首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this paper, oscillating chemiluminescence (CL), 1,10‐phenanthroline H2O2–KSCN–CuSO4–NaOH system, was studied in a batch reactor. The system described is a novel, slowly damped oscillating CL system, generated by coupling the well‐known Epstein–Orban, H2O2–KSCN–CuSO4–NaOH chemical oscillator reaction with the CL reaction involving the oxidation of 1,10‐phenanthroline by hydrogen peroxide, catalyzed by copper(II) in alkaline medium. In this system, the CL reaction acts as a detector or indicator system of the far‐from‐equilibrium dynamic system. Narrow and slightly asymmetric light pulses of 1.2 s half‐width are emitted at 440 nm with an emitted light time of 200–1000 s, induction period of 3.5–357 s and oscillation period of 28–304 s depending on the reagent concentrations. In this report the effect of the concentration variation of components involved in the oscillating CL system on the induction period, the oscillation period and amplitude was investigated and the parameters were plotted with respect to reagent concentrations. Copper concentration showed a significant effect on the oscillation period. The possible mechanism for the oscillating CL reaction was also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
《Luminescence》2003,18(1):42-48
Oscillating chemical reactions are complex systems involving a large number of chemical species. In oscillating chemical reactions some species, usually reaction intermediates, exhibit fluctuation in concentration. Visible oscillating chemiluminescence, produced by the addition of luminol (3‐aminophthalhydrazide) to the oscillating system H2O2–KSCN–CuSO4–NaOH, was investigated. In this study the effect of varying the concentration of H2O2, KSCN, CuSO4, NaOH and luminol was investigated in a batch reactor. We showed that the concentration of all components involved in the oscillating chemilumenscent reaction influenced the light intensity and the oscillation period. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Visible oscillating chemiluminescence (CL) of luminol–H2O2–KSCN–CuSO4 was studied using the organic base (2‐hydroxyethyl)trimethylammonium hydroxide. The effect of concentrations of luminol, H2O2, KSCN, CuSO4 and the base were investigated in a batch reactor. This report shows how the concentration of components involved in the oscillating CL system influenced the oscillation period, light amplitude and total time of light emission. The oscillating CL with different bases was also investigated. Results indicated that using 2‐HETMAOH causes regular oscillating CL with nearly the same oscillating period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Huimin Liu  Heyou Han 《Luminescence》2009,24(5):300-305
Perturbation of the tris(2,2′‐bipyridine)ruthenium(II) [Ru(bpy)32+]‐catalyzed Belousov–Zhabotinsky (BZ) oscillating chemiluminescence (CL) reaction induced by l ‐cysteine was observed in the closed system. It was found that the CL intensity was decreased in the presence of l ‐cysteine. Meanwhile, oscillation period and oscillating induction period were prolonged. The sufficient reproducible induction period was used as parameter for the analytical application of oscillating CL reaction. Under the optimum conditions, the changes in the oscillating CL induction period were linearly proportional to the concentration of l ‐cysteine in the range from 8.0 × 10?7 to 5.0 × 10?5 mol L?1 (r = 0.997) with a detection limit of 4.3 × 10?7 mol L?1. The possible mechanism of l ‐cysteine perturbation on the oscillating CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Oscillating chemiluminescence enhanced by the addition of tri‐n‐propylamine (TPrA) to the typical Belousov–Zhabotinsky (BZ) reaction system catalyzed by ruthenium(II)tris(2.2'‐bipyridine)(Ru(bpy)32+) was investigated using a luminometry method. The [Ru(bpy)3]2+/TPrA system was first used as the catalyst for a BZ oscillator in a closed system, which exhibited a shorter induction period, higher amplitude and much more stable chemiluminescence (CL) oscillation. The effects of various concentrations of TPrA, oxygen and nitrogen flow rate on the oscillating behavior of this system were examined. In addition, the CL intensity of the [Ru(bpy)3]2+/TPrA–BZ system was found to be inhibited by phenol, thus providing a way for use of the BZ system in the determination of phenolic compounds. Moreover, the possible mechanism of the oscillating CL reaction catalyzed by [Ru(bpy)3]2+/TPrA and the inhibition effects of oxygen and phenol on this oscillating CL system were considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A simple chemical system consisting of FeSO4 and H2O2 (Fenton's reagent) was shown to emit light (chemiluminescence). The addition of tryptophan to the reaction markedly enhanced light production. Very little chemiluminescence was observed when H2O2 was omitted from the reaction and when ferric, instead of ferrous, ions were used. Hydroxyl radical (OH.) and singlet oxygen (1ΔgO2) quenchers suppressed chemiluminescence of the FeSO4 + tryptophan + H2O2 system; and, deuterium oxide (2H2O) enhanced chemiluminescence of both FeSO4 reactions. These observations suggest that a radical chain reaction involving both OH. and 1ΔgO2 is responsible for the chemiluminescent reactions. Six iron-containing proteins, some of which are located within granulocytes, all emitted light in the presence of H2O2. Since iron and H2O2 are present in metabolically stimulated granulocytes, it is likely that chemiluminescent reactions similar to the ones demonstrated in this study account for part of the chemiluminescence of activated granulocytes.  相似文献   

