首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R S Boyd  M Wallis 《FEBS letters》1989,251(1-2):99-103
Tetradecanoyl phorbol acetate (TPA) stimulates growth hormone (GH) and prolactin secretion from ovine anterior pituitary cells. Pretreatment of the cells with TPA abolishes this effect, presumably due to down-regulation of protein kinase C. Such pretreatment did not alter effects of thyrotropin-releasing hormone or dopamine on prolactin secretion, suggesting no involvement of protein kinase C. Pretreatment with TPA attenuated actions of GH-releasing hormone on GH release (but not actions on cyclic AMP levels), possibly due to depletion of cellular stores of GH. Such pretreatment also attenuated inhibition of GH release by somatostatin, possibly due to phosphorylation of receptors or associated proteins by protein kinase C.  相似文献   

2.
We report that the rat pituitary cell line GH3 contains a Ca2(+)- and calmodulin-dependent protein kinase with properties characteristic of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) from rat brain. The GH3 kinase exhibits the hallmark of authentic CaM kinase: conversion from Ca2(+)-dependent to Ca2(+)-independent activity following a brief initial phosphorylation in vitro. This phosphorylation occurs at a site which is similar or identical to that of the "autonomy" site of the rat brain enzyme and thus may be an autophosphorylation event. GH3 CaM kinase is phosphorylated and becomes Ca2(+)-independent in situ. Depolarization of intact cells with K+ opens calcium channels and leads to the phosphorylation of CaM kinase at the autonomy site, and the kinase becomes significantly and persistently Ca2(+)-independent. Treatment of cells with thyrotropin-releasing hormone (TRH), which activates the phosphatidylinositol signaling pathway, also generates a Ca2(+)-independent CaM kinase in situ. The primary effect of TRH on CaM kinase activity is transient and correlates with the spike of Ca2+ released from intracellular stores and the rapid phase of prolactin release from GH3 cells. This study demonstrates that CaM kinase is able to detect and respond to both calcium that enters the cell through voltage-sensitive Ca2+ channels and calcium released from internal stores via the phosphatidylinositol pathway. We find that TRH, a hormone that causes release of prolactin and was previously believed to activate primarily protein kinase C, also significantly activates CaM kinase in intact cells.  相似文献   

3.
Iwabuchi M  Oki Y  Yoshimi T 《Life sciences》1999,64(12):1055-1062
Activation of protein kinase C (PKC) stimulates adrenocorticotropin (ACTH) release synergistically in the presence of corticotropin releasing factor (CRF). We examined the effect of a cyclic nucleotide-specific phosphodiesterase inhibitor, 1-isoamyl-3-isobutylxanthine (IIX), on arginine vasopressin (AVP)-induced ACTH release and intracellular cAMP accumulation in normal rat anterior pituitary cells. IIX alone elevated intracellular cAMP accumulation. IIX potentiated AVP-induced ACTH release synergistically without further increase in cAMP accumulation, suggesting that synergistic ACTH release has an alternative mechanism other than the synergistic elevation of intracellular cAMP accumulation which has been reported. Phorbol 12-myristate-13-acetate (PMA) also induced synergistic ACTH release when incubated with IIX. IIX had no additional effect on ACTH response when incubated with maximal dose of CRF, forskolin or 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP). Moreover, the combination of PMA and 8-Br-cAMP produced synergistic ACTH response. In conclusion, the synergistic ACTH release from rat pituitary corticotrophs occurs at least in the presence of directly activating events of PKC and PKA as well as PKC-induced inhibition of phosphodiesterase activity.  相似文献   

