首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
myo-Inositol oxygenase (MIOX) uses iron as its cofactor and dioxygen as its cosubstrate to effect the unique, ring-cleaving, four-electron oxidation of its cyclohexan-(1,2,3,4,5,6-hexa)-ol substrate to d-glucuronate. The nature of the iron cofactor and its interaction with the substrate, myo-inositol (MI), have been probed by electron paramagnetic resonance (EPR) and M?ssbauer spectroscopies. The data demonstrate the formation of an antiferromagnetically coupled, high-spin diiron(III/III) cluster upon treatment of solutions of Fe(II) and MIOX with excess O(2) or H(2)O(2) and the formation of an antiferromagnetically coupled, valence-localized, high-spin diiron(II/III) cluster upon treatment with either limiting O(2) or excess O(2) in the presence of a mild reductant (e.g., ascorbate). Marked changes to the spectra of both redox forms upon addition of MI and analogy to changes induced by binding of phosphate to the diiron(II/III) cluster of the protein phosphatase, uteroferrin, suggest that MI coordinates directly to the diiron cluster, most likely in a bridging mode. The addition of MIOX to the growing family of non-heme diiron oxygenases expands the catalytic range of the family beyond the two-electron oxidation (hydroxylation and dehydrogenation) reactions catalyzed by its more extensively studied members such as methane monooxygenase and stearoyl acyl carrier protein Delta(9)-desaturase.  相似文献   

2.
myo-Inositol oxygenase (MIOX) catalyzes the ring-cleaving, four-electron oxidation of its cyclohexan-(1,2,3,4,5,6-hexa)-ol substrate (myo-inositol, MI) to d-glucuronate (DG). The preceding paper [Xing, G., Hoffart, L. M., Diao, Y., Prabhu, K. S., Arner, R. J., Reddy, C. C., Krebs, C., and Bollinger, J. M., Jr. (2006) Biochemistry 45, 5393-5401] demonstrates by M?ssbauer and electron paramagnetic resonance (EPR) spectroscopies that MIOX can contain a non-heme dinuclear iron cluster, which, in its mixed-valent (II/III) and fully oxidized (III/III) states, is perturbed by binding of MI in a manner consistent with direct coordination. In the study presented here, the redox form of the enzyme that activates O(2) has been identified. l-Cysteine, which was previously reported to accelerate turnover, reduces the fully oxidized enzyme to the mixed-valent form, and O(2), the cosubstrate, oxidizes the fully reduced form to the mixed-valent form with a stoichiometry of one per O(2). Both observations implicate the mixed-valent, diiron(II/III) form of the enzyme as the active state. Stopped-flow absorption and freeze-quench EPR data from the reaction of the substrate complex of mixed-valent MIOX [MIOX(II/III).MI] with limiting O(2) in the presence of excess, saturating MI reveal the following cycle: (1) MIOX(II/III).MI reacts rapidly with O(2) to generate an intermediate (H) with a rhombic, g < 2 EPR spectrum; (2) a form of the enzyme with the same absorption features as MIOX(II/III) develops as H decays, suggesting that turnover has occurred; and (3) the starting MIOX(II/III).MI complex is then quantitatively regenerated. This cycle is fast enough to account for the catalytic rate. The DG/O(2) stoichiometry in the reaction, 0.8 +/- 0.1, is similar to the theoretical value of 1, whereas significantly less product is formed in the corresponding reaction of the fully reduced enzyme with limiting O(2). The DG/O(2) yield in the latter reaction decreases as the enzyme concentration is increased, consistent with the hypothesis that initial conversion of the reduced enzyme to the MIOX(II/III).MI complex and subsequent turnover by the mixed-valent form is responsible for the product in this case. The use of the mixed-valent, diiron(II/III) cluster by MIOX represents a significant departure from the mechanisms of other known diiron oxygenases, which all involve activation of O(2) from the II/II manifold.  相似文献   

3.
4.
5.
Various inositide phosphatases participate in the regulation of inositol polyphosphate signaling molecules. Plant phytases are phosphatases that hydrolyze phytate to less-phosphorylated myo-inositol derivatives and phosphate. The phytase from Selenomonas ruminantium shares no sequence homology with other microbial phytases. Its crystal structure revealed a phytase fold of the dual-specificity phosphatase type. The active site is located near a conserved cysteine-containing (Cys241) P loop. We also solved two other crystal forms in which an inhibitor, myo-inositol hexasulfate, is cocrystallized with the enzyme. In the "standby" and the "inhibited" crystal forms, the inhibitor is bound, respectively, in a pocket slightly away from Cys241 and at the substrate binding site where the phosphate group to be hydrolyzed is held close to the -SH group of Cys241. Our structural and mutagenesis studies allow us to visualize the way in which the P loop-containing phytase attracts and hydrolyzes the substrate (phytate) sequentially.  相似文献   

