首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report attempts to establish guide-lines for electrofishing in population studies and is the result of literature studies and experience from electrofishing in Denmark, Finland, Norway and Sweden. Equipment, safety and training, sampling design and precision requirements for various types of investigations, population estimation and fishing practice are discussed. The results are put forward in the form of recommendations. Special attention is paid to the sampling design of surveys in streams of different types and for different purposes. Examples of the computation procedures are also included.  相似文献   

2.
The relationship between pollen and progeny performance has been a subject of many studies but the evidence for pollen-tube growth rate as an indicator of progeny fitness is equivocal. We used an anemophilous tree, Betula pendula, to examine the relationship between pollen-tube growth rate and seed and seedling performance. We crossed nine maternal plants with pollen from six pollen donors in a clonal B. pendula seed orchard, measured the pollen-tube growth rates for every cross, and analyzed the performance of the resulting seeds and seedlings. The only significant positive correlation was found between pollen-tube growth rate and seed mass when we controlled for seed number per inflorescence. Using seed mass as a covariate, we found that only maternal parent had a significant effect on the number of seeds per inflorescence, the percentage of germinable and embryonic seeds, and early seedling growth. Both maternal and paternal parents had significant effects on seedling height after 85 d of growth. These results are in concordance with the general view that maternal effects are usually most apparent in seed characters and during early plant growth. This study does not provide strong evidence for the theory of pollen-tube growth rate as an indicator of progeny quality.  相似文献   

3.
A feeding experiment with piglets was performed to examine the efficacy of a wet preservation of Fusarium (FUS)-contaminated maize with sodium sulphite (SoS) based on deoxynivalenol (DON) and zearalenone (ZEN) residue levels in urine, bile and liquor and health traits of piglets. For this purpose, 80 castrated male piglets (7.57 ± 0.92 kg BW) were assigned to four treatment groups: CON? (control diet, with 0.09 mg DON and <0.01 mg ZEN/kg diet), CON+ (diet CON?, wet-preserved with 5 g SoS/kg maize; containing 0.05 mg DON and <0.01 mg ZEN/kg diet), FUS? (diet with mycotoxin-contaminated maize; containing 5.36 mg DON and 0.29 mg ZEN/kg diet), and FUS+ (diet FUS?, wet-preserved with 5 g SoS/kg maize; resulting in 0.83 mg DON and 0.27 mg ZEN/kg diet). After 42 d, 40 piglets (n = 10 per group) were sampled. A clear reduction of DON levels by approximately 75% was detected in all specimens of pigs fed diet FUS+. ZEN was detected in all urine, bile and liquor samples, while their metabolites were only detectable in urine and bile. Additionally, their concentrations were not influenced by SoS treatment. Among the health-related traits, feeding of FUS diets increased the total counts of leukocytes and segmented neutrophil granulocytes irrespective of SoS treatment. SoS treatment increased the total blood protein content slightly with a similar numerical trend in albumin concentration. These effects occurred at an obviously lower level in FUS-fed groups. Moreover, SoS treatment recovered the reduction of NO production induced by feeding diet FUS? indicating an effect on the redox level. As this effect only occurred in group FUS+, it is obviously related to the adverse effects of the Fusarium toxins. In conclusion, treatment of FUS-contaminated maize with SoS decreased the inner exposure with DON as indicated by the lower DON levels in various piglet specimens. However, health-related traits did not consistently reflect this decreased exposure.  相似文献   

4.
The high spatial variability of soil respiration in tropical rainforests is well evaluated, but influences of biotic factors are not clearly understood. This study underlines the influence of tree species characteristics on soil respiration across a 16-monospecific plot design in a tropical plantation of French Guiana. A large variability of soil CO2 fluxes was observed among plots (i.e. 2.8 to 6.8 μmol m?2 s?1) with the ranking being constant across seasons. There were no significant relationships between soil respiration and soil moisture or soil temperature, neither spatially, nor seasonally. The variability of soil respiration was mainly explained by quantitative factors such as leaf litterfall and basal area. Surprisingly, no significant relationship was observed between soil respiration and root biomass. However, the influence of substrate quality was revealed by a strong relationship between soil respiration and litterfall P (and litterfall N, to a lesser extent).  相似文献   

