首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dendritic cells (DCs) are among the first cells encountered by human and simian immunodeficiency virus (HIV and SIV) following mucosal infection. Because these cells efficiently capture and transmit virus to T cells, they may play a major role in mediating HIV and SIV infection. Recently, a C-type lectin protein present on DCs, DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), was shown to efficiently bind and present HIV and SIV to CD4(+), coreceptor-positive cells in trans. However, the significance of DC-SIGN for virus transmission and pathogenesis in vivo remains unclear. Because SIV infection of macaques may represent the best model to study the importance of DC-SIGN in HIV infection, we cloned and characterized pig-tailed macaque DC-SIGN and generated monoclonal antibodies (MAbs) against it. We demonstrate that, like human DC-SIGN, pig-tailed macaque DC-SIGN (ptDC-SIGN) is expressed on DCs and macrophages but not on monocytes, T cells, or B cells. Moderate levels of ptDC-SIGN expression were detected on the surface of DCs, and low-level expression was found on macrophages. Additionally, we show that ptDC-SIGN efficiently binds and transmits replication-competent SIVmne variants to CD4(+), coreceptor-positive cells. Moreover, transmission of virus between pig-tailed macaque DCs and CD4(+) T cells is largely ptDC-SIGN dependent. Interestingly, MAbs directed against ptDC-SIGN vary in the capacity to block transmission of different SIVmne variants. These data demonstrate that ptDC-SIGN plays a central role in transmitting virus from macaque DCs to T cells, and they suggest that SIVmne variants may differ in their interactions with ptDC-SIGN. Thus, SIVmne infection of pig-tailed macaques may provide an opportunity to investigate the significance of DC-SIGN in primate lentiviral infections.  相似文献   

2.
Transfusion of blood from a simian immunodeficiency virus (SIV)- and simian T-cell lymphotropic virus-infected sooty mangabey (designated FGb) to rhesus and pig-tailed macaques resulted in the development of neurologic disease in addition to AIDS. To investigate the role of SIV in neurologic disease, virus was isolated from a lymph node of a pig-tailed macaque (designated PGm) and the cerebrospinal fluid of a rhesus macaque (designated ROn2) and passaged to additional macaques. SIV-related neuropathogenic effects were observed in 100% of the pig-tailed macaques inoculated with either virus. Lesions in these animals included extensive formation of SIV RNA-positive giant cells in the brain parenchyma and meninges. Based upon morphology, the majority of infected cells in both lymphoid and brain tissue appeared to be of macrophage lineage. The virus isolates replicated very well in pig-tailed and rhesus macaque peripheral blood mononuclear cells (PBMC) with rapid kinetics. Differential replicative abilities were observed in both PBMC and macrophage populations, with viruses growing to higher titers in pig-tailed macaque cells than in rhesus macaque cells. An infectious molecular clone of virus derived from the isolate from macaque PGm (PGm5.3) was generated and was shown to have in vitro replication characteristics similar to those of the uncloned virus stock. While molecular analyses of this virus revealed its similarity to SIV isolates from sooty mangabeys, significant amino acid differences in Env and Nef were observed. This virus should provide an excellent system for investigating the mechanism of lentivirus-induced neurologic disease.  相似文献   