6.
王毳  刘叶  巩旭  刘龙  康振 《生物工程学报》2018,34(11):1772-1783
葡萄糖二酸是一种高附加值天然有机酸,已经广泛应用于疾病防治、生产聚合物材料等领域。在葡萄糖二酸的合成途径中,肌醇加氧酶MIOX所催化的肌醇转换为葡萄糖醛酸的过程是整个途径的限速步骤。通过应用将葡萄糖二酸浓度与绿色荧光蛋白荧光强度相结合的筛选系统,从突变体文库中筛选出3株有潜力的肌醇加氧酶突变体(K59V/R60A、R171S和D276A),使MIOX活性得到提高。重组菌株Escherichia coli BL21(DE3)/MU-R171S的葡萄糖二酸产量相比于未突变菌株提高了36.5%。  相似文献   

7.
myo-Inositol oxygenase (MIOX) is a non-heme iron enzyme, which catalyzes the conversion of myo-inositol to d-glucuronic acid, the first committed step in myo-inositol catabolism. Full-length cDNAs of 858bp each coding for 33kDa protein were cloned from kidney cDNA libraries of mouse, rat, and human. The individual clones were expressed in Escherichia coli and recombinant MIOX proteins were purified to electrophoretic homogeneity. A hydrophobic interaction chromatography step yielded multiple conformers, with mouse and human MIOX showing three peaks and rat enzyme revealing two peaks. Individual MIOX peaks exhibited distinct V(max) and K(m) values. Interestingly, upon storage, the 33kDa protein was degraded to a approximately 30kDa truncated protein in each species, and formed small amounts of dimers of identical subunits. While MIOX is a highly conserved enzyme in all mammalian species, the labile nature and tendency to degrade in solution may be the source of significant differences in size previously reported in the literature. Regardless of the source, our results strongly dispel previous conflicting literature reports on the size of the protein and confirm that MIOX is a 33kDa protein.  相似文献   

8.
PhyA from Selenomonas ruminantium (PhyAsr), is a bacterial protein tyrosine phosphatase (PTP)-like inositol polyphosphate phosphatase (IPPase) that is distantly related to known PTPs. PhyAsr has a second substrate binding site referred to as a standby site and the P-loop (HCX5R) has been observed in both open (inactive) and closed (active) conformations. Site-directed mutagenesis and kinetic and structural studies indicate PhyAsr follows a classical PTP mechanism of hydrolysis and has a broad specificity toward polyphosphorylated myo-inositol substrates, including phosphoinositides. Kinetic and molecular docking experiments demonstrate PhyAsr preferentially cleaves the 3-phosphate position of Ins P6 and will produce Ins(2)P via a highly ordered series of sequential dephosphorylations: D-Ins(1,2,4,5,6)P5, Ins(2,4,5,6)P4, D-Ins(2,4,5)P3, and D-Ins(2,4)P2. The data support a distributive enzyme mechanism and suggest the PhyAsr standby site is involved in the recruitment of substrate. Structural studies at physiological pH and high salt concentrations demonstrate the "closed" or active P-loop conformation can be induced in the absence of substrate. These results suggest PhyAsr should be reclassified as a D-3 myo-inositol hexakisphosphate phosphohydrolase and suggest the PhyAsr reaction mechanism is more similar to that of PTPs than previously suspected.  相似文献   

9.
10.
The roles of putative active site residues of the Saccharomyces cerevisiae sphingolipid C-4 long chain base hydroxylase (Sur2p) were investigated by site-directed mutagenesis. The replacement of any one of conserved His residues of three histidine-rich motifs with an alanine eliminated hydroxylase activity in vivo and in vitro, indicating that they are all essential elements of the active site. An additional conserved His residue (His 249) outside of the histidine-rich cluster region was also found to be crucial for activity. Additional mutants altered in residues in close proximity to the histidine-rich cluster were generated. In order to determine their roles in hydroxylase vs. desaturase activities, residues were replaced with conserved residues from the yeast Delta7-sterol-C5(6)-desaturase, Erg3p. Residues Phe 174, Asn 182, Ser 191, Leu 196, Pro 199, Asn 266, Tyr 269, Asp 271 and Gln 275 appear to be additionally important elements of the active site but their conversion into corresponding Erg3p residues did not lead to a gain in desaturase activity. It is concluded that Sur2p is a membrane-bound hydroxylase that belongs to the diiron family of eight-histidine motif enzymes.  相似文献   