5.
“Melanopus” is an unranked infrageneric group within Polyporus, a genus comprising wood-decaying homobasidiomycetes. This study compiles new information on the mating systems, phylogeny, and geographic distribution of the group. We report tetrapolar mating systems in “Melanopus,” as well as in the more distantly related Polyporus umbellatus. “Melanopus” is addressed using internal transcribed spacer (ITS) rDNA sequence data, comparing resolving power of several phylogenetic methods and depths of sequence information, including recoded secondary structure data informed by the primary sequence data. The latter, inferred structure of the ITS2 rRNA was insufficient in phylogenetic reconstruction on its own. Intercollection compatibility studies showed Polyporus varius collections from both sides of the Atlantic to be intercompatible, the same was found for Polyporus tubaeformis collections from California and Scotland. Molecular analysis supports P. tubaeformis conspecifity of Scottish and Californian collections with a Norwegian collection. Several other herbarium specimens inaccessible to successful PCR and sequencing were redetermined as P. tubaeformis by morphological characters. This improved on the current knowledge of distribution of the species, tentatively adding Idaho, North Carolina, and Germany’s Mecklenburg-Western Pomerania.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

6.
We studied whether the differences between genetically different pollen donors (Betula pendula Roth clones) with respect to pollen-tube growth rate were consistent under different thermal conditions during pollen germination in vivo and in vitro. We conducted a single-donor hand-pollination experiment with same pollen donors and recipients in a plastic house seed orchard and at an outdoor clone collection. The prevailing daily mean temperature during pollen germination was 13°C higher in the plastic house than outdoors. The pollen-tube growth rate of each pollen donor was additionally determined in vitro on agar medium at five temperatures (10°, 15°, 22°, 30° and 35°C). A significant interaction between paternal clone and pollination site as well as between paternal clone and temperature was found, which provides evidence for genotype-environment interactions. Genotype-environment interactions can have evolutionary significance in maintaining the variation in pollen-tube growth rates. At seed orchards, genotype-environment interactions can cause deviations from the expected genetic composition of the seed crop depending on the prevailing environmental conditions during pollen-tube growth. Received: 24 September 1999 / Accepted: 29 September 1999  相似文献   

7.
The paradigm that tropical trees with farther seed dispersal experience lower offspring mortality is currently based on within-species studies documenting higher survival of offspring located farther from conspecific adults and/or closer to light gaps. We determined whether the paradigm also holds among species by comparing spatial patterns of offspring mortality among three sympatric Neotropical rainforest tree species with the same seed dispersers but with different dispersal abilities. First, we assessed spatially non-random mortality for each species by measuring spatial shifts of the population recruitment curve (PRC) with respect to conspecific adults and light gaps across three early life stages: dispersed seeds, young seedlings and old seedlings. Then, we determined whether PRC shifts were greater for the species with short dispersal distances than for the species with greater dispersal distances. We found that the PRC shifted away from conspecific adults consistently across life stages, but we found no consistent PRC shifts towards gaps, suggesting that mortality was related more to the proximity of conspecifics than to absence of light gaps. PRC shifts away from adults were greatest in the species with the lowest dispersal ability, supporting the paradigm. Differential PRC shifts caused the spatial distribution of offspring to become almost independent with respect to adult trees and gaps in all three species, despite large differences in seed dispersal distance among these species. Our results provide direct empirical support for the paradigm that among tropical trees, species with farther seed dispersal are less impacted by spatially non-random mortality than are similar species with shorter dispersal distances. Thus, greater dispersal effectiveness merits extra investments of trees in seed dispersal ability, even at the cost of fecundity.  相似文献   