4.
Phorbol ester tumor promoters such as 12-O-tetradecanoylphorbol acetate (TPA) activate the calcium- and phospholipid-dependent protein kinase C and enhance three biological responses (prolactin release, prolactin synthesis, and cell stretching) in GH4C5 rat pituitary cells. We have examined several actions on GH4C5 cells of TPA and two other classes of protein kinase C activators, synthetic cell permeant dioleins and bryostatins isolated from the marine bryozoan Bugula neritina. Bryostatins 1 and 2 (B1 and B2, respectively) competed for [3H]phorbol 12,13-dibutyrate binding to the protein kinase C complex in intact cells nearly equipotently with TPA. B1 and B2, 1-oleoyl-2-acetylglycerol (OAG) and 1,2-dioctanoylglycerol (Di8) as well as TPA each activated partially purified protein kinase C from GH4C5 cells. B1, B2, and TPA each enhanced the acute release of prolactin from GH4C5 cells to a similar maximal extent. B1, B2, and TPA also enhanced prolactin synthesis. However, B1 and B2 were only partial agonists because they enhanced prolactin synthesis to a lesser maximal extent than did TPA and, given in combination, they reduced TPA-enhanced prolactin synthesis. OAG and Di8 stimulated prolactin release (to a lesser maximal extent than TPA) and did not stimulate prolactin synthesis. Pretreatment with OAG did not reduce TPA-stimulated prolactin release or synthesis. B2 and TPA induced cell stretching in GH4C5 cells, whereas B1, OAG, and Di8 induced little if any stretching. B1, but not B2, given in combination with TPA antagonized TPA-induced stretching but did not reduce thyrotropin-releasing hormone- or epidermal growth factor-induced stretching. We conclude that the bryostatins, phorbol esters, and dioleins bind to the same site on the protein kinase C complex to activate the enzyme, but they alter three biological responses in GH4C5 cells with selectivities and efficacies that differ. We propose that different activators of protein kinase C (such as bryostatins, dioleins, and phorbol esters) may elicit different cellular responses by altering the substrate specificity or activating multiple forms of the kinase.  相似文献   

5.
The role of osmotic pressure in the exocytosis of prolactin from rat pituitary tumor (GH) cells in culture was investigated. Reducing the osmotic strength of the medium from 300 mosm to 150 mosm by removal of NaCl did not alter basal secretion of prolactin but inhibited secretion stimulated by thyrotropin-releasing hormone (TRH) and forskolin. Both basal and stimulated secretion of prolactin were inhibited by increasing the osmotic strength of the medium with NaCl (IC50 at approximately 500 mosm). The stimulated release of hormone from GH-cells was independent of sodium and unaffected by replacement of sodium ion with tetramethylammonium or choline, or by addition of 500 nM tetrodotoxin. Secretagogue-stimulated release was, however, dependent upon chloride. Exchange of medium chloride with benzoate or isethionate significantly inhibited the stimulated release of prolactin (IC50 at approximately 60 mM exchange) regardless of the secretagogue utilized (phorbol ester, forskolin, depolarization plus BAY K8644, or TRH). Exchange of medium chloride with either isethionate or benzoate reduced cell volume by 10% compared to 60% for sucrose and mannitol, suggesting that inhibition of secretion by isethionate exchange was not a result of increased intracellular osmotic pressure. Complete exchange of medium chloride with isethionate did not alter equilibrium [3H]methyl-TRH binding, resting internal [Ca2+], or the [Ca2+]i response to depolarization and TRH as measured with intracellularly trapped Fura 2. Chloride removal did not change resting internal pH and recovery from an acid load as measured by the intracellular pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. The stimulated secretion of prolactin was also inhibited by exchange of chloride with isethionate in normal pituitary cells in primary culture and the ability of normal cells to respond to the dopamine agonist bromocryptine was not affected by the exchange. These results suggest that exocytosis of prolactin from GH-cells and normal pituitary cells in culture is an osmotically driven process that is chloride-dependent. Stimulated release is more chloride-dependent than constitutive release. The inhibitory effect of isethionate substitution occurs after signal transduction and is distinct from the site of dopamine inhibition of prolactin release.  相似文献   