3.
Among Old World monkeys, pig-tailed macaques (Pt) are uniquely susceptible to human immunodeficiency virus type 1 (HIV-1), although the infection does not persist. We demonstrate that the susceptibility of Pt T cells to HIV-1 infection is due to the absence of postentry inhibition by a TRIM5 isoform. Notably, substitution of the viral infectivity factor protein, Vif, with that from pathogenic SIVmne enabled replication of HIV-1 in Pt T cells in vitro. When inoculated into juvenile pig-tailed macaques, the Pt-tropic HIV-1 persistently replicated for more than 1.5 to 2 years, producing low but measurable plasma viral loads and persistent proviral DNA in peripheral blood mononuclear cells. It also elicited strong antibody responses. However, there was no decline in CD4(+) T cells or evidence of disease. Surprisingly, the Pt-tropic HIV-1 was rapidly controlled when inoculated into newborn Pt macaques, although it transiently rebounded after 6 months. We identified two notable differences between the Pt-tropic HIV-1 and SIVmne. First, SIV Vif does not associate with Pt-tropic HIV-1 viral particles. Second, while Pt-tropic HIV-1 degrades both Pt APOBEC3G and APOBEC3F, it prevents their inclusion in virions to a lesser extent than pathogenic SIVmne. Thus, while SIV Vif is necessary for persistent infection by Pt-tropic HIV-1, improved expression and inhibition of APOBEC3 proteins may be required for robust viral replication in vivo. Additional adaptation of the virus may also be necessary to enhance viral replication. Nevertheless, our data suggest the potential for the pig-tailed macaque to be developed as an animal model of HIV-1 infection and disease.  相似文献   

4.
5.
A primate lymphotropic lentivirus was isolated on the human T-cell line HuT 78 after cocultivation of a lymph node from a pig-tailed macaque (Macaca nemestrina) that had died with malignant lymphoma. This isolate, originally designated M. nemestrina immunodeficiency virus (MnIV) and now classified as simian immunodeficiency virus (SIV/Mne), was inoculated intravenously into three juvenile rhesus monkeys (Macaca mulatta), three juvenile pig-tailed macaques (M. nemestrina), and two juvenile baboons (Papio cynocephalus). All six macaques became viremic by 3 weeks after inoculation, whereas neither of the baboons developed viremia. One pig-tailed macaque died at 15 weeks with suppurative peritonitis secondary to ulcerative, necrotizing colitis. Immunologic abnormalities included a marked decrease in CD4+ peripheral blood lymphocytes. Although five macaques mounted an antibody response to SIV/Mne, the animal that died at 15 weeks remained antibody negative. Three other macaques (two rhesus and one pig-tailed) died 66 to 87 weeks after inoculation after exhibiting progressive weight loss, anemia, and diarrhea. Histopathologic findings at necropsy included various manifestations of immune deficiency, nephropathy, subacute encephalitis, pancreatitis, adenocarcinoma, and lymphoid atrophy. SIV/Mne could be readily isolated from the spleens and lymph nodes of all necropsied macaques, and from the cerebrospinal fluid, brains, bone marrow, livers, and pancreas of some of the animals. SIV antigens were localized by avidin-biotin immunohistochemistry to pancreatic islet cells and to bone marrow endothelial cells. The data suggest that African baboons may be resistant to infection by SIV/Mne, whereas Asian macaques are susceptible to infection with this pathogenic primate lentivirus.  相似文献   

6.
Previous studies with simian immunodeficiency virus (SIV) infection of rhesus macaques suggested that the intrinsic susceptibility of peripheral blood mononuclear cells (PBMC) to infection with SIV in vitro was predictive of relative viremia after SIV challenge. The present study was conducted to evaluate this parameter in a well-characterized cohort of six rhesus macaques selected for marked differences in susceptibility to SIV infection in vitro. Rank order relative susceptibility of PBMC to SIVsmE543-3-infection in vitro was maintained over a 1-year period of evaluation. Differential susceptibility of different donors was maintained in CD8(+) T-cell-depleted PBMC, macrophages, and CD4(+) T-cell lines derived by transformation of PBMC with herpesvirus saimiri, suggesting that this phenomenon is an intrinsic property of CD4(+) target cells. Following intravenous infection of these macaques with SIVsmE543-3, we observed a wide range in plasma viremia which followed the same rank order as the relative susceptibility established by in vitro studies. A significant correlation was observed between plasma viremia at 2 and 8 weeks postinoculation and in vitro susceptibility (P < 0.05). The observation that the two most susceptible macaques were seropositive for simian T-lymphotropic virus type 1 may suggests a role for this viral infection in enhancing susceptibility to SIV infection in vitro and in vivo. In summary, intrinsic susceptibility of CD4(+) target cells appears to be an important factor influencing early virus replication patterns in vivo that should be considered in the design and interpretation of vaccine studies using the SIV/macaque model.  相似文献   