8.
Forest ground heterogeneity can affect interactions among tree species and control the assembly of local forest communities. Less is known of the effects of spatial heterogeneity on the maintenance of tree genetic variation through small-scale genotype × environment (G × E) interactions. We measured growth variation within and among 17 Betula pendula genotypes, planted in a clear-cut forest site through the summers 2009–2011. We assessed the spatial heterogeneity at two scales: among forest stands having history of the same or different tree species combinations (treated as replicate blocks), and along a gradient of within-block forest density, revealed by the stump density. To add a temporal perspective, we distinguished between old (cut 50 years earlier) and new stumps (cut one year earlier). The broad-sense heritabilities for growth were 0.093–0.055 and the coefficients of genotypic variation 0.37–0.21 in 2009–2011. The growth difference among the genotypes was 3.5–5.5 fold, significant in all years, and the rank of genotype means correlated positively between the years. The most favourable block had 106 % higher growth than the least favourable block and the amount of total variation explained by block increased from 0.4 % in 2009 to 6.9 % in 2011. Genotype × block interaction was marginally significant in 2009, but not later. Similarly, the response of growth to old stump density in sapling vicinity varied among the genotypes in 2009, but not later. In 2010 and 2011, the mean growth increased by 50–91 % along the old stump density gradient. Our results suggest that despite creating significant variation in sapling growth the small-scale forest ground heterogeneity, which reflects the recent forest history, may not significantly contribute to the maintenance of genetic variation in B. pendula populations.  相似文献   

9.
10.
Fruit syndrome found in zoochorous plants is regarded as a result of hypothetical coevolution with a seed disperser/predator. Fruiting phenology was compared among two representative syndromes, such as bird–monkey syndrome (BM) and ruminant–rodent–elephant syndrome (RRE), plus the gravity dispersal species for comparison, in south-western Cameroon in order to examine which biotic or abiotic factors educed syndrome variation. The individual size of selected plants (> 1.6 m in height) was recorded in a 16.95-ha area for recruitment estimation and their fruiting behaviour was checked for 9 months from June 1985 to February 1986. The BM species, a suggested successful group, fruited in a less synchronous manner within species and had fruiting peaks just before and during the rainy season. The RRE species, a suggested failing group, showed greater variation within syndrome in fruiting timing, duration and synchronization. Results obtained supported no clear phenological response to corresponding vertebrates except for the case of Sacoglottis gabonensis in the RRE. The reason for concealing potential responses is probably a result of conflicting requirements for seed dispersal and offspring survival. Periodical fruiting of the BM is likely to reflect ecological constraint, such as water stress on seedlings, caused from syndrome-specific morphological limitation. In this case, the animals have indirect effects on fruiting phenology through selecting syndrome-specific fruit morphology. The greater variation of the RRE suggests a broad spectrum of dispersal tactics from faithful zoochory to alternatives, with a trade off between agent restriction and seed size and another trade off between parental investment and seed-predation risk.  相似文献   

11.
India is predominantly an agricultural country with about 70% of her population dependent on income from agriculture. Although India accounts for a significant share of world’s livestock resources, livestock production is greatly affected by ticks and tick-borne diseases (TTBDs). Therefore, India represents a particularly interesting scenario for the study of TTBDs. Herein, we review the problems and opportunities for the integrated control of ticks of ruminants with special emphasis on livestock farming systems in India. Developments discussed in the review in the area of tick vaccines and other tick control measures should have an impact on the future of Indian livestock production.  相似文献   

12.
Leucaena leucocephala is a fast growing multipurpose legume tree used for forage, leaf manure, paper and pulp. Lignin in Leucaena pulp adversely influences the quality of paper produced. Developing transgenic Leucaena with altered lignin by genetic engineering demands an optimized regeneration system. The present study deals with optimization of regeneration system for L. leucocephala cv. K636. Multiple shoot induction from the cotyledonary nodes of L. leucocephala was studied in response to cytokinins, thidiazuron (TDZ) and N6-benzyladenine (BA) supplemented in half strength MS (½-MS) medium and also their effect on in vitro rooting of the regenerated shoots. Multiple shoots were induced from cotyledonary nodes at varied frequencies depending on the type and concentration of cytokinin used in the medium. TDZ was found to induce more number of shoots per explant than BA, with a maximum of 7 shoots at an optimum concentration of 0.23 µM. Further increase in TDZ concentration resulted in reduced shoot length and fasciation of the shoots. Liquid pulse treatment of the explants with TDZ did not improve the shoot production further but improved the subsequent rooting of the shoots that regenerated. Regenerated shoots successfully rooted on ½-MS medium supplemented with 0.54 µM α-naphthaleneacetic acid (NAA). Rooted shoots of Leucaena were transferred to coco-peat and hardened plantlets showed ≥ 90 % establishment in the green house.Key words: Cotyledonary nodes, Multiple shoot induction, Pulse treatment, TDZ  相似文献   

