首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We have tested the hypothesis that exocytosis is a possible export route for calcium from bovine adrenal medullary cells. After prelabelling cells in primary tissue culture with 45Ca, evoked 45Ca export and catecholamine secretion show the same time course, a similar fraction of the total pool of 45Ca and catecholamine is released, and the same concentrations of carbamylcholine or KCl are required for half-maximal triggered release. Increasing the osmolarity of the extracellular medium or treating the cells with botulinum toxin type D inhibits both evoked catecholamine secretion and 45Ca export to the same extent without inhibiting 45Ca influx. Incorporation of 45Ca into chromaffin granules is very slow, however, and incorporated 45Ca is not immediately releasable. 45Ca entering the cell during short-term stimulation is not found in the releasable pool during a second period of triggered secretion. Our data suggest that chromaffin granules are the largest pool of intracellular calcium in bovine adrenal medullary cells and that most of the calcium in chromaffin granules does not rapidly exchange with cytoplasmic Ca, but can be released directly by exocytosis. Exocytosis does not appear to play a major role in exporting Ca that enters the cell during short-term stimulation.  相似文献   

2.
We employed carbon fiber amperometry to measure the amount of catecholamine released from individual granules (i.e. the quantal size, Q) of rat chromaffin cells. The distribution of Q1/3 of amperometric events could be reasonably described by the summation of at least three Gaussians, suggesting that rat chromaffin cells contained at least three distinct populations of granules, with a small, medium or large modal Q. After 3 days of culture, the mean cellular Q reduced by approximately 14%, which did not arise from a uniform percentage decrease in the Q of every granule. Instead, the rundown involved a > 11% decrease in the proportional release from large Q granules and a > 19% decrease in the modal Q-value of small Q granules. In contrast, when cells were cultured with dibutyryl-cAMP (dBcAMP) for 3 days, their mean cellular Q increased by approximately 38% (relative to time-matched controls). This increase in Q was not associated with any shift in the proportional release from the three populations of granules. Instead, cAMP increased the average amount of catecholamines released from all three populations of granules. Our data raise the possibility that distinct populations of granules in rat chromaffin cells can be regulated either differentially or uniformly.  相似文献   

3.
We have assessed the role of synapsins in catecholamine release by comparing the properties of exocytosis in adrenal chromaffin cells from wild-type and synapsin triple knock-out (TKO) mice. Brief depolarizations led to a greater amount of catecholamine release in chromaffin cells from TKO mice in comparison to chromaffin cells from wild-type mice. This increase in catecholamine release was due to an increased number of exocytotic events, while the properties of individual quanta of released catecholamine were unchanged. Barium ions produced similar amounts of catecholamine release from TKO and wild-type chromaffin cells, suggesting that the reserve pool of chromaffin granules is unchanged following loss of synapsins. Because expression of synapsin IIa in TKO chromaffin cells rescued the defect in depolarization-induced exocytosis, the TKO phenotype apparently results from loss of synapsin IIa. We conclude that synapsin IIa serves as a negative regulator of catecholamine release and that this protein influences exocytosis from a readily releasable pool of chromaffin granules. Further, because these defects in catecholamine release are different from those observed for glutamate and GABA release in TKO mice, we conclude that the functions of synapsins differ for vesicles containing different types of neurotransmitters.  相似文献   

4.
We have used astrocyte-conditioned medium (ACM) to promote the transdifferentiation of bovine chromaffin cells and study modifications in the exocytotic process when these cells acquire a neuronal phenotype. In the ACM-promoted neuronal phenotype, secretory vesicles and intracellular Ca2+ rise were preferentially distributed in the neurite terminals. Using amperometry, we observed that the exocytotic events also occurred mainly in the neurite terminals, wherein the individual exocytotic events had smaller quantal size than in undifferentiated cells. Additionally, duration of pre-spike current was significantly shorter, suggesting that ACM also modifies the fusion pore stability. After long exposure (7-9 days) to ACM, the kinetics of catecholamine release from individual vesicles was markedly accelerated. The morphometric analysis of vesicle diameters suggests that the rapid exocytotic events observed in neurites of ACM-treated cells correspond to the exocytosis of large dense-core vesicles (LDCV). On the other hand, experiments performed in EGTA-loaded cells suggest that ACM treatment promotes a better coupling between voltage-gated calcium channels (VGCC) and LDCV. Thus, our findings reveal that ACM promotes a neuronal phenotype in chromaffin cells, wherein the exocytotic kinetics is accelerated. Such rapid exocytosis mode could be caused at least in part by a better coupling between secretory vesicles and VGCC.  相似文献   