7.
A simple chemical system consisting of FeSO4 and H2O2 (Fenton's reagent) was shown to emit light (chemiluminescence). The addition of tryptophan to the reaction markedly enhanced light production. Very little chemiluminescence was observed when H2O2 was omitted from the reaction and when ferric, instead of ferrous, ions were used. Hydroxyl radical (OH.) and singlet oxygen (1 deltagO2) quenchers suppressed chemiluminescence of the FeSO4 + tryptophan + H2O2 system; and, deuterium oxide (2H2O) enhanced chemiluminescence of both FeSO4 reactions. These observations suggest that a radical chain reaction involving both OH. and 1 deltag O2 is responsible for the chemiluminescent reactions. Six iron-containing proteins, some of which are located within granulocytes, all emitted light in the presence of H2O2. Since iron and H2O2 are present in metabolically stimulated granulocytes, it is likely that chemiluminescent reactions similar to the ones demonstrated in this study account for part of the chemiluminescence of activated granulocytes.  相似文献   

8.
Forchlorfenuron is a low-toxic phenylurea plant growth regulator. Excessive intake of forchlorfenuron can lead to metabolic disorders of the matrix and be harmful to human health. The chemiluminescence intensity of the KIO4–K2CO3–Mn2+ reaction decreased in the presence of forchlorfenuron. Based on this result, a rapid and sensitive chemiluminescence method was established to determine forchlorfenuron by combining it with a batch injection static device. The injection speed, injection volume and reagent concentration of the forchlorfenuron–KIO4–K2CO3–Mn2+ chemiluminescence reaction were optimized. Under these optimized conditions, the linear range of the method was 1.0–200.0 μg/L, and the limit of detection was 0.29 μg/L (S/N = 3). The chemiluminescence method for the determination of forchlorfenuron could be completed in 10 s. The method was applied to detect the residual forchlorfenuron in dried fruit samples, and the results are consistent with high-performance liquid chromatography-mass spectrometry. This method has the advantages of high sensitivity, rapid response, less reagent consumption, and convenient operation. It will provide a new perspective for chemiluminescence for the rapid and sensitive determination of forchlorfenuron in various complex samples.  相似文献   