7.
An infectious molecular clone of simian immunodeficiency virus SIVsm was derived from a biological isolate obtained late in disease from an immunodeficient rhesus macaque (E543) with SIV-induced encephalitis. The molecularly cloned virus, SIVsmE543-3, replicated well in macaque peripheral blood mononuclear cells and monocyte-derived macrophages and resisted neutralization by heterologous sera which broadly neutralized genetically diverse SIV variants in vitro. SIVsmE543-3 was infectious and induced AIDS when inoculated intravenously into pig-tailed macaques (Macaca nemestrina). Two of four infected macaques developed no measurable SIV-specific antibody and succumbed to a wasting syndrome and SIV-induced meningoencephalitis by 14 and 33 weeks postinfection. The other two macaques developed antibodies reactive in Western blot and virus neutralization assays. One macaque was sacrificed at 1 year postinoculation, and the survivor has evidence of immunodeficiency, characterized by persistently low CD4 lymphocyte subsets in the peripheral blood. Plasma samples from these latter animals neutralized SIVsmE543-3 but with much lower efficiency than neutralization of other related SIV strains, confirming the difficulty by which this molecularly cloned virus is neutralized in vitro. SIVsmE543-3 will provide a valuable reagent for studying SIV-induced encephalitis, mapping determinants of neutralization, and determining the in vivo significance of resistance to neutralization in vitro.  相似文献   

8.
During human immunodeficiency virus type 1 (HIV-1) infection, disease progression correlates with the occurrence of variants using the coreceptor CXCR4 for cell entry. In contrast, apathogenic simian immunodeficiency virus (SIV) from African green monkeys (SIVagm), specifically the molecular virus clone SIVagm3mc, uses CCR5, Bob, and Bonzo as coreceptors throughout the course of infection. The influence of an altered coreceptor usage on SIVagm3mc replication was studied in vitro and in vivo. The putative coreceptor binding domain, the V3 region of the surface envelope (SU) glycoprotein, was replaced by the V3 loop of a CD4- and CXCR4-tropic HIV-1 strain. The resulting virus, termed SIVagm3-X4mc, exclusively used CD4 and CXCR4 for cell entry. Consequently, its in vitro replication was inhibited by SDF-1, the natural ligand of CXCR4. Surprisingly, SIVagm3-X4mc was able to replicate in vitro not only in interleukin-2- and phytohemagglutinin-stimulated but also in nonstimulated peripheral blood mononuclear cells (PBMCs) from nonhuman primates. After experimental infection of two pig-tailed macaques with either SIVagm3-X4mc or SIVagm3mc, the coreceptor usage was maintained during in vivo replication. Cell-associated and plasma viral loads, as well as viral DNA copy numbers, were found to be comparable between SIVagm3mc and SIVagm 3-X4mc infections, and no pathological changes were observed up to 14 months postinfection. Interestingly, the V3 loop exchange rendered SIVagm3-X4mc susceptible to neutralizing antibodies present in the sera of SIVagm3-X4mc- and SIVagm3mc-infected pig-tailed macaques. Our study describes for the first time a successful exchange of a V3 loop in nonpathogenic SIVagm resulting in CD4 and CXCR4 usage and modulation of virus replication in nonstimulated PBMCs as well as sensitivity toward neutralization.  相似文献   

