首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microgene Polymerization Reaction (MPR) is used as an experimental system to artificially simulate evolution of short, non-repetitive homo-duplex DNA into multiply-repetitive products that can code for functional proteins. Blunt-end ligation by DNA polymerase is crucial in expansion of homo-duplexes (HDs) into head-to-tail multiple repeats in MPR. The propagation mechanism is known, but formation of the initial doublet (ID) by juxtaposing two HDs and polymerization through the gap has been ambiguous. Initiation events with pairs of HDs using Real-Time PCR were more frequent at higher HD concentrations and slightly below the melting temperature. A process molecularity of about 3.1, calculated from the amplification efficiency and the difference in PCR cycles at which propagation was detected at varying HD concentrations, led to a simple mechanism for ID formation: the gap between two HDs is bridged by a third. Considering thermodynamic aspects of the presumed intermediate “nucleation complex” can predict relative propensity for the process with other HDs.  相似文献   

2.
A monoclonal antibody (MaB) against mouse sarcoma DNA polymerase alpha was isolated from the culture medium of an IgG-secreting hybridoma. The MaB demonstrated reactivity against two murine DNA polymerase alpha preparations and a calf thymus DNA polymerase alpha. Murine sarcoma polymerase was activated in vitro by phosphatidylinositol-4-monophosphate (PIP) showing increased deoxynucleotidyltransferase activity and enhanced binding affinity to activated DNA template. The MaB did not neutralize polymerase activity, but blocked further activation of the enzyme by PIP. Treatment of polymerase with MaB prior to treatment with PIP inhibited both increased enzyme activation and increased binding of the enzyme to DNA template. Treatment of polymerase with MaB subsequent to treatment with PIP did not block enzyme activation or increased DNA template binding. The data suggest that this anti-DNA polymerase alpha IgG is directed against a regulatory subunit of the polymerase rather than the catalytic subunit. The antibody may serve to distinguish between DNA polymerase alpha preparations with distinctly different regulatory subunits.  相似文献   

3.
Luo Y  Chen AY  Qiu J 《Journal of virology》2011,85(1):133-145
Minute virus of canines (MVC) is an autonomous parvovirus that replicates efficiently without helper viruses in Walter Reed/3873D (WRD) canine cells. We previously showed that MVC infection induces mitochondrion-mediated apoptosis and G(2)/M-phase arrest in infected WRD cells. However, the mechanism responsible for these effects has not been established. Here, we report that MVC infection triggers a DNA damage response in infected cells, as evident from phosphorylation of H2AX and RPA32. We discovered that both ATM (ataxia telangiectasia-mutated kinase) and ATR (ATM- and Rad3-related kinase) were phosphorylated in MVC-infected WRD cells and confirmed that ATM activation was responsible for the phosphorylation of H2AX, whereas ATR activation was required for the phosphorylation of RPA32. Both pharmacological inhibition of ATM activation and knockdown of ATM in MVC-infected cells led to a significant reduction in cell death, a moderate correction of cell cycle arrest, and most importantly, a reduction in MVC DNA replication and progeny virus production. Parallel experiments with an ATR-targeted small interfering RNA (siRNA) had no effect. Moreover, we identified that this ATM-mediated cell death is p53 dependent. In addition, we localized the Mre11-Rad50-Nbs1 (MRN) complex, the major mediator as well as a substrate of the ATM-mediated DNA damage response pathway to MVC replication centers during infection, and show that Mre11 knockdown led to a reduction in MVC DNA replication. Our findings are the first to support the notion that an autonomous parvovirus is able to hijack the host DNA damage machinery for its own replication and for the induction of cell death.  相似文献   

