene recovery efficiency from 49 to 65%. When the air‐flow rate was increased from 5 l/min to 10 l/min, the benzene recovery efficiency increased from 56 to 70% after 4 h of venting operation. Maximum recovery of benzene was reached after approximately 37 h of soil venting at a flow rate of 5 l/min and after approximately 24 h at a flow rate of 10 l/min. Preheating the air to 45°C at the inlet resulted in an increase in recovery efficiency from 70 to 90% after 5 h of air stripping.  相似文献   


12.
Are soils in urban ecosystems compacted? A citywide analysis   总被引:1,自引:0,他引:1  
Soil compaction adversely influences most terrestrial ecosystem services on which humans depend. This global problem, affecting over 68 million ha of agricultural land alone, is a major driver of soil erosion, increases flood frequency and reduces groundwater recharge. Agricultural soil compaction has been intensively studied, but there are no systematic studies investigating the extent of compaction in urban ecosystems, despite the repercussions for ecosystem function. Urban areas are the fastest growing land-use type globally, and are often assumed to have highly compacted soils with compromised functionality. Here, we use bulk density (BD) measurements, taken to 14 cm depth at a citywide scale, to compare the extent of surface soil compaction between different urban greenspace classes and agricultural soils. Urban soils had a wider BD range than agricultural soils, but were significantly less compacted, with 12 per cent lower mean BD to 7 cm depth. Urban soil BD was lowest under trees and shrubs and highest under herbaceous vegetation (e.g. lawns). BD values were similar to many semi-natural habitats, particularly those underlying woody vegetation. These results establish that, across a typical UK city, urban soils were in better physical condition than agricultural soils and can contribute to ecosystem service provision.  相似文献   

13.
Jones  D.L.  Dennis  P.G.  Owen  A.G.  van Hees  P.A.W. 《Plant and Soil》2003,248(1-2):31-41
Organic acids have been hypothesized to perform many functions in soil including root nutrient acquisition, mineral weathering, microbial chemotaxis and metal detoxification. However, their role in most of these processes remains unproven due to a lack of fundamental understanding about the reactions of organic acids in soil. This review highlights some of the knowledge gaps and misconceptions associated with the behavior of organic acids in soil with particular reference to low-molecular-weight organic acids (e.g., citrate, oxalate, malate) and plant nutrient acquisition. One major concern is that current methods for quantifying organic acids in soil may vastly underestimate soil solution concentrations and do not reveal the large spatial heterogeneity that may exist in their concentration (e.g., around roots or microbes). Another concern relates to the interaction of organic acids with the soil's solid phase and the lack of understanding about the relative importance of processes such as adsorption versus precipitation, and sorption versus desorption. Another major knowledge gap concerns the utilization of organic acids by the soil microbial community and the forms of organic acids that they are capable of degrading (e.g., metal-complexed organic acids, adsorbed organic acids etc). Without this knowledge it will be impossible to obtain accurate mathematical models of organic acid dynamics in soil and to understand their role and importance in ecosystem processes. Fundamental research on organic acids and their interaction with soil still needs to be done to fully elucidate their role in soil processes.  相似文献   

14.
15.
This article describes an experimental program developed to investigate the potential for using hydrocarbon‐contaminated soils as a fine aggregate replacement in concrete. Five different contaminated soil types with a total petroleum hydrocarbon content of less than 1% were investigated. For each soil type, three concrete mixtures were obtained by replacing sand with contaminated soils (10, 20, and 40% replacement ratio). The resulting concrete was tested for setting times, compression strength, flexural strength, durability, and teachability of benzene to water.

The results indicate that the addition of hydrocarbon‐contaminated soil adversely affects the strength of concrete. The strength reduction at each soil replacement level depends on contamination concentration, contaminant type, and soil type. The durability of the tested concrete is comparable to normal concrete. For all five soils at a 40% replacement ratio, the leachability of benzene was nondetectable after 24 h and after 10 d. After testing the leachability of artificially contaminated soils (0.5 and 3% neat benzene contamination) for 24 h, it was found that the leaching of benzene increases with the percentage of contamination. However, the fraction of benzene that leached was about 95% lower than the values for loose soils.  相似文献   