5.
The view that Ca2+ entry through voltage-dependent Ca2+ channels (VDCC) and through nicotinic receptors for acetylcholine (nAChRs) causes equal catecholamine release responses in chromaffin cells, was reinvestigated here using new protocols. We have made two-step experiments consisting in an ACh prepulse followed by a depolarizing pulse (DP). In voltage-clamped bovine chromaffin cells an ACh prepulse caused a slow-rate release but augmented 4.5-fold the much faster exocytotic response triggered by a subsequent depolarizing pulse (measured with capacitance and amperometry). If the ACh prepulse was given with mecamylamine or in low external Ca2+, the secretion increase disappeared. This suggests a two-step model for the effects of ACh: (1) meager Ca2+ entry through nAChRs mostly serves to keep loaded with vesicles the secretory machine; and (2) in this manner, the cell is prepared to respond with an explosive secretion of catecholamine upon depolarization and fast high Ca2+ entry through VDCC.  相似文献   

6.
T Xu  U Ashery  R D Burgoyne    E Neher 《The EMBO journal》1999,18(12):3293-3304
NSF and alpha-SNAP have been shown to be required for SNARE complex disassembly and exocytosis. However, the exact requirement for NSF and alpha-SNAP in vesicular traffic through the secretory pathway remains controversial. We performed a study on the kinetics of exocytosis from bovine chromaffin cells using high time resolution capacitance measurement and electrochemical amperometry, combined with flash photolysis of caged Ca2+ as a fast stimulus. alpha-SNAP, a C-terminal mutant of alpha-SNAP, and NEM were assayed for their effects on secretion kinetics. Two kinetically distinct components of catecholamine release can be observed upon fast step-like elevation of [Ca2+]i. One is the exocytotic burst, thought to represent the readily releasable pool of vesicles. Following the exocytotic burst, secretion proceeds slowly at maintained high [Ca2+]i, which may represent vesicle maturation/recruitment, i.e. some priming steps after docking. alpha-SNAP increased the amplitude of both the exocytotic burst and the slow component but did not change their kinetics, which we examined with millisecond time resolution. In addition, NEM only partially inhibited the slow component without altering the exocytotic burst, fusion kinetics and the rate of endocytosis. These results suggest a role for alpha-SNAP/NSF in priming granules for release at an early step, but not modifying the fusion of readily releasable granules.  相似文献   

7.
Kostyuk  P. G.  Pochynyuk  O. M.  Zaika  O. L.  Lukyanetz  E. A. 《Neurophysiology》2003,35(3-4):201-207
Activation of acetylcholine receptors (AChR) triggers catecholamine release from adrenal chromaffin cells and release of neurotransmitters in neuron-to-neuron and neuromuscular junctions, including those on smooth muscle cells. Calcium ions play the role of the main intracellular messenger, which mediates these processes. In our study, we explored the properties of Ca2+ signaling triggered by activation of AChR by analyzing the characteristics of Ca2+ transients induced by selective activation of nicotinic (nAChR) and muscarinic (mAChR) cholinoreceptors using Fura-2 fluorescent measurements in experiments on rat chromaffin cells. Two populations of chromaffin cells, which in a different manner responded to AChR stimulation, were classified. We found that the mean frequency of quantum release induced by ACh is considerably higher than that during hyperpotassium cell depolarization. Comparative analysis of single secretory events showed that, in the case of stimulation by ACh, single secretory spikes demonstrate faster kinetic characteristics than those induced by depolarization. Statistical analysis of the integral magnitude (area) of single secretory spikes evoked by both types of stimulation showed no significant difference despite amplitude and kinetic dissimilarities between such secretory events. Mathematical modeling of the dynamics of the exocytotic processes led to the conclusion that the reason for the specific kinetic characteristics of single secretory responses may be different diameters of the secretory pores formed during fusion of secretory vesicles with the plasma membrane.  相似文献   