6.
The effect of vasoactive intestinal peptide (VIP) on prolactin (PRL) secretion from pituitary cells is reviewed and compared to the effect of thyrotropin releasing hormone (TRH). These two peptides induced different secretion profiles from parafused lactotrophs in culture. TRH was found to increase PRL secretion within 4 s and induced a biphasic secretion pattern, while VIP induced a monophasic secretion pattern after a lag time of 45–60 s.The secretion profiles are compared to changes in adenylate cyclase activity, production of inositol polyphosphates, changes in intracellular calcium concentrations and changes in electrophysiological properties of the cell membrane.Abbreviations AC adenylate cyclase - DG diacyglycerol - GH growth hormone - GTP guanosine trisphosphate - Gi GTP binding proteins that mediate inhibition of adenylate cyclase and that are pertussis toxin sensitive - Gs GTP binding protein that mediates stimulation of adenylate cyclase - GH cells clonal rat pituitary tumor cells producing PRL and/or growth hormone - GH3 GH4C1 and GH4B6 subclones of GH cells - PKA protein kinase A - PKC protein kinase C - PLC phospholipase C - PRL prolactin - TPA 12-O-tetradecanoyl phorbol 13-acetate - TRH thyrotropin releasing hormone - VIP vasoactive intestinal peptide  相似文献   

7.
8.
It was shown that somatostatin (SRIF) inhibited cAMP-dependent vasoactive intestinal peptide (VIP)-stimulated prolactin (PRL) release by a GH3 clonal strain of rat pituitary tumor cells and decreased basal PRL secretion and inhibited PRL release in response to thyrotropin releasing hormone (TRH) whose action was independent of prior synthesis of cAMP. Pretreatment of these cells with pertussis toxin prevented SRIF's inhibitory effects on basal and TRH-stimulated hormone secretion as well as its VIP-stimulated responses. The blockade of SRIF's inhibitory effect on the actions of TRH or VIP was dependent on both the duration of preincubation and concentration of the toxin and was correlated with the ability of the toxin to catalyze the ADP-ribosylation of the 39,000-Da membrane protein. It is likely that this pertussis toxin substrate is involved in signal transduction of SRIF on cAMP-dependent actions of VIP and cAMP-independent action of TRH. However, the mechanism of SRIF's action on TRH is not clear, since SRIF did not affect the intracellular responses by TRH, neither intracellular Ca2+ mobilization nor the increase of 1,2-diacylglycerol formation following the breakdown of polyphosphoinositides.  相似文献   

9.
The relationship between 5-hydroxyeicosatetraenoic acid (5-HETE) and calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in prolactin (PRL) release was investigated in rat anterior pituitary cells. Arachidonic acid or 5-HETE, a 5-lipoxygenase metabolite of arachidonic acid, is known to cause a significant concentration-dependent increase in PRL release. Phorbol 12-myristate 13-acetate (PMA) and dioctanoyglycerol (diC8) have also been known to stimulate PRL release from pituitary cells, so we showed that these PRL releases were correlated with the activation of protein kinase C, that is, they induced dose-dependent translocation of protein kinase C from the cytosol to the membrane. Arachidonic acid, however, did not cause a significant change in the distribution of protein kinase C. We also showed that the PRL release induced by arachidonic acid and that induced by 5-HETE were additional to that by 100 nM PMA. Thus we suggested that the signals for the stimulation of PRL release sent by arachidonic acid and 5-HETE would be different from the signal sent through protein kinase C by PMA.  相似文献   