16.
The dynamics of inorganic N are important in soil, and this applies particularly to the saline–alkaline soils of the former lake Texcoco in Mexico with high pH and salinity where a forestation program was started in the 1970s. In soils of lake Texcoco, in Mexico, more than 50% of applied N could not be accounted for one day after application of 200 mg kg–1 soil along with glucose amendment. It was not clear whether this was due to abiotic or biotic processes, the form of inorganic N applied or the result of applying an easily decomposable substrate. We investigated this by adding glucose and 200 mg kg–1 soil as (NH4)2SO4-N or KNO3-N to sterilized and unsterilized soil. The changes in inorganic and ninhydrin N, microbial biomass C and production of CO2 were then monitored. Between the time of applying N and extraction with 0.5 M K2SO4, i.e., after ca 2 h, approximately 110 mg NH4 +-N kg–1 dry soil could not be accounted for in the unsterilized and sterilized soil and that remained so for the entire incubation in the sterilized soil. After 1 day this increased to 140 mg NH4 +-N kg–1 dry soil in the unsterilized control and 170 mg NH4 +-N kg–1 dry soil in C amended soil. Volatilization of NH3 accounted for 56 mg NH4 +-N kg–1 so the rest appeared to be adsorbed on the soil matrix. The NH3 volatilization and NH4 + fixed in the soil matrix remained constant over time and no oxidation to NO2 or NO3 had occurred, so unaccounted N in unsterilized soil was probably incorporated into the microbial biomass in excess of what was required for metabolic activity. The unaccounted N was ca 70 mg NO3 –N in nitrate amended soil after 3 days and 138 NO3 –N when glucose was additionally added. Losses through abiotic processes were absent as inferred from changes in sterilized soil and the aerobic incubation inhibited possible losses through denitrification. It was inferred that NO3 that could not be accounted for was taken up by micro-organisms in excess of what was required for metabolic activity.  相似文献   

17.
Bench‐scale laboratory experiments were conducted to evaluate the effectiveness of steam injection for in situ remediation of soils contaminated by light nonaqueous‐phase liquids (LNAPLs). Several parametric studies were performed with various combinations of soils, LNAPLs, and steam injection conditions.

An increase in steam injection pressure produced a significant increase in LNAPL recovery efficiency. An increase in steam injection pressure from 12.4 to 44.8 kPa resulted in increased LNAPL recovery efficiency from 86 to 95% after one pore volume of steam injection. Higher steam injection pressure yielded maximum LNAPL recovery efficiency in significantly less time and required a smaller amount of steam than at low pressure.

An increase in soil grain size or an increase in grain‐size‐distribution slope resulted in increased LNAPL recovery efficiency. The final LNAPL residual saturation was approximately 0.5% for coarse‐grained soils and 1.8% for soils with finer grain sizes. Soils with finer grains required more time for treatment than soils with coarser grains.

Steam injection experiments with No. 2 heating oil and with jet fuel showed no significant variation in steam front propagation, temperature profile, and maximum LNAPL recovery efficiency. The LNAPL residual saturation after steam injection was essentially independent of the starting LNAPL saturation.  相似文献   


18.
Reviews in Environmental Science and Bio/Technology - Measuring the influence of long-term agricultural tillage practices on soil organic carbon (SOC) is of great importance to farmers and...  相似文献   

19.

Aims

To test if multi–surface models can provide a soil-specific prediction of metal mobilization by phytosiderophores (PS) based on the characteristics of individual soils.

Methods

Mechanistic multi-surface chemical equilibrium modeling was applied for obtaining soil-specific predictions of metal and PS speciation upon interaction of the PS 2’-deoxymugineic acid (DMA) with 6 soils differing in availability of Fe and other metals. Results from multi-surface modeling were compared with empirical data from soil interaction experiments.

Results

For soils in which equilibrium was reached during the interaction experiment, multi-surface models could well predict PS equilibrium speciation. However, in uncontaminated calcareous soils, equilibrium was not reached within a week, and experimental and modeled DMA speciation differed considerably. In soils with circum-neutral pH, on which Fe deficiency is likely to occur, no substantial Fe mobilization by DMA was predicted. However, in all but the contaminated soils, Fe mobilization by DMA was observed experimentally. Cu and Ni were the quantitatively most important metals competing with Fe for complexation and mobilization by DMA.

Conclusion

Thermodynamics are unable to explain the role of PS as Fe carrier in calcareous soils, and the kinetic aspects of metal mobilization by PS need to be closer examined in order to understand the mechanisms underlying strategy II Fe acquisition.  相似文献   

20.
A batch-equilibration technique was employed to study the impact of two organo-phosphorus pesticides methamidophos (MDP) and glyphosate (GPS) on copper (Cu2+) sorption-desorption for phaeozem and burozem collected from Northeastern China. The addition of the two pesticides decreased Cu2+ sorption, increased Cu2+ desorption and prolonged the equilibrium time of Cu2+ sorption-desorption. But GPS appeared to exert a stronger influence on Cu2+ sorption-desorption due to its stronger complexion with Cu2+. When MDP was added, Cu2+ sorption-desorption was linearly correlated with MDP treatment concentrations. But in the presence of GPS, Cu2+ sorption first underwent a rapid decrease period, and then slowly tended towards a steady period. The reverse pattern could be found for Cu2+ desorption in the presence of GPS. Without pesticides and with the existence of MDP, Cu2+ sorption-desorption kinetics was well conformed to two-constant equation and Elovich equation. But that was not the case for Cu2+ desorption kin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号