8.
Digitonin permeabilizes the plasma membranes of bovine chromaffin cells to Ca2+, ATP, and proteins and allows micromolar Ca2+ in the medium to stimulate directly catecholamine secretion. In the present study the effects of digitonin (20 microM) on the plasma membrane and on intracellular chromaffin granules were further characterized. Cells with surface membrane labeled with [3H]galactosyl moieties retained label during incubation with digitonin. The inability of digitonin-treated cells to shrink in hyperosmotic solutions of various compositions indicated that tetrasaccharides and smaller molecules freely entered the cells. ATP stimulated [3H]norepinephrine uptake into digitonin-treated chromaffin cells fivefold. The stimulated [3H]norepinephrine uptake was inhibited by 1 microM reserpine, 30 microM NH4+, or 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The data indicate that [3H]norepinephrine was taken up into the intracellular storage granules by the ATP-induced H+ electrochemical gradient across the granule membrane. Reduction of the medium osmolality from 310 mOs to 100 mOs was required to release approximately 50% of the catecholamine from chromaffin granules with digitonin-treated chromaffin cells which indicates a similar osmotic stability to that in intact cells. Chromaffin granules in vitro lost catecholamine when the digitonin concentration was 3 microM or greater. Catecholamine released into the medium by micromolar Ca2+ from digitonin-treated chromaffin cells that had subsequently been washed free of digitonin could not be pelleted in the centrifuge and was not accompanied by release of membrane-bound dopamine-beta-hydroxylase. The studies demonstrate that 20 microM of digitonin caused profound changes in the chromaffin cell plasma membrane permeability but had little effect on intracellular chromaffin granule stability and function. It is likely that the intracellular chromaffin granules were not directly exposed to significant concentrations of digitonin. Furthermore, the data indicate that during catecholamine release induced by micromolar Ca2+, the granule membrane was retained by the cells and that catecholamine release did not result from release of intact granules into the extracellular medium.  相似文献   

9.
Spontaneously hypertensive rats (SHR) are widely used as model to investigate the pathophysiological mechanisms of essential hypertension. Catecholamine plasma levels are elevated in SHR, suggesting alterations of the sympathoadrenal axis. The residual hypertension in sympathectomized SHR is reduced after demedullation, suggesting a dysfunction of the adrenal medulla. Intact adrenal glands exposed to acetylcholine or high K+ release more catecholamine in SHR than in normotensive Wistar Kyoto (WKY) rats, and adrenal chromaffin cells (CCs) from SHR secrete more catecholamines than CCs from WKY rats. Since Ca2+ entry through voltage-gated Ca2+ channels (VGCC) triggers exocytosis, alterations in the functional properties of these channels might underlie the enhanced catecholamine release in SHR. This study compares the electrophysiological properties of VGCC from CCs in acute adrenal slices from WKY rats and SHR at an early stage of hypertension. No significant differences were found in the macroscopic Ca2+ currents (current density, IV curve, voltage dependence of activation and inactivation, kinetics) between CCs of SHR and WKY rats, suggesting that Ca2+ entry through VGCC is not significantly different between these strains, at least at early stages of hypertension. Ca2+ buffering, sequestration and extrusion mechanisms, as well as Ca2+ release from intracellular stores, must now be evaluated to determine if alterations in their function can explain the enhanced catecholamine secretion reported in CCs from SHR.  相似文献   

10.
Chromaffin cells have been widely used to study neurosecretion since they exhibit similar calcium dependence of several exocytotic steps as synaptic terminals do, but having the enormous advantage of being neither as small or fast as neurons, nor as slow as endocrine cells. In the present study, secretion associated to experimental measurements of the exocytotic dynamics in human chromaffin cells of the adrenal gland was simulated by using a model that combines stochastic and deterministic approaches for short and longer depolarizing pulses, respectively. Experimental data were recorded from human chromaffin cells, obtained from healthy organ donors, using the perforated patch configuration of the patch-clamp technique. We have found that in human chromaffin cells, secretion would be mainly managed by small pools of non-equally fusion competent vesicles, slowly refilled over time. Fast secretion evoked by brief pulses can be predicted only when 75% of one of these pools (the “ready releasable pool” of vesicles, abbreviated as RRP) are co-localized to Ca2?+? channels, indicating an immediately releasable pool in the range reported for isolated cells of bovine and rat (Álvarez and Marengo, J Neurochem 116:155–163, 2011). The need for spatial correlation and close proximity of vesicles to Ca2?+? channels suggests that in human chromaffin cells there is a tight control of those releasable vesicles available for fast secretion.  相似文献   

