首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the effect of phorbol esters and cAMP elevating compounds on tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) secretion. Phorbol esters induce a time- and dose-dependent increase in tPA release from endothelial cells, while forskolin, isobutylmethylxanthine, dibutyryl cAMP, and 8-bromo-cAMP had no significant stimulatory effect on tPA secretion. However, elevation of cAMP simultaneously with phorbol ester treatment potentiated the phorbol ester-induced release of tPA 6 times from 22.2 ng/ml with phorbol myristate acetate (PMA) alone to 122.1 ng/ml (PMA and forskolin). Potentiation was dose-dependent (half-maximal potentiation = 4 microM forskolin), and tPA release was enhanced at all stimulatory concentrations of PMA with no change in the PMA concentrations causing half-maximal or maximum tPA release. The kinetics of release was also similar in PMA versus PMA-forskolin-treated cells. A 4-h delay was observed, enhanced release was transient, and was followed by the onset of a refractory period. In contrast, elevation of cAMP reduced constitutive secretion of PAI-1 by 30-40% and prevented the increase in PAI-1 secretion stimulated by PMA. Elevated cAMP also decreased the rate of PAI-1 deposition into the endothelial substratum. These studies indicate that activation of a cAMP-dependent pathway(s) in coordination with phorbol ester-induced responses plays a central role in modifying the tPA and PAI-1 secretion from endothelial cells, leading to a profibrinolytic state in the endothelial environment.  相似文献   

2.
Tumor-promoting phorbol esters stimulate tissue plasminogen activator (tPA) release from human endothelial cells, and simultaneous elevation of cyclic AMP potentiates this response 5-fold (Santell, L., and Levin, E. G. (1988) J. Biol. Chem. 263, 16802-16808). A similar effect on tPA mRNA was observed, with phorbol myristate acetate inducing a 3.5-fold increase in steady state tPA mRNA levels and forskolin enhancing that increase to 25-fold. Peak levels occurred at 8 h after agonist addition and returned to baseline levels by 16 h. As was found with tPA antigen secretion, delayed addition of forskolin reduced the level of potentiation, and, at 6 h after phorbol 12-myristate 13-acetate (PMA), forskolin was no longer effective. The protein synthesis inhibitor cycloheximide did not inhibit the rise in tPA mRNA levels in response to PMA/forskolin nor the decline in mRNA levels between 8 and 12 h. However, peak levels (8 h) were approximately 1.5-fold higher than in cultures not treated with cycloheximide. The effect of two inhibitors of protein kinases, H-7 and staurosporine, on PMA-induced tPA antigen secretion and tPA mRNA levels were examined. H-7 and staurosporine inhibited PMA, and PMA/forskolin induced tPA secretion in a dose-dependent manner. This effect was time-dependent; the inhibitory effect was reduced with delayed H-7 addition, and, by 6 h after PMA treatment, no inhibition was observed. H-7 and staurosporine also inhibited the PMA/forskolin-induced increase in tPA mRNA levels and were less effective the later they were added. The same time-dependent effect on the potentiation of PMA-induced tPA mRNA levels by forskolin was observed. Again, delayed addition reduced the effect, and, by 6 h, potentiation was absent. The results of this study indicate that changes in mRNA levels in response to PMA and PMA/forskolin precede and determine those that occur to tPA antigen secretion. In addition, the maximal response is dependent upon the prolonged activation of an H-7- and cAMP-sensitive pathway.  相似文献   

3.
To identify agents and mechanisms responsible for the thickened basement membranes characteristic of diabetic angiopathy we examined the effects of high glucose (30 mM) on the expression of genes related to extracellular matrix composition and turnover and investigated whether the changes induced by high glucose were mimicked and sustained by activation of protein kinase C or A. In human umbilical vein endothelial cells high glucose increased fibronectin, collagen IV, tissue plasminogen activator (tPA), and plasminogen activator-inhibitor 1 (PAI-1) mRNA levels 2-fold but did not affect type IV and interstitial collagenase expression. Acute treatment with phorbol esters resulted in increased collagen IV, tPA, PAI-1, and interstitial collagenase mRNAs; the type IV collagenase mRNA levels were instead suppressed to 50% of control. Upon longer exposure to phorbol esters (48 h) suppression of fibronectin and PAI-1 mRNAs also occurred. Intracellular elevation of cAMP led to over-expression of fibronectin and type IV collagenase and potentiated the effects of phorbol esters on collagen IV, tPA, and interstitial collagenase expression. The mRNA changes induced by high glucose occurred in the absence of protein kinase C activation or cAMP elevation. These studies indicate that events other than activation of protein kinase C or A bridge high ambient glucose to changes in endothelial cell gene expression that may contribute to diabetic angiopathy.  相似文献   