9.
The recognition of naturally occurring rhadinoviruses in macaque monkeys has spurred interest in their use as models for human infection with Kaposi sarcoma-associated herpesvirus (human herpesvirus 8). Rhesus macaques (Macaca mulatta) and pig-tailed macaques (Macaca nemestrina) were inoculated intravenously with rhadinovirus isolates derived from these species (rhesus rhadinovirus [RRV] and pig-tailed rhadinovirus [PRV]). Nine rhadinovirus antibody-negative and two rhadinovirus antibody-positive monkeys were used for these experimental inoculations. Antibody-negative animals clearly became infected following virus inoculation since they developed persisting antibody responses to virus and virus was isolated from peripheral blood on repeated occasions following inoculation. Viral sequences were also detected by PCR in lymph node, oral mucosa, skin, and peripheral blood mononuclear cells following inoculation. Experimentally infected animals developed peripheral lymphadenopathy which resolved by 12 weeks following inoculation, and these animals have subsequently remained free of disease. No increased pathogenicity was apparent from cross-species infection, i.e., inoculation of rhesus macaques with PRV or of pig-tailed macaques with RRV, whether the animals were antibody positive or negative at the time of virus inoculation. Coinoculation of additional rhesus monkeys with simian immunodeficiency virus (SIV) isolate SIVmac251 and macaque-derived rhadinovirus resulted in an attenuated antibody response to both agents and shorter mean survival compared to SIVmac251-inoculated controls (155.5 days versus 560.1 days; P < 0.019). Coinfected and immunodeficient macaques died of a variety of opportunistic infections characteristic of simian AIDS. PCR analysis of sorted peripheral blood mononuclear cells indicated a preferential tropism of RRV for CD20(+) B lymphocytes. Our results demonstrate persistent infection of macaque monkeys with RRV and PRV following experimental inoculation, but no specific disease was readily apparent from these infections even in the context of concurrent SIV infection.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) subtype C is responsible for more than 56% of all infections in the HIV and AIDS pandemic. It is the predominant subtype in the rapidly expanding epidemic in southern Africa. To develop a relevant model that would facilitate studies of transmission, pathogenesis, and vaccine development for this subtype, we generated SHIV(MJ4), a simian/human immunodeficiency virus (SHIV) chimera based on HIV-1 subtype C. SHIV(MJ4) contains the majority of env, the entire second exon of tat, and a partial sequence of the second exon of rev, all derived from a CCR5-tropic, primary isolate envelope clone from southern Africa. SHIV(MJ4) replicated efficiently in human, rhesus, and pig-tailed macaque peripheral blood mononuclear cells (PBMCs) in vitro but not in CEMx174 cells. To assess in vivo infectivity, SHIV(MJ4) was intravenously inoculated into four rhesus macaques (Macaca mulatta). All four animals became infected as determined through virus isolation, PCR analysis, and viral loads of 10(7) to 10(8) copies of viral RNA per ml of plasma during the primary infection phase. We have established a CCR5-tropic SHIV(MJ4)/rhesus macaque model that may be useful in the studies of HIV-1 subtype C immunology and biology and may also facilitate the evaluation of vaccines to control the spread of HIV-1 subtype C in southern Africa and elsewhere.  相似文献   

11.
The relevance of simian/human immunodeficiency virus (SHIV) infection of macaques to HIV-1 infection in humans depends on how closely SHIVs mimic HIV-1 transmission, pathogenesis, and diversity. Circulating HIV-1 strains are predominantly subtypes C and A and overwhelmingly require CCR5 for entry, yet most SHIVs incorporate CXCR4-using subtype B envelopes (Envs). While pathogenic subtype C-based SHIVs have been constructed, the subtype A-based SHIVs (SHIV-As) constructed to date have been unable to replicate in macaque cells. To understand the barriers to SHIV-A replication in macaque cells, HIVA(Q23)/SIV(vif) was constructed by engineering a CCR5-tropic subtype A provirus to express SIV vif, which counters the macaque APOBEC3G restriction. HIVA(Q23)/SIV(vif) replicated poorly in pig-tailed macaque (Ptm) lymphocytes, but viruses were adapted to Ptm lymphocytes. Two independent mutations in gp120, G312V (V3 loop) and A204E (C2 region), were identified that increased peak virus levels by >100-fold. Introduction of G312V and A204E to multiple subtype A Envs and substitution of G312 and A204 with other residues increased entry into Ptm cells by 10- to 100-fold. G312V and A204E Env variants continued to require CCR5 for entry but were up to 50- and 200-fold more sensitive to neutralization by IgG1b12 and soluble CD4 and had a 5- to 50-fold increase in their ability to utilize Ptm CD4 compared to their wild-type counterparts. These findings identify the inefficient use of Ptm CD4 as an unappreciated restriction to subtype A HIV-1 replication in Ptm cells and reveal amino acid changes to gp120 that can overcome this barrier.  相似文献   