11.
The coupling of voltage-gated Ca2+ channel (VGCC) to exocytotic proteins suggests a regulatory function for the channel in depolarization-evoked exocytosis. To explore this possibility we have examined catecholamine secretion in PC12 and chromaffin cells. We found that replacing Ca2+ with La3+ or other lanthanide ions supported exocytosis in divalent ion-free solution. Cd2+, nifedipine, or verapamil inhibited depolarization-evoked secretion in La3+, indicating specific binding of La3+ at the pore of L-type VGCC, probably at the poly-glutamate (EEEE) locus. Lanthanide efficacy was stringently dependent on ionic radius with La3+>Ce3+>Pr3+, consistent with a size-selective binding interface of trivalent cations at the channel pore. La3+ inward currents were not detected and the highly sensitive La3+/fura-2 imaging assay (approximately 1 pm) detected no La3+ entry, cytosolic La3+ build-up, or alterations in cytosolic Ca2. These results provide strong evidence that occupancy of the pore of the channel by an impermeable cation leads to a conformational change that is transmitted to the exocytotic machinery upstream of intracellular cation build-up (intracellular Ca2+ concentration). Our model allows for a tight temporal and spatial coupling between the excitatory stimulation event and vesicle fusion. It challenges the conventional view that intracellular Ca2+ ion build-up via VGCC permeation is required to trigger secretion and establishes the VGCC as a plausible Ca2+ sensor protein in the process of neuroendocrine secretion.  相似文献   

12.
The intracellular requirements for membrane recapture in permeabilized chromaffin cells were compared to the requirements for exocytosis from the same cells.In permeabilized bovine chromaffin cells, calcium-driven exocytosis also triggers, with a short delay, uptake of extracellular horseradish peroxidase (HRP). This internalized HRP remains compartmentalized within the cell and migrates to a low density band on a Percoll gradient which is distinct from the heavier chromaffin granules.The amount of horseradish peroxidase internalized is similar in intact and leaky cells and is approximately equivalent to the volumes secreted. Endocytosis in both preparations is blocked by botulinum toxin, operates in a collapsed membrane potential, and is inhibited by low temperature. In permeabilized cells, exocytosis and coupled endocytosis are activated by the same concentrations of Ca2+ and MgATP. Although secretion requires Ca2+ and MgATP, once exocytosis has occurred the subsequent endocytosis can proceed in the virtual absence of Ca2+ or MgATP, and is largely unaffected by a variety of nucleotide triphosphates (including nonhydrolyzable analogues), and cyclic nucleotides.These data suggest that endocytosis can proceed, once exocytosis has been triggered, under conditions that are quite different from those necessary to support exocytosis, and that the specific requirements for Ca2+ and MgATP in secretion are for the exocytotic limb of the secretory cycle rather than for the associated endocytotic pathway.We are grateful to Mr. John Gibbs for excellent technical assistance, and to the Medical Research Council (UK) for financial support.  相似文献   

13.
During hypoxia, the level of adenosine in the carotid bodies increases as a result of ATP catabolism and adenosine efflux via adenosine transporters. Using Ca2+ imaging, we found that adenosine, acting via A2A receptors, triggered a rise in cytoplasmic [Ca2+] ([Ca2+]i) in type I (glomus) cells of rat carotid bodies. The adenosine response could be mimicked by forskolin (but not its inactive analog), and could be abolished by the PKA inhibitor H89. Simultaneous measurements of membrane potential (perforated patch recording) and [Ca2+]i showed that the adenosine-mediated [Ca2+]i rise was accompanied by depolarization. Ni2+, a voltage-gated Ca2+ channel (VGCC) blocker, abolished the adenosine-mediated [Ca2+]i rise. Although adenosine was reported to inhibit a 4-aminopyridine (4-AP)-sensitive K+ current, 4-AP failed to trigger any [Ca2+]i rise, or to attenuate the adenosine response. In contrast, anandamide, an inhibitor of the TWIK-related acid-sensitive K+-1 (TASK-1) channels, triggered depolarization and [Ca2+]i rise. The adenosine response was attenuated by anandamide but not by tetraethylammonium. Our results suggest that adenosine, acting via the adenylate cyclase and PKA pathways, inhibits the TASK-1 K+ channels. This leads to depolarization and activation of Ca2+ entry via VGCC. This excitatory action of adenosine on type I cells may contribute to the chemosensitivity of the carotid body during hypoxia. O2 sensing; A2A receptor; cAMP; protein kinase A; TWIK-related acid-sensitive K+ channel  相似文献   