4.
5.
The influence of diacylglycerols, which are physiological activators of protein kinase C, on the production of tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor type 1 (PAI-1) by human umbilical vein endothelial cells (HUVEC) was studied in order to gain insight into the regulation of fibrinolysis by these cells. 1,2-dioctanoyl-sn-glycerol (diC8) stimulated tPA production in a dose- and time-dependent manner. The tPA antigen in cell supernatants increased from 0.9 ng/10(6) cells in unstimulated cells to 12.4 ng (10(6) cells after incubation with 400 microM diC8 for 24 hours. In contrast, PAI-1 production was not influenced by diC8, whereas phorbol 12-myristate 13-acetate (PMA) or thrombin stimulated both, tPA and PAI-1 production by HUVEC. Staurosporine and H7, which are inhibitors of protein kinase C, inhibited tPA synthesis by HUVEC. The degree of inhibition was dependent on the agonist used. While diC8-induced tPA production was inhibited to more than 80% by H7 (10 microM) and staurosporine (10 nM), higher doses of inhibitors were required to inhibit thrombin- and PMA-induced tPA production. Thrombin-induced PAI-1 production was inhibited to more than 80% by H7 (10 microM) and to about 50% by staurosporine, whereas PMA-induced PAI-1 production was not inhibited by staurosporine, and only to about 50% by higher doses of H7 (30 microM). These data suggest that activation of protein kinase C is a common intracellular trigger mechanism for the induction of tPA synthesis by HUVEC. Protein kinase C is most likely also involved in the regulation of PAI-1 synthesis by HUVEC.  相似文献   

6.
Regulation of the fibrinolytic system of cultured human umbilical vein endothelial cells (HUVECs) by recombinant interleukin 1 beta (rIL-1 beta) and tumor necrosis factor alpha (rTNF alpha) was investigated. Functional and immunologic assays indicated that both cytokines decreased HUVEC tissue-type plasminogen activator (tPA) and increased type 1 plasminogen activator inhibitor (PAI-1) in a dose- and time-dependent manner. Maximal effects (50% decrease in tPA antigen; 300-400% increase in PAI-1 activity) were achieved with 2.5 units/ml rIL-1 beta and 200 units/ml rTNF alpha. Combinations of rIL-1 beta and rTNF alpha were not additive at these maximal concentrations. After a 24-h pretreatment with rIL-1 beta, HUVECs secreted tPA at one-quarter of the rate of control cells and released PAI-1 at a rate that was 5-fold higher than controls. Neither the basal rate of PAI-1 release nor the increased rate of release of PAI-1 in response to rIL-1 beta was affected by subsequently treating the cells with secretagogues (e.g. phorbol myristate acetate) suggesting that PAI-1 is not contained within a rapidly releasable, intracellular storage pool. Northern blot analysis using a PAI-1 cDNA probe indicated that the cytokines increased the steady-state levels of the 3.2- and 2.3-kb PAI-1 mRNA species, but with a preferential increase in the larger mRNA form. The fact that both rIL-1 beta and rTNF alpha act in a similar manner strengthens the hypothesis that the local development of inflammatory/immune processes could reduce endothelial fibrinolytic activity.  相似文献   