9.
Oscillating chemiluminescence (CL) was reported for the first time about 30 years ago. Since then several systems based on addition of a chemiluminescent reagent to a known oscillator system or based on the light emitting features of one component of the oscillating system, have been described. This information, scattered in the scientific literature, is compiled in the present paper. Several oscillating CL systems, including those based on Belousov–Zhabotinskii and Orban oscillators, or horseradish peroxidase‐catalyzed reactions, among others, are critically presented. The application of this type of oscillatory systems is also discussed, in analytical chemistry and for educational purposes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
It was found that isoniazid (ISO) or p‐aminosalicylic acid (PAS) could enhance the chemiluminescence (CL) emission from Cu (II)‐luminol‐hydrogen peroxide system, and the increased chemiluminescence signals were proportional to their concentrations, respectively. Based on this phenomenon, a chemiluminescence method coupled to capillary electrophoresis (CE) was established for simultaneous determination of ISO and PAS. The CE conditions including running buffer and running voltage were investigated in detail. The effects of the pH of H2O2 solution and the concentrations of luminol, H2O2 and Cu (II) on the CL signal were also investigated carefully. Under the optimized conditions, the analysis could be accomplished within 10 min, with the limits of detection of 0.3 µg mL–1 for ISO and 1.1 µg mL–1 for PAS, corresponding to 7.2 and 26.4 pg per injection (24 nL), respectively. Finally, the method was validated by determining the two analytes in pharmaceutical preparation and spiked human serum samples. The results of pharmaceutical tablet analysis were in good agreement with the labeled amounts. The recoveries for ISO and PAS in human serum were in the range of 92–104% and 90–113%, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The chemiluminescence (CL) reaction between ozone and 3,6-dihydroxynaphtha-2,7-disulphonate (DNDS) was found under alkaline conditions. Therefore, a novel CL system for ozone detection was established. The CL signal of the CL system is weak, and the CL signal is enhanced by adding nonionic surfactants. It was found that adding 16.4 g/l Triton X-100 can enhance the CL signal. The CL reagent activated by ultraviolet (UV) light produced a CL signal was nearly 10 times stronger than the CL reagent not activated by UV light; the CL signal was enhanced by adding 8 g/l NaHCO3 to the CL reagent irradiated by UV light. Through the optimization of these test conditions, a high-selectivity, high-sensitivity online detection method for ozone CL was established. The linear range was 0.5–150 ppbv, and the limit of detection (LOD) was 0.092 ppbv (S/N = 3).  相似文献   

12.
A new smartphone-based chemiluminescence method has been introduced for the quantitative analysis of CL-20 (Hexanitroazaisowuertzitan) explosive. The solvent mixture, oxidizer agent, and concentration of the reactants were optimized using statistical procedures. CL-20 explosive showed a quenching effect on the chemiluminescence intensity of the luminol−NaClO reaction in the solvent mixture of DMSO/H2O. A smartphone was used as a detector to record the light intensity of chemiluminescence reaction as a video file. The recorded video file was converted to an analytical signal as intensity luminescence–time curve by a written code in MATLAB software. Dynamic range and limit of detection of the proposed method were obtained 2.0–240.0 and 1.1 mg⋅L−1, respectively, in optimized concentrations 1.5 × 10−3 mol⋅L−1 luminol and 1.0 × 10−2 mol⋅L−1 NaClO. Precursors TADB, HBIW, and TADNIW in CL-20 explosive synthesis did not show interference in measurement the CL-20 purity. The analysis of CL-20 spiked samples of soil and water indicated the satisfactory ability of the method in the analysis of real samples. The interaction of CL-20 molecules and OCl ions is due to quench of chemiluminescence reaction of the luminol−NaClO.  相似文献   

13.
In the H2O2–SCN?–Cu2+–OH?–luminol oscillatory system of chemiluminescence, the effects of the ingredient concentrations, temperature, flow rate and complexing agent on the oscillatory dynamics were investigated in a continuous‐flow stirred tank reactor (CSTR). The dynamical structure of two peaks during a period was discussed in detail. By addition of EDTA to the oscillating system, the peak I height decreased sharply while the peak II height was little affected, and the period kept constant. This may be due to the fast reaction between Cu(II) and EDTA and the highly stable complex Cu(II)–EDTA. From the experimental study and mechanism analysis, the chemiluminescent peak I corresponds to Cu(II) → Cu(I) transformation and the peak II corresponds to the Cu(I) → Cu(II) transformation process. The key species involving in the two‐transformation process are inferred to be superoxide radical and hydroxyl radical. Copyright © 2010 John Wiley & Son, Ltd.  相似文献   