11.
Metallo-beta-lactamases (MbetaLs) are zinc-dependent enzymes able to hydrolyze and inactivate most beta-lactam antibiotics. The large diversity of active site structures and metal content among MbetaLs from different sources has limited the design of a pan-MbetaL inhibitor. Here we report the biochemical and biophysical characterization of a novel MbetaL, GOB-18, from a clinical isolate of a Gram-negative opportunistic pathogen, Elizabethkingia meningoseptica. Different spectroscopic techniques, three-dimensional modeling, and mutagenesis experiments, reveal that the Zn(II) ion is bound to Asp120, His121, His263, and a solvent molecule, i.e. in the canonical Zn2 site of dinuclear MbetaLs. Contrasting all other related MbetaLs, GOB-18 is fully active against a broad range of beta-lactam substrates using a single Zn(II) ion in this site. These data further enlarge the structural diversity of MbetaLs.  相似文献   

12.
13.
Reduction of the soluble methane monooxygenase hydroxylase (MMOH) from Methylococcus capsulatus (Bath) in frozen 4:1 buffer/glycerol solutions at 77 K by mobile electrons generated by gamma-irradiation produces an EPR-detectable, mixed-valent Fe(II)Fe(III) center. At this temperature the conformation of the enzyme remains essentially unaltered during reduction, so the mixed-valent EPR spectra serve to probe the active site structure of the EPR-silent, diiron(III) state. The EPR spectra of the cryoreduced samples reveal that the diiron(III) cluster of the resting hydroxylase has at least two chemically distinct forms, the structures of which differ from that of the equilibrium Fe(II)Fe(III) site. Their relative populations depend on pH, the presence of component B, and formation of the MMOH/MMOB complex by reoxidation of the reduced, diiron(II) hydroxylase. The formation of complexes between MMOB, MMOR, and the oxidized hydroxylase does not measurably affect the structure of the diiron(III) site. Cryogenic reduction in combination with EPR spectroscopy has also provided information about interaction of MMOH in the diiron(III) state with small molecules. The diiron(III) center binds methanol and phenols, whereas DMSO and methane have no measurable effect on the EPR properties of cryoreduced hydroxylase. Addition of component B favors the binding of some exogenous ligands, such as DMSO and glycerol, to the active site diiron(III) state and markedly perturbs the structure of the diiron(III) cluster complexed with methanol or phenol. The results reveal different reactivity of the Fe(III)Fe(III) and Fe(II)Fe(III) redox states of MMOH toward exogenous ligands. Moreover, unlike oxidized hydroxylase, the binding of exogenous ligands to the protein in the mixed-valent state is allosterically inhibited by MMOB. The differential reactivity of the hydroxylase in its diiron(III) and mixed-valent states toward small molecules, as well as the structural basis for the regulatory effects of component B, is interpreted in terms of a model involving carboxylate shifts of a flexible glutamate ligand at the Fe(II)Fe(III) center.  相似文献   

14.
A non-hydrolyzable phosphonate analogue of phosphatidyl inositol, racemic myo-inosityl-(1)-5-oxa-16-trifluoroacetamidohexadecyl phosphonate, was synthesized. This phosphonate inhibited the activity of phosphatidyl inositol-specific phospholipase C (PI-PLC) from Bacillus cereus with an IC50 of approximately 10 mM. Removal of the trifluoroacetyl blocking group followed by covalent binding of the phosphonate to cyanogen bromide activated Sepharose 4B via the amino group produced an affinity matrix specific for the PI-PLC from B. cereus. This affinity matrix was used to purify the phospholipase C from a complex mixture of proteins in a single step. Competition experiments with myo-inositol in the elution medium indicated that specific binding of the enzyme to the matrix most likely involves the enzyme active site. The inositol phosphonate derivatized matrix was stable over several months in neutral and alkaline media and was used repeatedly without loss of binding capacity. These results show that affinity matrices employing myo-inositol phosphonate ligands are useful for isolation and binding studies of PI-PLC and possibly of other enzymes interacting with phosphoinositides or myo-inositol phosphate derivatives.  相似文献   