7.
8.
9.
10.
Abstract: Patients with diabetes are predisposed to microvascular disease. In the retina and brain, this is characterized by neovascularization and new capillary formation. Because of the potential importance of plasmin generation in these processes, we evaluated the effect of elevated glucose concentrations on expression of plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), and urokinase (uPA) in cultured bovine brain endothelial cells (BBEC) versus cultured bovine aortic endothelial cells (BAEC). We observed that BBEC PAI-1 mRNA levels were decreased fivefold in cells cultured in media containing 20 m M glucose compared with BBEC cultured in media with 5.5 m M glucose, whereas expression of PAI-1 mRNA in BAEC, bovine mesenteric endothelial cells, and human umbilical vein endothelial cells was not modulated under these conditions. Expression of PAI-1 protein was also inhibited by growth of BBEC in elevated glucose, but the effect was less marked than at the mRNA level. Elevated glucose did not decrease expression of PAI-1 protein by BAEC. Withdrawal of acidic fibroblast growth factor enhanced expression of PAI-1 mRNA and protein in BBEC. Expression of tPA mRNA was not affected by the glucose concentration of the medium, and uPA mRNA was not detected in our BBEC cultures. A decrease in the local tissue activity of PAI-1 by elevated glucose concentrations, with no effect on tPA or uPA expression, would lead to an increase in the plasmin activity and thereby predispose neural tissues, such as the cerebrum and retina, of diabetic patients to neovascularization.  相似文献   

11.
12.
The second messengers and protein kinases involved in the induction of type I plasminogen activator inhibitor (PAI-1) synthesis by various agents were evaluated in cultured bovine aortic endothelial cells. Phorbol myristate acetate (PMA) induced PAI-1 in these cells implicating the protein kinase C (PK-C) pathway. However, bradykinin, which also activates PK-C in bovine aortic endothelial cells, did not induce PAI-1. Moreover, when PK-C was down-regulated by PMA pretreatment, subsequent induction of PAI-1 by transforming growth factor beta (TGF beta) and tumor necrosis factor alpha (TNF alpha) was unaltered, and induction by lipopolysaccharide (LPS) was decreased by only 50%. LPS increased phospholipid second messengers which can activate PK-C but TGF beta and TNF alpha did not. Agents which increase cAMP, (e.g., forskolin and isobutylmethylxanthine) blocked the induction of PAI-1 synthesis by PMA, LPS, TGF beta and TNF alpha suggesting that induction may occur by lowering cAMP. This possibility seems unlikely since cAMP levels did not change in response to any of these agents. Moreover, somatostatin lowered cAMP but did not induce PAI-1. PAI-1 was not induced by treating the cells with cGMP, Na+/H+ ionophore and calcium ionophore or arachidonic acid.  相似文献   

13.
14.
15.
16.
Plasmin inhibited the biosynthesis of tissue-type plasminogen activator (tPA) antigen by human umbilical vein endothelial cells (HUVEC) in a dose-dependent manner. The amount of tPA antigen found in the 24-h conditioned medium of cells treated with 100 nM plasmin for 1 h was 20-30% of that in the control group. However, in contrast to tPA, such treatment led to a 3-fold increase in plasminogen activator inhibitor (PAI) activity, whereas the amount of PAI type 1 antigen was unchanged. The effects of plasmin on HUVEC were binding- and catalytic activity-dependent and were specifically blocked by epsilon-aminocaproic acid. Microplasmin, which has no kringle domains, was less effective in reducing tPA antigen biosynthesis or enhancing PAI activity in HUVEC. Kringle domains of plasmin affected neither tPA antigen nor PAI activity of the cells. Other proteases including chymotrypsin, trypsin, and collagenase at comparable concentrations did not have a significant effect on the biosynthesis of tPA antigen or PAI activity of HUVEC. Thrombin stimulated the biosynthesis of tPA and PAI-1 antigens by HUVEC. Thrombin also stimulated an increase in the protein kinase activity in HUVEC, whereas plasmin inhibited the protein kinase activity of the cells. It is possible that plasmin regulates the biosynthesis of tPA in HUVEC through the signal transduction pathway involving protein kinase.  相似文献   