4.
Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells.  相似文献   

5.
6.
Reddy MS  Hardin SH 《Biochemistry》2003,42(2):350-362
We have discovered that short guanine-rich oligonucleotides are able to self-associate into higher order structures that stimulate DNA synthesis in vitro without the addition of a conventional template [Ying, J., Bradley, R. K., Jones, L. B., Reddy, M. S., Colbert, D. T., Smalley, R. E., and Hardin, S. H. (1999) Biochemistry 38, 16461-16468]. Our initial analysis indicated the importance of the presence of three contiguous guanines (G) in an oligonucleotide that stimulates DNA polymerization. To gain insight into and to refine sequence requirements for the unexpected DNA synthesis, we analyzed a 231-member guanine-rich octamer library in a fluorescent nucleotide polymerization assay. We observe that, in addition to three contiguous Gs, the presence of a secondary G cluster within the octamer is essential. Furthermore, the location of the primary G cluster in the center of the molecule is most stimulatory. The majority of the octamers that form extended DNA products have a single non-G base separating the primary and secondary G clusters, the identity of which is predominantly thymine (T). Further, a T 5' or 3' of the primary G cluster positively influences the stimulatory function of the oligonucleotide. Overall, the occurrence of bases in the octamer is in the descending order of G > T > A > C. Our studies demonstrate that structures stabilized by noncanonical base pairings are recognized by a DNA polymerase in vitro, and these findings may have relevance within the cell. In particular, the features of these G-rich stimulatory sequences show striking similarities to telomeric sequences that form diverse G-quartet structures in vitro.  相似文献   

7.
Nucleoid-associated proteins are bacterial proteins that are responsible for chromosomal DNA compaction and global gene regulation. One such protein is Escherichia coli Histone-like nucleoid structuring protein (H-NS) which functions as a global gene silencer. Whereas the DNA-binding mechanism of H-NS is well-characterized, its paralogue, StpA which is also able to silence genes is less understood. Here we show that StpA is similar to H-NS in that it is able to form a rigid filament along DNA. In contrast to H-NS, the StpA filament interacts with a naked DNA segment to cause DNA bridging which results in simultaneous stiffening and bridging of DNA. DNA accessibility is effectively blocked after the formation of StpA filament on DNA, suggesting rigid filament formation is the important step in promoting gene silencing. We also show that >1 mM magnesium promotes higher order DNA condensation, suggesting StpA may also play a role in chromosomal DNA packaging.  相似文献   

8.
Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs), promoting their K48-linked ubiquitylation and degradation. Only a single mammalian STUbL, RNF4, has been identified. We show that human RNF111/Arkadia is a new STUbL, which used three adjacent SIMs for specific recognition of poly-SUMO2/3 chains, and used Ubc13–Mms2 as a cognate E2 enzyme to promote nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV)-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response.  相似文献   

9.
We have studied the clonogenic survival response to X-rays and MNNG of V79 Chinese hamster cells and two derivative cell lines, ADPRT54 and ADPRT351, deficient in poly(ADP-ribose) polymerase (PARP) activity. Under conditions of exponential growth, both PARP-deficient cell lines are hypersensitive to X-rays and MNNG compared to their parental V79 cells. In contrast, under growth-arrested, confluent conditions, V79 and PARP-deficient cells become similarly sensitive to X-rays and MNNG suggesting that PARP may be involved in the repair of X-ray or MNNG-induced DNA damage in logarithmically growing cells but not in growth-arrested confluent cells. This suggestion, however, creates a dilemma as to how PARP can be involved in DNA repair in only selected growth phases while it is functionally active in all growth phases. To explain these paradoxical results and resolve this dilemma we propose a hypothesis based on the consistent observation that inhibition of PARP results in a significant increase in sister chromatid exchange (SCEs). Thus, we propose that PARP is a guardian of the genome that protects against DNA recombination. We have extended this theme to provide an explanation for our results and the studies done by many others.  相似文献   

10.
The partner and localizer of breast cancer 2 susceptibility protein (PALB2) is crucial for the repair of DNA damage by homologous recombination. Here, we report that chromatin-association motif (ChAM), an evolutionarily conserved motif in PALB2, is necessary and sufficient to mediate its chromatin association in both unperturbed and damaged cells. ChAM is distinct from the previously described PALB2 DNA-binding regions. Deletion of ChAM decreases PALB2 and Rad51 accumulation at DNA damage sites and confers cellular hypersensitivity to the genotoxic drug mitomycin C. These results suggest that PALB2 chromatin association via ChAM facilitates PALB2 function in the cellular resistance to DNA damage.  相似文献   