13.
Nannipieri  P.  Falchini  L.  Landi  L.  Benedetti  A.  Canali  S.  Tittarelli  F.  Ferri  D.  Convertini  G.  Badalucco  L.  Grego  S.  Vittori-Antisari  L.  Raglione  M.  Barraclough  D. 《Plant and Soil》1999,208(1):43-56
The N uptake by crops, soil distribution and recovery of 15N labelled urea-N (100 kg N ha-1) were investigated in a sorghum-wheat rotation in two silty clay soils (Foggia and Rieti Casabianca) and one silt loam soil (Rieti Piedifiume) under different mediterranean conditions. Non-exchangeable labelled NH4-N represented an important pool at both Rieti sites with higher values (p<0.05) under sorghum (14.0 and 24.6% of the urea N in the 0-20 cm layer at the end of the cropping season) than wheat whereas it was much less important in the Foggia soil (10.0% in the surface soil under sorghum). This is probably related to the clay minerals composition of the three soils; because vermiculite was present in both Rieti sites but not in the Foggia soil. At harvest from 4.4 to 5.3% of the urea N initially applied was present as microbial biomass N in the surface soil layer with no generally significant differences due to location and type of crops. Both sorghum and wheat N yields were higher in the driest site (Foggia) probably due to better light conditions, higher temperatures and irrigation during summer of the sorghum cropping period. The recovery of plant fertilizer N (about 21% for sorghum and 27% for wheat) and the percentage of N in the plant derived from the fertilizer (NDFF) were the lowest at Rieti-Casabianca probably as the result of the protection of immobilized fertilizer N against microbial mineralization by the swelling clays. The fertilizer N unaccounted for was nil or very low (10.8% at Rieti-Casabianca under wheat and 11.8 and 4.9% at Rieti-Piedifiume under sorghum and wheat, respectively). Urea-N losses occurred when Rieti Piedifiume and Rieti Casabianca soils were kept bare. In this case the urea N unaccounted for ranged from 12 to 56% of the urea N with higher losses in Rieti-Piedifiume than in Rieti-Casabianca. The higher recoveries in the latter soil were probably confirmed by the stabilizing effect of clays on the immobilized urea N. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Summary The growth of potted birch cuttings (one clone of Betula pendula) was studied under low O3 concentrations (0, 0.050, 0.075, 0.100 l l-1) throughout an entire growing season. With increasing O3 dose, 20–50% of all leaves formed were prematurely shed, while 40–70% of the remaining foliage displayed advanced discoloration by the end of the season. Ozonation affected the S, P and N concentration of leaves and increased 13C in leaves and stem, while the CO2 assimilation rate declined with increasing CO2 concentration in mesophyll intercellulars. While whole-plant production correlated negatively with the O3 dose, ozone increased the specific leaf weight (i.e. leaf weight/leaf area, SLW) but decreased the ratios of stem weight/stem length and root/shoot biomass. Neither the latter ratio nor SLW changed in experimentally defoliated control plants, whereas in ozonated plants starch accumulated along leaf veins and phloem tissue was deformed in the leaf petioles and the stem. Only in early summer was the relative growth rate higher in the ozonated than in the control plants. The ratio of whole-plant biomass production versus total foliage area formed was lowered under O3 stress. However, when relating biomass to the actual foliage area present due to leaf loss, this ratio did not differ between treatments. Similarly the ratio of actual foliage area versus basal stem area in cross-section did not differ. Overall, whole-plant production was strongly determined by O3-caused changes in crown structure and began to be limited at O3 doses (approximately 180 l l-1 h) similar to those of rural sites in Central Europe.  相似文献   