10.
The involvement of cyclic AMP in mediating regulatory peptide-controlled prolactin release from GH3 pituitary tumour cells was investigated. Cholera toxin and forskolin elicited concentration-dependent increases in both GH3 cell cyclic AMP content and prolactin release. The maximum rise in prolactin release with these agents was 2-fold over basal. 8-Bromo-cyclic AMP produced a similar stimulation of prolactin release. The phosphodiesterase inhibitor isobutylmethylxanthine also produced an increase in prolactin release and GH3 cell cyclic AMP content. However, the magnitude of the stimulated prolactin release exceeded that obtained with any other agent. Thyrotropin-releasing hormone (thyroliberin) and vasoactive intestinal polypeptide produced a concentration-dependent rise in both cell cyclic AMP content and prolactin release. However, only vasoactive intestinal polypeptide elicited an increase in cell cyclic AMP content at concentrations relevant to the stimulation of prolactin release. Vasoactive intestinal polypeptide and thyrotropin-releasing hormone, when used in combination, were additive with respect to prolactin release. Vasoactive intestinal polypeptide and forskolin, at concentrations that were maximal upon prolactin release, were, when used in combination, synergistic upon GH3 cell cyclic AMP content but were not additive upon prolactin release. In conclusion the evidence supports a role for cyclic AMP in the mediation of vasoactive intestinal polypeptide- but not thyrotropin-releasing hormone-stimulated prolactin release from GH3 cells. A quantitative analysis indicates that a 50-100% rise in cyclic AMP suffices to stimulate cyclic AMP-dependent prolactin release fully.  相似文献   

11.
We examined whether mitogen-activated protein (MAP) kinase is activated by thyrotropin-releasing hormone (TRH) in GH3 cells, and whether MAP kinase activation is involved in secretion of prolactin from these cells. Protein kinase inhibitors--such as PD098059, calphostin C, and genistein--and removal of extracellular Ca2+ inhibited MAP kinase activation by TRH. A cAMP analogue activated MAP kinase in these cells. Effects of cAMP on MAP kinase activation were inhibited by PD098059. TRH-induced prolactin secretion was not inhibited by levels of PD098059 sufficient to i activation but was inhibited by wortmannin (1 microM) and KN93. Treatment of GH3 cells with either TRH or cAMP significantly inhibited DNA synthesis and induced morphological changes. The effects stimulated by TRH were reversed by PD098059 treatment, but the same effects stimulated by cAMP were not. Treatment of GH3 cells with TRH for 48 h significantly increased the prolactin content in GH3 cells and decreased growth hormone content. The increase in prolactin was completely abolished by PD098059, but the decrease in growth hormone was not. These results suggest that TRH-induced MAP kinase activation is involved in prolactin synthesis and differentiation of GH3 cells, but not in prolactin secretion.  相似文献   

12.
Histones display hormone-like properties when present in extracellular fluids. The authors report that histones H2A and H2B possess growth hormone (GH)-releasing activityin vitroand describe the specificity and signal transduction pathways involved in these effects. Perfused and incubated rat pituitary cells were used in different sets of experiments and GH release was measured by radio-immunoassay (RIA). Perfusion of cells with 30μmhistone H2A or H2B, generated significant GH secretory responses. Cells incubated with histone H2A showed a dose- and time-dependent stimulatory effect on GH release which was blocked by peptide MB35, a synthetic fragment of histone H2A. Incubation of pituitary cells with the GH secretagogue GHRP-6, and histones revealed an additive release of GH, whereas GHRH and histones revealed a synergistic effect. The basic peptide poly-Lys did not mimetize the action of histones. Both EGTA and the protein kinase C inhibitor trifluoperazine, but not the calcium ionophre A23187, were able to reduce significantly the GH response of somatotrophs to histones. Pituitary cell incubation with 30μmforskolin alone or in the presence of H2A or H2B, stimulated GH release in the same magnitude. The results confirm previous evidence that histones may act as hypophysotropic signals and suggest, although do not prove, that this activity is receptor dependent. Calcium- and diacylglycerol-associated pathways participate in these effects.  相似文献   