11.
12.
DNA linkage analysis of X-linked retinoschisis   总被引:10,自引:2,他引:8  
Summary Four families with juvenile retionoschisis (RS) have been studied by linkage analysis utilizing eleven polymorphic X-chromosomal markers. The results suggest a close linkage between DXS43, DXS41, and DXS208 and the RS locus at Xp22. The RS locus is distal to the OTC locus, DXS84, and the DMD locus but proximal to DXS85. No recombination events were observed between the RS locus and DXS43 and DXS41. The maximum likelihood estimate of the recombination fraction () was thus zero and the peak lod scores () were 4.98 (DXS43) and 4.09 (DXS41). The linkage data suggest that the gene order on Xp is DXS85-(DXS43, RS, DXS41)-DMD-DXS84-OTC.  相似文献   

13.
The telomere specific shelterin complex, which includes TRF1, TRF2, RAP1, TIN2, TPP1 and POT1, prevents spurious recognition of telomeres as double-strand DNA breaks and regulates telomerase and DNA repair activities at telomeres. TIN2 is a key component of the shelterin complex that directly interacts with TRF1, TRF2 and TPP1. In vivo, the large majority of TRF1 and TRF2 are in complex with TIN2 but without TPP1 and POT1. Since knockdown of TIN2 also removes TRF1 and TRF2 from telomeres, previous cell-based assays only provide information on downstream effects after the loss of TRF1/TRF2 and TIN2. Here, we investigated DNA structures promoted by TRF2–TIN2 using single-molecule imaging platforms, including tracking of compaction of long mouse telomeric DNA using fluorescence imaging, atomic force microscopy (AFM) imaging of protein–DNA structures, and monitoring of DNA–DNA and DNA–RNA bridging using the DNA tightrope assay. These techniques enabled us to uncover previously unknown unique activities of TIN2. TIN2S and TIN2L isoforms facilitate TRF2-mediated telomeric DNA compaction (cis-interactions), dsDNA–dsDNA, dsDNA–ssDNA and dsDNA–ssRNA bridging (trans-interactions). Furthermore, TIN2 facilitates TRF2-mediated T-loop formation. We propose a molecular model in which TIN2 functions as an architectural protein to promote TRF2-mediated trans and cis higher-order nucleic acid structures at telomeres.  相似文献   

14.
DNA polymerases replicate the genome by associating with a range of other proteins that enable rapid, high-fidelity copying of DNA. This complex of proteins and nucleic acids is termed the replisome. Proteins of the replisome must interact with other networks of proteins, such as those involved in DNA repair. Many of the proteins involved in DNA polymerization and the accessory proteins are known, but the array of proteins they interact with, and the spatial and temporal arrangement of these interactions, are current research topics. Mass spectrometry is a technique that can be used to identify the sites of these interactions and to determine the precise stoichiometries of binding partners in a functional complex. A complete understanding of the macromolecular interactions involved in DNA replication and repair may lead to discovery of new targets for antibiotics against bacteria and biomarkers for diagnosis of diseases, such as cancer, in humans.  相似文献   

15.
DNA polymerases replicate the genome by associating with a range of other proteins that enable rapid, high-fidelity copying of DNA. This complex of proteins and nucleic acids is termed the replisome. Proteins of the replisome must interact with other networks of proteins, such as those involved in DNA repair. Many of the proteins involved in DNA polymerization and the accessory proteins are known, but the array of proteins they interact with, and the spatial and temporal arrangement of these interactions, are current research topics. Mass spectrometry is a technique that can be used to identify the sites of these interactions and to determine the precise stoichiometries of binding partners in a functional complex. A complete understanding of the macromolecular interactions involved in DNA replication and repair may lead to discovery of new targets for antibiotics against bacteria and biomarkers for diagnosis of diseases, such as cancer, in humans.  相似文献   