14.
Putative docking of secretory vesicles comprising recognition of and attachment to future fusion sites in the plasma membrane has been investigated in chromaffin cells of the bovine adrenal medulla and in rat phaeochromocytoma (PC 12) cells. Upon permeabilization with digitonin, secretion can be stimulated in both cell types by indreasing the free Ca2+-concentration to M levels. Secretory activity can be elicited up to 1 hr after starting permeabilization and despite the loss of soluble cytoplasmic components indicating a stable attachment of granules to the plasma membrane awaiting the trigger for fusion. Docked granules can be observed in the electron microscope in permeabilized PC 12 cells which contain a large proportion of their granules aligned underneath the plasma membrane. The population of putatively docked granules in chromaffin cells cannot be as readily discerned due to the dispersal of granules throughout the cytoplasm. Further experiments comparing PC 12 and chromaffin cells suggest that active docking but not transport of granules can still be performed by permeabilized cells in the presence of Ca2+: a short (2 min) pulse of Ca2+ in PC 12 cells leads to the secretion of almost all releasable hormone over a 15 min observation period whereas, in chromaffin cells, with only a small proportion of granules docked, withdrawal of Ca2+ leads to an immediate halt in secretion. Transport of chromaffin granules from the Golgi to the plasma membrane docking sites seems to depend on a mechanism sensitive to permeabilization. This is shown by the difference in the amount of hormone released from the two permeabilized cell types, reflecting the contrast in the proportion of granules docked to the plasma membrane in PC 12 or chromaffin cells. Neither docking nor the docked state are influenced by cytochalasine B or colchicine. The permeabilized cell system is a valuable technique for thein vitro study of interaction between secretory vesicles and their target membrane.  相似文献   

15.
The augmentation of neurotransmitter and hormone release produced by ouabain inhibition of plasmalemmal Na+/K+-ATPase (NKA) is well established. However, the mechanism underlying this action is still controversial. Here we have shown that in bovine adrenal chromaffin cells ouabain diminished the mobility of chromaffin vesicles, an indication of greater number of docked vesicles at subplasmalemmal exocytotic sites. On the other hand, ouabain augmented the number of vesicles undergoing exocytosis in response to a K+ pulse, rather than the quantal size of single vesicles. Furthermore, ouabain produced a tiny and slow Ca2+ release from the endoplasmic reticulum (ER) and gradually augmented the transient elevations of the cytosolic Ca2+ concentrations ([Ca2+]c) triggered by K+ pulses. These effects were paralleled by gradual increments of the transient catecholamine release responses triggered by sequential K+ pulses applied to chromaffin cell populations treated with ouabain. Both, the increases of K+-elicited [Ca2+]c and secretion in ouabain-treated cells were blocked by thapsigargin (THAPSI), 2-aminoethoxydiphenyl borate (2-APB) and caffeine. These results are compatible with the view that ouabain may enhance the ER Ca2+ load and facilitate the Ca2+-induced-Ca2+ release (CICR) component of the [Ca2+]c signal generated during K+ depolarisation. This could explain the potentiating effects of ouabain on exocytosis.  相似文献   

16.
Abstract: The synthetic glucocorticoid dexamethasone enhanced histamine-evoked catecholamine secretion from cultured bovine chromaffin cells. Dexamethasone enhanced the effects of histamine on both adrenergic (epinephrine-rich) and noradrenergic (norepinephrine-rich) chromaffin cells but had a more dramatic effect on noradrenergic cells. Histamine-evoked secretion in noradrenergic cells appeared to become rapidly inactivated, whereas the rate of secretion in adrenergic cells was nearly constant for up to 2 h; dexamethasone treatment attenuated the inactivation seen in noradrenergic cells. The effect of dexamethasone appeared after a lag of several hours and was maximal by 24 h. The EC50 for dexamethasone was ∼1 n M . The effect of dexamethasone was mimicked by the glucocorticoid agonist RU 28362 and was blocked by the antagonist RU 38486, indicating that the effects of these steroids were mediated by the glucocorticoid or type II corticosteroid receptor. Histamine-evoked catecholamine secretion in both dexamethasone-treated and untreated cells was blocked by the H1 histamine receptor antagonist mepyramine but was not affected by the H2 antagonist cimetidine; thus, dexamethasone appeared to enhance an H1 receptor-mediated process. In the absence of glucocorticoids, H1 receptor mRNA levels were higher in adrenergic than in noradrenergic cells. Dexamethasone increased H1 receptor mRNA levels in both cell types. The increased expression of H1 receptors presumably contributes to the enhancement of histamine-evoked catecholamine secretion by glucocorticoids. Glucocorticoids may play a physiological role in modulating the responsiveness of chromaffin cells to histamine and other stimuli.  相似文献   