15.
The diiron(II) cluster in the R2 subunit of Escherichia coli ribonucleotide reductase (RNR) activates oxygen to generate a mu-oxodiiron(III) cluster and the stable tyrosyl radical that is critical for the conversion of ribonucleotides to deoxyribonucleotides. Like those in other diiron carboxylate proteins, such as methane monooxygenase (MMO), the R2 diiron cluster is proposed to activate oxygen by formation of a peroxodiiron(III) intermediate followed by an oxidizing high-valent cluster. Substitution of key active site residues results in perturbations of the normal oxygen activation pathway. Variants in which the active site ligand, aspartate (D) 84, is changed to glutamate (E) are capable of accumulating a mu-peroxodiiron(III) complex in the reaction pathway. Using rapid freeze-quench techniques, this intermediate in a double variant, R2-W48A/D84E, was trapped for characterization by M?ssbauer and X-ray absorption spectroscopy. These samples contained 70% peroxodiiron(III) intermediate and 30% diferrous R2. An Fe-Fe distance of 2.5 A was found to be associated with the peroxo intermediate. As has been proposed for the structures of the higher valent intermediates in both R2 and MMO, carboxylate shifts to a mu-(eta(1),eta(2)) or a mu-1,1 conformation would most likely be required to accommodate the short 2.5 A Fe-Fe distance. In addition, the diferrous form of the enzyme present in the reacted sample has a longer Fe-Fe distance (3.5 A) than does a sample of anaerobically prepared diferrous R2 (3.4 A). Possible explanations for this difference in detected Fe-Fe distance include an O(2)-induced conformational change prior to covalent chemistry or differing O(2) reactivity among multiple diiron(II) forms of the cluster.  相似文献   

16.
The soluble methane monooxygenase (sMMO) hydroxylase is a prototypical member of the class of proteins with non-heme carboxylate-bridged diiron sites. The sMMO subclass of enzyme systems has several distinguishing characteristics, including the ability to catalyze hydroxylation or epoxidation chemistry, a multisubunit hydroxylase containing diiron centers in its alpha subunits, and the requirement of a coupling protein for optimal activity. Sequence homology alignment of known members of the sMMO family was performed in an effort to identify protein regions giving rise to these unique features. DNA sequencing of the Methylococcus capsulatus (Bath) sMMO genes confirmed previously identified sequencing errors and corrected two additional errors, each of which was confirmed by at least one independent method. Alignments of homologous proteins from sMMO, phenol hydroxylase, toluene 2-, 3-, and 4-monooxygenases, and alkene monooxygenase systems revealed an interesting set of absolutely conserved amino-acid residues, including previously unidentified residues located outside the diiron active site of the hydroxylase. By mapping these residues on to the M. capsulatus (Bath) sMMO hydroxylase crystal structure, functional and structural roles were proposed for the conserved regions. Analysis of the active site showed a highly conserved hydrogen-bonding network on one side of the diiron cluster but little homology on the opposite side, where substrates are presumed to bind. It is suggested that conserved residues on the hydroxylase surface may be important for protein-protein interactions with the reductase and coupling ancillary proteins and/or serve as part of an electron-transfer pathway. A possible way by which binding of the coupling protein at the surface of the hydroxylase might transfer information to the diiron active site at the interior is proposed.  相似文献   

17.
Ferrochelatase catalyzes the terminal step in the heme biosynthetic pathway, i.e., the incorporation of Fe(II) into protoporphyrin IX. Various biochemical and biophysical methods have been used to probe the enzyme for metal binding residues and the location of the active site. However, the location of the metal binding site and the path of the metal into the porphyrin are still disputed. Using site-directed mutagenesis on Bacillus subtilis ferrochelatase we demonstrate that exchange of the conserved residues His183 and Glu264 affects the metal affinity of the enzyme. We also present the first X-ray crystal structure of ferrochelatase with iron. Only a single iron was found in the active site, coordinated in a square pyramidal fashion by two amino acid residues, His183 and Glu264, and three water molecules. This iron was not present in the structure of a His183Ala modified ferrochelatase. The results strongly suggest that the insertion of a metal ion into protoporphyrin IX by ferrochelatase occurs from a metal binding site represented by His183 and Glu264.  相似文献   