12.
Chemokines presented on endothelial tissues instantaneously trigger LFA-1-mediated arrest on ICAM-1 via rapid inside-out and outside-in (ligand-driven) LFA-1 activation. The GTPase RhoA was previously implicated in CCL21-triggered LFA-1 affinity triggering in murine T lymphocytes and in LFA-1-dependent adhesion strengthening to ICAM-1 on Peyer's patch high endothelial venules stabilized over periods of at least 10 s. In this study, we show that a specific RhoA 23/40 effector region is vital for the initial LFA-1-dependent adhesions of lymphocytes on high endothelial venules lasting 1-3 s. Blocking the RhoA 23/40 region in human T lymphocytes in vitro also impaired the subsecond CXCL12-triggered LFA-1-mediated T cell arrest on ICAM-1 by eliminating the rapid induction of an extended LFA-1 conformational state. However, the inflammatory chemokine CXCL9 triggered robust LFA-1-mediated T lymphocyte adhesion to ICAM-1 at subsecond contacts independently of the RhoA 23/40 region. CXCL9 did not induce conformational changes in the LFA-1 ectodomain, suggesting that particular chemokines can activate LFA-1 through outside-in post ligand binding stabilization changes. Like CXCL9, the potent diacylglycerol-dependent protein kinase C agonist PMA was found to trigger LFA-1 adhesiveness to ICAM-1 also without inducing integrin extension or an a priori clustering and independently of the RhoA 23/40 region. Our results collectively suggest that the 23/40 region of RhoA regulates chemokine-induced inside-out LFA-1 extension before ligand binding, but is not required for a variety of chemokine and non-chemokine signals that rapidly strengthen LFA-1-ICAM-1 bonds without an a priori induction of high-affinity extended LFA-1 conformations.  相似文献   

13.
Chen Z  Huang Y  Zhao X  Skulsky E  Lin D  Ip J  Gettie A  Ho DD 《Journal of virology》2000,74(14):6501-6510
The increasing prevalence of human immunodeficiency virus type 1 (HIV-1) subtype C infection worldwide calls for efforts to develop a relevant animal model for evaluating strategies against the transmission of the virus. A chimeric simian/human immunodeficiency virus (SHIV), SHIV(CHN19), was generated with a primary, non-syncytium-inducing HIV-1 subtype C envelope from a Chinese strain in the background of SHIV(33). Unlike R5-tropic SHIV(162), SHIV(CHN19) was not found to replicate in rhesus CD4(+) T lymphocytes. SHIV(CHN19) does, however, replicate in CD4(+) T lymphocytes of pig-tailed macaques (Macaca nemestrina). The observed replication competence of SHIV(CHN19) requires the full tat/rev genes and partial gp41 region derived from SHIV(33). To evaluate in vivo infectivity, SHIV(CHN19) was intravenously inoculated, at first, into two pig-tailed and two rhesus macaques. Although all four animals became infected, the virus replicated preferentially in pig-tailed macaques with an earlier plasma viral peak and a faster seroconversion. To determine whether in vivo adaptation would enhance the infectivity of SHIV(CHN19), passages were carried out serially in three groups of two pig-tailed macaques each, via intravenous blood-bone marrow transfusion. The passages greatly enhanced the infectivity of the virus as shown by the increasingly elevated viral loads during acute infection in animals with each passage. Moreover, the doubling time of plasma virus during acute infection became much shorter in passage 4 (P4) animals (0.2 day) in comparison to P1 animals (1 to 2 days). P2 to P4 animals all became seropositive around 2 to 3 weeks postinoculation and had a decline in CD4/CD8 T-cell ratio during the early phase of infection. In P4 animals, a profound depletion of CD4 T cells in the lamina propria of the jejunum was observed. Persistent plasma viremia has been found in most of the infected animals with sustained viral loads ranging from 10(3) to 10(5) per ml up to 6 months postinfection. Serial passages did not change the viral phenotype as confirmed by the persistence of the R5 tropism of SHIV(CHN19) isolated from P4 animals. In addition, the infectivity of SHIV(CHN19) in rhesus peripheral blood mononuclear cells was also increased after in vivo passages. Our data indicate that SHIV(CHN19) has adapted well to grow in macaque cells. This established R5-tropic SHIV(CHN19)/macaque model would be very useful for HIV-1 subtype C vaccine and pathogenesis studies.  相似文献   