15.
Nakamura T  Nakamura M 《Oecologia》2012,168(4):913-921
Although the productivity and nitrogen (N)-use traits of mire plants differ dramatically between fens and bogs, soil N richness does not necessarily differ, whereas the soil–water pH is distinctly lower in bogs than in fens. The ecophysiological mechanisms underlying these relations are unclear. To assess the relative availability of N forms in relation to soil–water pH, we focused on the net N uptake rate per unit root weight (NNUR), glutamine synthetase activity and nitrate reductase activity, and performed reciprocal transplant experiments with the seedlings of fen (Carex lyngbyei) and bog (C. middendorffii) sedge species in intact habitat sites. The soil–water pH was clearly lower at the bog site, but the NH4 +, NO3 or dissolved organic-N concentrations did not differ between the fen and bog sites. The activity of both enzymes for inorganic-N assimilation did not differ among the sites and species. However, the fen species grown at bog sites showed a drastic decrease in the NNUR, suggesting a suppression of organic-N uptake. The bog species showed no NNUR difference between the sites. These results indicate that inorganic-N availability does not differ between the two habitats, but organic-N availability is lowered in a low-pH bog, particularly in the case of fen species. Therefore, the relative availability of N forms shows species-specific variations that depend on the differences in the soil–water pH of root zone, even at similar N richness, which would play a key role in plant distribution strategies in relation to the fen-bog gradient.  相似文献   

16.
The dark ocean and the underlying deep seafloor together represent the largest environment on this planet, comprising about 80% of the oceanic volume and covering more than two-thirds of the Earth's surface, as well as hosting a major part of the total biosphere. Emerging evidence suggests that these vast pelagic and benthic habitats play a major role in ocean biogeochemistry and represent an “untapped reservoir” of high genetic and metabolic microbial diversity. Due to its huge volume, the water column of the dark ocean is the largest reservoir of organic carbon in the biosphere and likely plays a major role in the global carbon budget. The dark ocean and the seafloor beneath it are also home to a largely enigmatic food web comprising little-known and sometimes spectacular organisms, mainly prokaryotes and protists. This review considers the globally important role of pelagic and benthic protists across all protistan size classes in the deep-sea realm, with a focus on their taxonomy, diversity, and physiological properties, including their role in deep microbial food webs. We argue that, given the important contribution that protists must make to deep-sea biodiversity and ecosystem processes, they should not be overlooked in biological studies of the deep ocean.  相似文献   

17.
The effects of two grazer species (cattle or sheep) and two flock types (single or mixed with goats) on vegetation and arthropod fauna were studied in a factorial design on eight plots which comprised two thirds of mechanically cleared heathland and one third of improved ryegrass-clover grassland. After six grazing seasons, the shrubland areas were dominated by gorse (Ulex gallii) in all treatments. Herbaceous cover was higher under mixed than under single grazing, and under sheep than under cattle grazing. Higher captures of Opiliones, Julida, Lithobiomorpha, Microcoryphia and Carabidae were recorded in shrublands than in grasslands, while the reverse was observed for Linyphiidae, Lycosidae and Hemiptera. Within shrublands, fauna responded to the flock type but not to the grazer species. More arthropod groups favoured the patchier areas with higher herbaceous biomass generated by mixed herds with goats. Within grasslands, species-specific responses to the grazer species were observed. Mixed grazing schemes which include goats within partially improved heathlands could contribute to maintain higher biodiversity levels in these marginal areas.  相似文献   