14.
A rapid and sensitive chemiluminescence immunoassay (CLIA) based on magnetic nanoparticles (MNPs) was developed to detect aflatoxin B1 (AFB1), which is a potent carcinogen in nature. We prepared monodisperse MNPs (300 nm in diameter) according to the solvothermal synthesis reaction and the MNPs were coated with silica by the Stöber method. Triethox was used as a one‐step carboxylation reagent, and 3‐aminopropyltriethoxysilane (APTES) an amination reagent, to modify the MNPs. We prepared two types of solid phase antigens using the above synthesized functionalized MNPs coupled with the later prepared AFB1‐oxime active ester and the purchased BSA–AFB1 respectively. 2′,6′‐dimethylcarbonylphenyl‐10‐sulfopropylacridinium‐9‐carboxylate 4′‐N‐hydroxysuccinimide (4′‐NHS) ester (NSP–DMAE–NHS), as a novel luminescent reagent, was used to label anti‐AFB1 antibodies. The two CLIA calibration curves based on the two types of solid phase antigens were obtained and compared. The acquired limit of detection (LOD) was about 0.001 ng/mL for the two functionalized MNPs‐based immunoassays, and the half maximal inhibitory concentration (IC50) was 0.51 ng/mL for the MNPs–AFB1‐based method and 0.72 ng/mL for the MNPs–BSA–AFB1‐based method.  相似文献   

15.
A sequential injection (SI) method was developed for the determination of chlorpheniramine (CPA), based on the reaction of this drug with tris(1,10‐phenanthroline)–ruthenium(II) [Ru(phen)32+] and peroxydisulphate (S2O82–) in the presence of light. The instrumental set‐up utilized a syringe pump and a multiposition valve to aspirate the reagents [Ru(phen)32+ and S2O82–] and a peristaltic pump to propel the sample. The experimental conditions affecting the chemiluminescence reaction were systematically optimized, using the univariate approach. Under the optimum conditions linear calibration curves of 0.1–10 µg/ml were obtained. The detection limit was 0.04 µg/ml and the relative standard deviation (RSD) was always < 5%. The procedure was applied to the analysis of CPA in pharmaceutical products and was found to be free from interferences from concomitants usually present in these preparations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A simple and rapid flow‐injection chemiluminescence method has been developed for the determination of dithiocarbamate fungicide thiram based on the chemiluminescence reaction of thiram with ceric sulfate and quinine in aqueous sulfuric acid. The present method allowed the determination of thiram in the concentration range of 7.5–2500 ng/mL and the detection limit (signal‐to‐noise ratio = 3) was 7.5 ng/mL with sample throughput of 120/h. The relative standard deviation was 2.5% for 10 replicate analyses of 500 ng/mL thiram. The effects of foreign species including various anions and cations present in water at environmentally relevant concentrations and some pesticides were also investigated. The proposed method was applied to determine thiram in spiked natural waters using octadecyl bonded phase silica (C18) cartridges for solid‐phase extraction. The recoveries were in the range 99 ± 1 to 104 ± 1%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Light production by green plants   总被引:38,自引:5,他引:33       下载免费PDF全文
1. Green plants have been found to emit light of approximately the same color as their fluorescent light for several minutes following illumination. This light is about 10–3 the intensity of the fluorescent light, about one-tenth second after illumination below saturation or 10–6 of the intensity of the absorbed light. 2. The decay curve follows bimolecular kinetics at 6.5°C. and reaction order 1.6 at 28°C. 3. This light saturates as does photosynthesis at higher light intensities and in about the same intensity range as does photosynthesis. 4. An action spectrum for light emitted as a function of the wave length of exciting light has been determined. It parallels closely the photosynthetic action spectrum. 5. The intensity of light emission was studied as a function of temperature and found to be optimal at about 37°C. with an activation energy of approximately 19,500 calories. Two-temperature studies indicated that the energy may be trapped in the cold, but that temperatures characteristic for enzymatic reactions are necessary for light production. 6. Illumination after varying dark periods showed initial peaks of varying height depending on the preceding dark period. 7. 5 per cent CO2 reversibly depresses the amount of light emitted by about 30 per cent. About 3 minutes are required for this effect to reach completion at room temperatures. 8. Various inhibitors of photosynthesis were tested for their effect on luminescence and were all inhibitory at appropriate concentrations. 9. Irradiation with ultraviolet light (2537A) inhibits light production at about the same rate as it inhibits photosynthesis. 10. This evidence suggests that early and perhaps later chemical reactions in photosynthesis may be partially reversible.  相似文献   