13.
14.
Thyrotropin-releasing hormone (TRH) affects hormone secretion and synthesis in GH4C1 cells, a clonal strain of rat pituitary cells. Recent evidence suggests that the intracellular mediators, inositol 1,4,5-trisphosphate and 1,2-diacylglycerol, which are generated as a result of TRH-induced hydrolysis of the polyphosphatidylinositols, may be responsible for some of the physiological events regulated by TRH. Because diacylglycerol is an activator of protein kinase C, we have examined a role for this enzyme in TRH action. The subcellular distribution of protein kinase C in control and TRH-treated cells was determined by measuring both enzyme activity and 12,13-[3H]phorbol dibutyrate binding in the cytosol and by measuring enzyme activity in the particulate fraction. Acute exposure of GH4C1 cells to TRH resulted in a decrease of cytosolic protein kinase C, and an increase in the level of the enzyme associated with the particulate fraction. The redistribution of protein kinase C induced by TRH was dose- and time-dependent, with maximal effects occurring within the first minute of TRH treatment. Analogs of TRH which do not bind to the TRH receptor did not induce redistribution of protein kinase C, while the active analog, methyl-TRH, did promote redistribution. Treatment of GH4C1 cells with phorbol myristate acetate also resulted in a shift in protein kinase C distribution, although the response was slower than that produced by TRH. TRH-induced redistribution of protein kinase C implies translocation of the enzyme from a soluble to a membrane-associated form. Because protein kinase C requires a lipid environment for activity, association with the membrane fraction of the cell suggests activation of the enzyme; thus, protein kinase C may play a role in some of the actions of TRH on GH4C1 cells.  相似文献   

15.
P Onali  M C Olianas 《Life sciences》1987,40(12):1219-1228
In rat striatal synaptosomes, 4 beta-phorbol 12-myristate 13-acetate (PMA) and 4 beta-phorbol 12,13-dibutyrate (PDBu), two activators of Ca2+-phospholipid-dependent protein kinase (protein kinase C) increased dopamine (DA) synthesis measured by following the release of 14CO2 from L-[1-14C] tyrosine. Maximal stimulation (21-28% increase of basal rate) was produced by 0.5 microM PMA and 1 microM PDBu. 4 beta-Phorbol and 4 beta-phorbol 13-acetate, which are not activators of protein kinase C, were ineffective at 1 microM. PMA did not change the release of 14CO2 from L-[1-14C]DOPA. Addition of 1 mM EGTA to a Ca2+-free incubation medium failed to affect PMA stimulation. KC1 (60 mM) enhanced DA synthesis by 25%. Exposure of synaptosomes to either PMA or PDBu prior to KC1 addition resulted in a more than additive increase (80-100%) of DA synthesis. A similar synergistic effect was observed when the phorbol diesters were combined with either veratridine or d-amphetamine but not with forskolin and dibutyryl cyclic AMP. Pretreatment of striatal synaptosomes with phorbol diesters produced an activation on of tyrosine hydroxylase (TH) associated with a 60% increase of the Vmax and a decrease of the Km for the pterine cofactor 6-methyl-5,6,7,8-tetrahydropterin. These results indicate that protein kinase C participates in the regulation of striatal TH in situ and that its activation may act synergistically with DA releasing agents in stimulating DA synthesis.  相似文献   