18.
Body size is central to ecology at levels ranging from organismal fecundity to the functioning of communities and ecosystems. Understanding temperature-induced variations in body size is therefore of fundamental and applied interest, yet thermal responses of body size remain poorly understood. Temperature–size (T–S) responses tend to be negative (e.g. smaller body size at maturity when reared under warmer conditions), which has been termed the temperature–size rule (TSR). Explanations emphasize either physiological mechanisms (e.g. limitation of oxygen or other resources and temperature-dependent resource allocation) or the adaptive value of either a large body size (e.g. to increase fecundity) or a short development time (e.g. in response to increased mortality in warm conditions). Oxygen limitation could act as a proximate factor, but we suggest it more likely constitutes a selective pressure to reduce body size in the warm: risks of oxygen limitation will be reduced as a consequence of evolution eliminating genotypes more prone to oxygen limitation. Thus, T–S responses can be explained by the ‘Ghost of Oxygen-limitation Past’, whereby the resulting (evolved) T–S responses safeguard sufficient oxygen provisioning under warmer conditions, reflecting the balance between oxygen supply and demands experienced by ancestors. T–S responses vary considerably across species, but some of this variation is predictable. Body-size reductions with warming are stronger in aquatic taxa than in terrestrial taxa. We discuss whether larger aquatic taxa may especially face greater risks of oxygen limitation as they grow, which may be manifested at the cellular level, the level of the gills and the whole-organism level. In contrast to aquatic species, terrestrial ectotherms may be less prone to oxygen limitation and prioritize early maturity over large size, likely because overwintering is more challenging, with concomitant stronger end-of season time constraints. Mechanisms related to time constraints and oxygen limitation are not mutually exclusive explanations for the TSR. Rather, these and other mechanisms may operate in tandem. But their relative importance may vary depending on the ecology and physiology of the species in question, explaining not only the general tendency of negative T–S responses but also variation in T–S responses among animals differing in mode of respiration (e.g. water breathers versus air breathers), genome size, voltinism and thermally associated behaviour (e.g. heliotherms).  相似文献   

19.
We investigated the factors determining the distribution and dynamics of tree species in a warm–temperate mature mixed forest of evergreen coniferous and broad-leaved tree species in a steep mountainous area for 13 years in southwest Japan, with particular focus on instability of the ground surface. Among various site conditions, landform unit was the principal factor determining the distribution of tree species, while moisture regime was the second-most important factor within the upper area. The amount of movement of sediment and litter on the ground surface in the lower area was much higher than movement within the upper area, indicating that the lower area was unstable due to mass movement caused by erosion. The effects of instability of the ground surface on mortality and recruitment varied across the dominant tree species. Symplocos prunifolia (SYMPLOCACEAE), which was distributed in the upper area, and Machilus japonica, which was distributed in the lower area, exhibited lower mortality and higher recruitment in the areas where they were mainly distributed. These results suggest that topographic niche differentiation caused habitat segregation for some species. However, for most species, such relationships were not consistently observed, and growth rates did not significantly differ between the upper and lower areas. This study, by using long-term data, demonstrates that variation in sensitivity to stability due to topography contributes to local species richness and co-existence.  相似文献   

20.
Mounting evidence suggests that climate change will cause shifts of tree species range and abundance (biomass). Abundance changes under climate change are likely to occur prior to a detectable range shift. Disturbances are expected to directly affect tree species abundance and composition, and could profoundly influence tree species spatial distribution within a geographical region. However, how multiple disturbance regimes will interact with changing climate to alter the spatial distribution of species abundance remains unclear. We simulated such forest demographic processes using a forest landscape succession and disturbance model (LANDIS-II) parameterized with forest inventory data in the northeastern United States. Our study incorporated climate change under a high-emission future and disturbance regimes varying with gradients of intensities and spatial extents. The results suggest that disturbances catalyze changes in tree species abundance and composition under a changing climate, but the effects of disturbances differ by intensity and extent. Moderate disturbances and large extent disturbances have limited effects, while high-intensity disturbances accelerate changes by removing cohorts of mid- and late-successional species, creating opportunities for early-successional species. High-intensity disturbances result in the northern movement of early-successional species and the southern movement of late-successional species abundances. Our study is among the first to systematically investigate how disturbance extent and intensity interact to determine the spatial distribution of changes in species abundance and forest composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号