18.
We previously reported that concanavalin A could bind specifically to liposomes containing phospholipids and lacking glycoconjugates (Biochem. Biophys. Res. Comm. 74, 208, 1977). In the present study we show that the binding of concanavalin A to the liposomes was greatly increased (up to 5 fold) by the presence of phosphatidylinositol in the liposomes. Furthermore, the binding of concanavalin A to phosphatidylinositol-liposomes was specific and could be inhibited by either alpha-methyl mannoside or by myo-inositol. We also found that concanavalin A-induced lymphocyte mitogenesis could be inhibited either by alpha-methyl mannoside or by myo-inositol. Simultaneous addition of both inhibitors to concanavalin A and liposomes showed that inhibition was non-competitive: alpha-methyl mannoside was more inhibitory to liposomes lacking phosphatidylinositol, and myo-inositol was more inhibitory to liposomes containing phosphatidylinositol. This suggests that the binding site for inositol might be different than that for mannose. Equilibrium dialysis and Scatchard plots revealed 4 binding sites each for inositol and mannose at neutral pH. The binding constants of concanavalin A were 0.13 X 10(4) and 0.25 X 10(4) liters/mole respectively for inositol and mannose. We conclude that concanavalin A binds specifically to the inositol portion of phosphatidylinositol.  相似文献   

19.
The active site of myo-inositol dehydrogenase (IDH, EC 1.1.1.18) from Bacillus subtilis recognizes a variety of mono- and disaccharides, as well as 1l-4-O-substituted inositol derivatives. It catalyzes the NAD+-dependent oxidation of the axial alcohol of these substrates with comparable kinetic constants. We have found that 4-O-p-toluenesulfonyl-myo-inositol does not act as a substrate for IDH, in contrast to structurally similar compounds such as those bearing substituted benzyl substituents in the same position. X-ray crystallographic analysis of 4-O-p-toluenesulfonyl-myo-inositol and 4-O-(2-naphthyl)methyl-myo-inositol, which is a substrate for IDH, shows a distinct difference in the preferred conformation of the aryl substituent. Conformational analysis of known substrates of IDH suggests that this conformational difference may account for the difference in reactivity of 4-O-p-toluenesulfonyl-myo-inositol in the presence of IDH. A sequence alignment of IDH with the homologous glucose-fructose oxidoreductase allowed the construction of an homology model of inositol dehydrogenase, to which NADH and 4-O-benzyl-scyllo-inosose were docked and the active site energy minimized. The active site model is consistent with all experimental results and suggests that a conserved tyrosine-glycine-tyrosine motif forms the hydrophobic pocket adjoining the site of inositol recognition. Y233F and Y235F retain activity, while Y233R and Y235R do not. A histidine-aspartate pair, H176 and D172, are proposed to act as a dyad in which H176 is the active site acid/base. The enzyme is inactivated by diethyl pyrocarbonate, and the mutants H176A and D172N show a marked loss of activity. Kinetic isotope effect experiments with D172N indicate that chemistry is rate-determining for this mutant.  相似文献   

20.
At its carboxylate-bridged diiron active site, the hydroxylase component of toluene/o-xylene monooxygenase activates dioxygen for subsequent arene hydroxylation. In an I100W variant of this enzyme, we characterized the formation and decay of two species formed by addition of dioxygen to the reduced, diiron(II) state by rapid-freeze quench (RFQ) EPR, M?ssbauer, and ENDOR spectroscopy. The dependence of the formation and decay rates of this mixed-valent transient on pH and the presence of phenol, propylene, or acetylene was investigated by double-mixing stopped-flow optical spectroscopy. Modification of the alpha-subunit of the hydroxylase after reaction of the reduced protein with dioxygen-saturated buffer was investigated by tryptic digestion coupled mass spectrometry. From these investigations, we conclude that (i) a diiron(III,IV)-W* transient, kinetically linked to a preceding diiron(III) intermediate, arises from the one-electron oxidation of W100, (ii) the tryptophan radical is deprotonated, (iii) rapid exchange of either a terminal water or hydroxide ion with water occurs at the ferric ion in the diiron(III,IV) cluster, and (iv) the diiron(III,IV) core and W* decay to the diiron(III) product by a common mechanism. No transient radical was observed by stopped-flow optical spectroscopy for reactions of the reduced hydroxylase variants I100Y, L208F, and F205W with dioxygen. The absence of such species, and the deprotonated state of the tryptophanyl radical in the diiron(III,IV)-W* transient, allow for a conservative estimate of the reduction potential of the diiron(III) intermediate as lying between 1.1 and 1.3 V. We also describe the X-ray crystal structure of the I100W variant of ToMOH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号