16.
In a previous report we showed that TRH-induced down-regulation of the density of its receptors (TRH-Rs) on rat pituitary tumor (GH3) cells was preceded by a decrease in the activity of the mRNA for the TRH-R, as assayed in Xenopus oocytes. Here we report the effects of TRH, elevation of cytoplasmic free Ca2+ concentration, phorbol myristate acetate (PMA), and H-7 [1-(5-isoquinolinesulfonyl)2-methylpiperazine dihydrochloride], an inhibitor of protein kinases, on the levels of TRH-R mRNA, which were measured by Northern analysis and in nuclease protection assays using probes made from mouse pituitary TRH-R cDNA, in GH3 cells. These agents were studied to gain insight into the mechanism of the TRH effect, because signal transduction by TRH involves generation of inositol 1,4,5-trisphosphate and elevation of cytoplasmic free Ca2+ concentration, which leads to activation of Ca2+/calmodulin-dependent protein kinase, and of 1,2-diacylglycerol, which leads to activation of protein kinase-C. TRH (1 microM TRH, a maximally effective dose) caused a marked transient decrease in TRH-R mRNA that attained a nadir of 20-45% of control by 3-6 h, increased after 9 h, but was still below control levels after 24 h. Elevation of the cytoplasmic free Ca2+ concentration had no effect on TRH-R mRNA. A maximally effective dose of PMA (1 microM) caused decreases in TRH-R mRNA that were similar in magnitude and time course to those induced by 1 microM TRH. H-7 (20 microM) blocked the effects of TRH and PMA to lower TRH-R mRNA to similar extents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
GH(4)C(1) cells are a clonal strain of rat pituitary cells that synthesize and secrete prolactin and growth hormone. Chronic treatment (longer than 24 h) of GH(4)C(1) cells with epidermal growth factor (EGF) (10(-8) M) decreased by 30-40 percent both the rate of cell proliferation and the plateau density reached by cultures. Inhibition of cell proliferation was accompanied by a change in cellular morphology from a spherical appearance to an elongated flattened shape and by a 40-60 percent increase in cell volume. These actions of EGF were qualitatively similar to those of the hypothalamic tripeptide thyrotropin-releasing hormone (TRH) (10(-7) M) which decreased the rate of cell proliferation by 10-20 percent and caused a 15 percent increase in cell volume. The presence of supramaximal concentrations of both EGF (10(-8)M) and TRH (10(-7)M) resulted in greater effects on cell volume and cell multiplication than either peptide alone. EGF also altered hormone production by GH(4)C(1) cells in the same manner as TRH. Treatment of cultures with 10(-8) M EGF for 2-6 d increased prolactin synthesis five- to ninefold compared to a two- to threefold stimulation by 10(-7) M TRH. Growth hormone production by the same cultures was inhibited 40 percent by EGF and 15 percent by TRH. The half- maximal effect of EGF to increase prolactin synthesis, decrease growth hormone production, and inhibit cell proliferation occurred at a concentration of 5 x 10 (-11) M. Insulin and multiplication stimulating activity, two other growth factors tested, did not alter cell proliferation, cell morphology, or hormone production by GH(4)C(1) cells, indicating the specificity of the EGF effect. Fibroblast growth factor, however, had effects similar to those of EGF and TRH. Of five pituitary cell strains tested, all but one responded to chronic EGF treatment with specifically altered hormone production. Acute chronic EGF treatment with specifically altered hormone production. Acute treatment (30 min) of GH(4)C(1) cells with 10(-8) M EGF caused a 30 percent enhancement of prolactin release compared to a greater than twofold increase caused by 10(-7) M TRH. Therefore, although EGF and TRH have qualitatively similar effects on GH(4)C(1) cells, their powers to affect hormone release acutely or hormone synthesis and cell proliferation chronically are distinct.  相似文献   

19.
The effect of muscimol, a specific potent GABAA receptor agonist, on prolactin release from human prolactin-secreting tissue was investigated using a perifusion system. Perifusion studies on normal rat anterior pituitary tissue, which has identical GABA receptors to those found in normal human pituitary glands, show that muscimol has a specific biphasic effect on prolactin release. This is characterized by an initial transient stimulation (222.3 +/- 21.6% of basal) lasting for 5-10 min followed by a more prolonged inhibitory phase (63.9 +/- 3.1% inhibition of basal). Five human prolactin-secreting adenomas were studied, and in none of the tumours could a biphasic response be demonstrated. One of the prolactin-secreting adenomas had a blunted inhibitory response, but the other 4 showed no inhibitory effect of muscimol on prolactin release. Muscimol had no significant effect on basal or thyrotropin-releasing-hormone (TRH)-stimulated prolactin secretion from GH3 rat pituitary tumour cells. These studies suggest that the GABAergic effect on prolactin secretion is absent or altered in both rat and human prolactin-secreting tumour cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号