16.
Reactive oxygen species generate some 20,000 base lesions per human cell per day. The vast majority of these potentially mutagenic or cytotoxic lesions are subject to base excision repair (BER). Although chromatin remodelers have been shown to enhance the excision of oxidized bases from nucleosomes in vitro, it is not clear that they are recruited to and act at sites of BER in vivo. To test the hypothesis that cells possess factors that enhance BER in chromatin, we assessed the capacity of nuclear extracts from human cells to excise thymine glycol (Tg) lesions from exogenously added, model nucleosomes. The DNA glycosylase NTHL1 in these extracts was able to excise Tg from both naked DNA and sites in nucleosomes that earlier studies had shown to be sterically accessible. However, the same extracts were able to excise lesions from sterically-occluded sites in nucleosomes only after the addition of Mg2+/ATP. Gel mobility shift assays indicated that nucleosomes remain largely intact following the Mg2+/ATP −dependent excision reaction. Size exclusion chromatography indicated that the NTHL1-stimulating activity has a relatively low molecular weight, close to that of NTHL1 and other BER glycosylases; column fractions that contained the very large chromatin remodeling complexes did not exhibit this same stimulatory activity. These results indicate that cells possess a factor(s) that promotes the initiation of BER in chromatin, but differs from most known chromatin remodeling complexes.  相似文献   

17.
18.
19.
A new virus previously arose in BALB/c females mated repeatedly to C57BL/6 (B6) males and then injected with fixed, activated B6 male spleen cells (V. S. Ter-Grigorov, O. Krifuks, E. Liubashevsky, A. Nyska, Z. Trainin, and V. Toder, Nat. Med. 3:37-41, 1997). In the present study, BALB/cJ mice inoculated with virus-containing plasma from affected mice developed splenomegaly, which was caused by increased numbers of Sca-1(+) Lin(-) hematopoietic stem cells (HSC) and their differentiated progeny. Biological and molecular analyses of a new virus revealed a mixture of murine leukemia viruses (MuLVs). These MuLVs comprised ecotropic and mink lung cell focus-forming (MCF) virus classes and are termed Rauscher-like MuLVs because they bear numerous similarities to the ecotropic and MCF viruses of the Rauscher MuLV complex but do not include a spleen focus-forming virus. The ecotropic virus component alone transferred some disease characteristics, while MCF virus alone did not. Thus, we have described a novel virus mixture, termed Rauscher-like MuLV, that causes an increase in hematopoiesis due to activation of pluripotent HSC. Experiments using mice and a protocol that replicated the pregnancy and immunization strategy of the original experiment demonstrated that endogenous BALB/c mouse ecotropic and xenotropic MuLVs are activated by these treatments. Emv1 was expressed in the spleens of multiparous mice but not in those of virgin mice, and Bxv1Emv1-pseudotyped MuLVs were recovered following injection of fixed, activated B6 cells. Thus, multiple pregnancies and allostimuli appear to have provided the signals required for activation of and recombination among endogenous viruses and could have resulted in generation of the Rauscher-like MuLV mixture.  相似文献   

20.
Genomic regions that are unusually divergent between closely related species or racial groups can be particularly informative about the process of speciation or the operation of natural selection. The two sequenced genomes of cultivated Asian rice, Oryza sativa, reveal that at least 6% of the genomes are unusually divergent. Sequencing of ten unlinked loci from the highly divergent regions consistently identified two highly divergent haplotypes with each locus in nearly complete linkage disequilibrium among 25 O. sativa cultivars and 35 lines from six wild species. The existence of two highly divergent haplotypes in high divergence regions in species from all geographical areas (Africa, Asia, and Oceania) was in contrast to the low polymorphism and low linkage disequilibrium that were observed in other parts of the genome, represented by ten reference loci. While several natural processes are likely to contribute to this pattern of genomic variation, domestication may have greatly exaggerated the trend. In this hypothesis, divergent haplotypes that were adapted to different geographical and ecological environments migrated along with humans during the development of domesticated varieties. If true, these high divergence regions of the genome would be enriched for loci that contribute to the enormous range of phenotypic variation observed among domesticated breeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号