14.
15.
Lymphoid tissue immunopathology is a characteristic feature of chronic HIV/SIV infection in AIDS-susceptible species, but is absent in SIV-infected natural hosts. To investigate factors contributing to this difference, we compared germinal center development and SIV RNA distribution in peripheral lymph nodes during primary SIV infection of the natural host sooty mangabey and the non-natural host pig-tailed macaque. Although SIV-infected cells were detected in the lymph node of both species at two weeks post infection, they were confined to the lymph node paracortex in immune-competent mangabeys but were seen in both the paracortex and the germinal center of SIV-infected macaques. By six weeks post infection, SIV-infected cells were no longer detected in the lymph node of sooty mangabeys. The difference in localization and rate of disappearance of SIV-infected cells between the two species was associated with trapping of cell-free virus on follicular dendritic cells and higher numbers of germinal center CD4+ T lymphocytes in macaques post SIV infection. Our data suggests that fundamental differences in the germinal center microenvironment prevent productive SIV infection within the lymph node germinal centers of natural hosts contributing to sustained immune competency.  相似文献   

16.
A human immunodeficiency virus type 1 (HIV-1) derivative (HIV(NL-DT5R)) containing sequences encoding a 7-amino-acid segment of CA and the entire vif gene from simian immunodeficiency virus (SIV) was previously shown to establish spreading infections in cultured macaque peripheral blood mononuclear cells. To assess its replicative and disease-inducing properties in vivo, HIV(NL-DT5R) was inoculated into pig-tailed macaques. HIV(NL-DT5R) generated plasma viremia in all five of the monkeys and elicited humoral responses against all of the HIV-1 structural proteins but did not cause CD4(+) T-lymphocyte depletion or clinical disease. Additional adaptation will be required to optimize infectivity in vivo.  相似文献   

17.
Lectin-like molecules and their receptors are cell surface molecules that have been shown to play a role in either facilitating infection or serving as transporters of HIV/SIV in vivo. The role of these lectin-like molecules in the pathogenesis of HIV/SIV infection continues to be defined. In efforts to gain further insight on the potential role of these lectin-like molecules, our laboratory generated monoclonal antibodies (mAb) against the human analogs of rhesus macaque CD200, CD200R and Mincle, since the rhesus macaques are accepted as the most reliable animal model to study human HIV infection. The characterization of the cell lineages from the blood and various tissues of rhesus macaques that express these lectin-like molecules are described herein. Among the mononuclear cells, the cells of the myeloid lineage of rhesus macaques are the predominant cell lineages that express readily detectable levels of CD200, CD200R and Mincle that is similar to the expression of Siglec-1 and Siglec-3 reported by our laboratory earlier. Subset analysis revealed that a higher frequency of the CD14+/CD16- subset from normal rhesus macaques express CD200, CD200R and Mincle. Differences in the frequencies and density of expression of these molecules by the gated population of CD14+ cells from various tissues are noted with PBMC and bone marrow expressing the highest and the mononuclear cells isolated from the colon and ileum expressing the lowest levels. While a significant frequency of pDCs and mDCs express Siglec-1/Siglec-3, a much lower frequency expresses CD200, CD200R and Mincle in PBMCs from rhesus macaques. The mAb against CD200 and CD200R but not Mincle appear to inhibit the infection of macrophage tropic SIV/SHIV in vitro. We conclude that these mAbs may have potential to be used as adjunctive therapeutic agents to control/inhibit SIV/HIV infection.  相似文献   