17.
Catecholamines and other transmitters released from adrenal chromaffin cells play central roles in the “fight-or-flight” response and exert profound effects on cardiovascular, endocrine, immune, and nervous system function. As such, precise regulation of chromaffin cell exocytosis is key to maintaining normal physiological function and appropriate responsiveness to acute stress. Chromaffin cells express a number of different G protein coupled receptors (GPCRs) that sense the local environment and orchestrate this precise control of transmitter release. The primary trigger for catecholamine release is Ca2+ entry through voltage-gated Ca2+ channels, so it makes sense that these channels are subject to complex regulation by GPCRs. In particular G protein βγ heterodimers (Gβγ) bind to and inhibit Ca2+ channels. Here I review the mechanisms by which GPCRs inhibit Ca2+ channels in chromaffin cells and how this might be altered by cellular context. This is related to the potent autocrine inhibition of Ca2+ entry and transmitter release seen in chromaffin cells. Recent data that implicate an additional inhibitory target of Gβγ on the exocytotic machinery and how this might fine tune neuroendocrine secretion are also discussed.  相似文献   

18.
The effect of the phorbol ester TPA on catecholamine secretion was studied in cultured bovine adrenal chromaffin cells. The pretreatment of chromaffin cells with TPA caused the enhancement of catecholamine secretion induced by the calcium ionophore, A23187. By contrast, neither carbachol- nor high K+-induced secretion was changed by TPA pretreatment. These results support the concept that protein kinase C plays an important role as a factor transducing the Ca2+ signal to the exocytotic process of catecholamine secretion in bovine adrenal chromaffin cells.  相似文献   

19.
Tetanus toxin, a potent neurotoxin which blocks neurotransmitter release in the CNS, also inhibits Ca2+-induced catecholamine release from digitonin-permeabilized, but not from intact bovine chromaffin cells. In searching for intracellular targets for the toxin we studied the binding of affinity-purified tetanus toxin to bovine adrenal chromaffin granules. Tetanus toxin bound in a neuraminidase-sensitive fashion to intact granules and to isolated granule membranes, as assayed biochemically and visualized by electron microscopic techniques. The binding characteristics of the toxin to chromaffin granule membranes are very similar to the binding of tetanus toxin to brain synaptosomal membranes. We suggest that the toxin-binding site is a glycoconjugate of the G1b type (a polysialoganglioside or a glycoprotein-proteoglycan) which is localized on the cytoplasmic face of the granule membrane and might directly be involved in exocytotic membrane fusion.  相似文献   

20.
Exposing bovine chromaffin cells to a single 5 ns, high-voltage (5 MV/m) electric pulse stimulates Ca2+ entry into the cells via L-type voltage-gated Ca2+ channels (VGCC), resulting in the release of catecholamine. In this study, fluorescence imaging was used to monitor nanosecond pulse-induced effects on intracellular Ca2+ level ([Ca2+]i) to investigate the contribution of other types of VGCCs expressed in these cells in mediating Ca2+ entry. ω-Conotoxin GVIA and ω-agatoxin IVA, antagonists of N-type and P/Q-type VGCCs, respectively, reduced the magnitude of the rise in [Ca2+]i elicited by a 5 ns pulse. ω-conotoxin MVIIC, which blocks N- and P/Q-type VGCCs, had a similar effect. Blocking L-, N-, and P\Q-type channels simultaneously with a cocktail of VGCC inhibitors abolished the pulse-induced [Ca2+]i response of the cells, suggesting Ca2+ influx occurs only via VGCCs. Lowering extracellular K+ concentration from 5 to 2 mM or pulsing cells in Na+-free medium suppressed the pulse-induced rise in [Ca2+]i in the majority of cells. Thus, both membrane potential and Na+ entry appear to play a role in the mechanism by which nanoelectropulses evoke Ca2+ influx. However, activation of voltage-gated Na+ channels (VGSC) is not involved since tetrodotoxin (TTX) failed to block the pulse-induced rise in [Ca2+]i. These findings demonstrate that a single electric pulse of only 5 ns duration serves as a novel stimulus to open multiple types of VGCCs in chromaffin cells in a manner involving Na+ transport across the plasma membrane. Whether Na+ transport occurs via non-selective cation channels and/or through lipid nanopores remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号