18.
Oxidative reactions can result in the formation of electronically excited species that undergo radiative decay depending on electronic transition from the excited state to the ground state with subsequent ultra‐weak photon emission (UPE). We investigated the UPE from the Fe2+–EDTA (ethylenediaminetetraacetic acid)–AA (ascorbic acid)–H2O2 (hydrogen peroxide) system with a multitube luminometer (Peltier‐cooled photon counter, spectral range 380–630 nm). The UPE, of 92.6 μmol/L Fe2+, 185.2 μmol/L EDTA, 472 μmol/L AA, 2.6 mmol/L H2O2, reached 1217 ± 118 relative light units during 2 min measurement and was about two times higher (P < 0.001) than the UPE of incomplete systems (Fe2+–AA–H2O2, Fe2+–EDTA–H2O2, AA–H2O2) and medium alone. Substitution of Fe2+ with Cr2+, Co2+, Mn2+ or Cu2+ as well as of EDTA with EGTA (ethylene glycol‐bis(β‐aminoethyl ether)‐N,N,N′,N′‐tetraacetic acid) or citrate powerfully inhibited UPE. Experiments with scavengers of reactive oxygen species (dimethyl sulfoxide, mannitol, sodium azide, superoxide dismutase) revealed the dependence of UPE only on hydroxyl radicals. Dimethyl sulfoxide at the concentration of 0.74 mmol/L inhibited UPE by 79 ± 4%. Plant phenolics (ferulic, chlorogenic and caffec acids) at the concentration of 870 μmol/L strongly enhanced UPE by 5‐, 13.9‐ and 46.8‐times (P < 0.001), respectively. It is suggested that augmentation of UPE from Fe2+–EDTA–AA–H2O2 system can be applied for detection of these phytochemicals.  相似文献   

19.
Dissolved elemental oxygen is determined in a flowing aqueous stream using glucose oxidase to catalyse the reaction between D -glucose and O2 to produce hydrogen peroxide. The levels of the resulting H2O2 are detected and quantified by luminol chemiluminescence using in-line solid phase media for pH adjustment of the reagent stream and for controlled release of the luminophore. The reaction is initiated by electrochemical catalysis. By the use of excess D -glucose in the reagent flow stream, the intensity of chemiluminescence is rendered proportional only to fluctuations in the dissolved O2 concentration. The methodology provides a means for the detection of aqueous O2 in the range 0–10 mg/L. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
FeS2 nanosheets (NSs) were produced and exploited as a new catalyst for a chemiluminescence (CL) reaction. The characterization of FeS2 NSs was performed using spectroscopic methods. In this regard, transmission electron microscopy images showed that FeS2 NSs have a length of ~0.5–1 μm. The direct optical band gap energy of FeS2 NSs was found to be 3.45 eV. Prepared FeS2 NSs were used to catalyze the NaHCO3–H2O2 CL reaction. It was found that procaine hydrochloride (PCH) could reduce the intensity of the FeS2 NSs–NaHCO3–H2O2 CL reaction so, with increasing PCH concentrations, the intensity of light emission decreased. Therefore, a simple and sensitive method was introduced to measure PCH with a linear range expanded from 1.00 × 10−6 to 1.00 × 10−3 mol L−1 and an 8.32 × 10−7 mol L−1 limit of detection. Studies related to the effect of foreign species and reaction mechanisms were performed. The application of the approach was verified by quantifying the PCH in the injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号