18.
T-cell receptor (TCR) complementarily determining region 3 (CDR3) spetratyping analysis was employed to assess the ability of an AIDS virus to disrupt CD4 + T-cell repertoires during the primary infection. Rhesus and pig-tailed macaques infected with simian immunodeficiency virus (SIV)mac 251 and SIVsmmFGb, respectively, were evaluated. Following SIV infection, the macaques exhibited an apparent decline of CD4 + peripheral blood lymphocyte (PBL) counts, which was associated with a change in CDR3 profiles from multiple-length distribution to one- or two-length dominance in the selected TCR Vbeta-expressing CD4 + PBL subpopulations. Molecular analysis of the perturbed cell subpopulations suggested that the CD4 + T cells bearing the dominant CDR3 length were clonally expanded. These results indicate that SIV infection can induce a disruption of macaque CD4 + T-cell repertoires during the primary infection. The finding in this study, therefore, suggests that the virus-induced clonal dominance can contribute to the disruption of CD4 + T-cell repertoires.  相似文献   

19.
20.
The simian immunodeficiency virus SIVsmmPBj14 (SIV-PBj14) is an atypical lentivirus that causes acute disease and death in pig-tailed macaques and in vitro replicates efficiently in resting macaque lymphocytes and activates and induces proliferation of lymphocytes. The present study was conducted to test the hypothesis that production of large quantities of SIV-PBj14 induces widespread immune activation and elaboration of cytokines which lead directly to the death of infected pig-tailed macaques. Following intravenous inoculation of pig-tailed macaques with SIV-PBj14, acute disease developed and was characterized by high levels of plasma viremia, p27gag antigenemia, tumor necrosis factor alpha, and interleukin-6 (IL-6). All animals died within 10 days of infection, at which time some animals had as many as 100% CD4+ cells in the periphery and lymphoid tissues infected. During the last few days before death, titers of infectious virus in blood increased as much as 10(5)-fold. By using dual-label immunofluorescence assays for detection of cell surface activation markers, both CD4+ and CD8+ lymphocytes were shown to express the IL-2 and transferrin receptors following either in vivo or in vitro infection with SIV-PBj14. Furthermore, in vitro infection of quiescent macaque lymphocytes by SIV-PBj14 was accompanied by proliferation of both CD4+ and CD8+ lymphocyte subsets, as measured by incorporation of [3H]thymidine. Increases in numbers of activated lymphocytes and levels of proinflammatory cytokines in plasma coincided with increased amounts of detectable virus in vivo. Clinical signs of disease and pathologic findings were most consistent with death from a shock-like syndrome, in which acute-phase inflammatory cytokines are known to play a major role. Tumor necrosis factor alpha, IL-2, and IL-6 were detected in some cultures infected with SIV-PBj14, but this finding was not consistent. When cytokines were detected, their concentrations were essentially no different from those found in control cultures infected with SIVsmm9, a prototypic strain from which SIV-PBj14 was derived. The in vivo results suggest a synergistic cycle of activation of lymphocytes and monocytes, elaboration of cytokines, and virus production that accelerates uncontrolled and culminates in death. The observed correlations between in vivo and in vitro activation events following SIV-PBj14 infection validate the use of in vitro studies to clarify lentivirus-lymphocyte interactions that may contribute to the virulence of SIV-PBj14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号