17.
We studied the effect of the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA), which activates protein kinase-C, on porcine granulosa cells in culture. PMA as well as cholera toxin, forskolin, and hCG increased cAMP accumulation. PMA further augmented the elevation in cAMP accumulation induced by cholera toxin, forskolin, and hCG. In the same cell culture model, hCG induced a time-dependent increase in the 3 beta-hydroxy-5-ene steroid dehydrogenase (3 beta HSD) mRNA levels with a maximal 3-fold stimulation obtained at 8-16 h of incubation with 1 IU hCG/ml. PMA inhibited the increase in 3 beta HSD mRNA levels induced by hCG in a dose-dependent manner. The phorbol ester also inhibited the increase in 3 beta HSD mRNA levels stimulated by LH as well as cholera toxin and forskolin and the cAMP analogs (Bu)2cAMP and 8-bromo-cAMP. Activation of protein kinase-C by mezerein similarly inhibited hCG stimulation of 3 beta HSD mRNA levels. The present data indicate that activation of the protein kinase-C pathway induces generation of cAMP, but causes a near-complete inhibition of the stimulatory effects of hCG, LH, forskolin, cholera toxin, and cAMP analogs on 3 beta HSD mRNA levels in porcine granulosa cells in culture.  相似文献   

18.
The effects of recombinant tissue-type plasminogen activator (rt-PA) and of an inactive mutant of rt-PA, obtained by mutagenesis of the active site Ser478 to Ala (rt-PA-Ala478), on the synthesis and secretion of plasminogen activator inhibitor-1 (PAI-1) by human umbilical vein endothelial cells (HUVEC) in culture were studied. Under base-line conditions, PAI-1 antigen secretion was 4.3 +/- 1.0 micrograms (mean +/- S.D., n = 8) per 10(6) cells in 24 h. This PAI-1 had a low specific activity (6,000 +/- 1,600 units/mg) and Mr of 50,000, which was not altered by addition of rt-PA. In HUVEC cultured with 2 micrograms/ml rt-PA-Ala478, PAI-1 antigen secretion was 2.1 +/- 0.8 micrograms (n = 5) per 10(6) cells in 24 h with a specific activity of 120,000 +/- 42,000 units/mg and Mr of 50,000. Addition of rt-PA to this conditioned medium resulted in generation of three main components: 16% migrated as an Mr 106,000 rt-PA.PAI-1 complex, 16% as an Mr 81,000 degraded rt-PA.PAI-1 complex and the remainder as an Mr 45,000 degradation product of PAI-1. HUVEC cultured with 2 micrograms/ml rt-PA secreted 3.9 +/- 0.6 micrograms (n = 8) PAI-1 antigen per 10(6) cells within 24 h, of which 20-50% occurred as intact or degraded complexes with t-PA (Mr 106,000 and 81,000) and the rest as an inactive Mr 45,000 degradation product of PAI-1. PAI-1 mRNA levels, determined by Northern blot analysis and expressed relative to beta-actin mRNA levels, were very similar for HUVEC cultured in the absence or the presence of rt-PA or rt-PA-Ala478. It is concluded that PAI-1 is secreted by HUVEC in culture in fully active form which spontaneously inactivates. PAI-1 can be stabilized by addition of rt-PA-Ala478 to the culture medium, resulting in a 20-fold increase in specific activity. Interaction of rt-PA with active PAI-1 produces both t-PA.PAI-1 complex and an inactive degradation product of PAI-1.  相似文献   

19.
20.
The synthesis of plasminogen activators and inhibitors in endothelial cells is highly regulated by hormones, drugs and growth factors. The present study evaluates the effect of retinoic acid on the synthesis of tissue-type plasminogen activator (t-PA) and of plasminogen activator inhibitor-1 (PAI-1) by cultured human umbilical vein endothelial cells (HUVEC). Retinoic acid produced a time- and concentration-dependent increase in the secretion of t-PA-related antigen but not of PAI-1 related antigen into the culture medium. A maximal sevenfold increase of t-PA antigen after 24 h was observed with 10 microM and a half-maximal increase with 0.1 microM retinoic acid. Retinoic acid induced a time-dependent increase of the t-PA mRNA, with a maximum at 8 h and returning to normal at 24 h. The protein kinase inhibitor H7 decreased the t-PA antigen induced by both retinoic acid and phorbol 12-myristate 13-acetate. These results suggest that treatment of HUVEC with retinoic acid increases t-PA production by a pathway which, at some level, involves protein kinases. Thus, retinoic acid induces t-PA synthesis in the absence of altered PAI-1 synthesis, which may enhance the fibrinolytic potential of the endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号