首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three binding sites on highly purified lysosomal beta-glucosidase from human placenta were identified by studies of the effects of interactions of various enzyme modifiers. The negatively charged lipids, taurocholate and phosphatidylserine, were shown to be noncompetitive, nonessential activators of 4-methylumbelliferyl-beta-D-glucoside hydrolysis. Similar results were observed using the natural substrate, glucosyl ceramide, and low concentrations of taurocholate (less than 1.8 mM) or phosphatidylserine (0.5 mM). However, higher concentrations resulted in a complex partial inhibition of glucosyl ceramide hydrolysis. Increasing concentrations of phosphatidylserine obviated the effects of taurocholate, suggesting that these compounds compete for a common binding site on the enzyme. Glucosyl sphingosine and its N-hexyl derivative were potent noncompetitive inhibitors of the enzyme activity using either substrate. Taurocholate (or phosphatidylserine) and glucosyl sphingosine were shown to be mutually exclusive, indicating competition for a common binding site. In contrast, octyl- and dodecyl-beta-glucosides were linear-mixed-type inhibitors of glucosyl ceramide or 4-methylumbelliferyl-beta-D-glucoside hydrolysis, indicating at least two binding sites on the enzyme. Inhibition by these alkyl beta-glucosides was observed only in the presence of taurocholate or phosphatidylserine. The competitive component [Ki (slope)] for the two alkyl beta-glucosides decreased with increasing alkyl chain length, and was unaffected by increasing taurocholate or phosphatidylserine concentration. The noncompetitive component [Ki (intercept)] was nearly identical for both alkyl beta-glucosides and was decreased by increasing taurocholate or phosphatidylserine concentration. These results indicated that the negatively charged lipids and alkyl beta-glucosides were not mutually exclusive, but interacted with different binding sites on the enzyme. Gluconolactone was shown to protect the enzyme from inhibition by the catalytic site-directed covalent inhibitor, conduritol B indicating an interaction at a common binding site. In the presence of substrate, taurocholate facilitated the inhibition of gluconolactone or conduritol B epoxide. These studies indicated that lysosomal beta-glucosidase had at least three binding sites: (i) a catalytic site which cleaves the beta-glucosidic moiety, (ii) an aglycon site which binds the acyl or alkyl moieties of substrates and some inhibitors, and (iii) a hydrophobic site which interacts with negatively charged lipids and facilitates enzyme catalysis.  相似文献   

2.
The fluorescence properties of human milk bile salt-activated lipase (BAL) in aqueous solution at various pH and in the presence of denaturing reagents and bile salts have been studied by measuring the accessibility of tryptophan side chains to the iodide ion. The fluoresence quenching studies of BAL demonstrated that the BAL conformation was pH sensitive. At pH 7.5, in the presence of denaturing reagents, all of the BAL tryptophan became accessible to iodide, suggesting the presence of random conformation in this medium. The decrease in tryptophan accessibility to iodide with various bile salt activators was found to correlate with the corresponding activity of BAL with long chain triacylglycerol substrate.  相似文献   

3.
(1) The interaction of bile-salt-stimulated human milk lipase and liposomal membranes has been investigated in the presence or absence of sodium taurocholate. Freshly purified enzyme enhances the permeability of liposomal membranes but thermally inactivated enzyme does not. (2) The ability of the enzyme to catalyze the hydrolisys of a relatively hydrophilic substrate, 4-nitrophenyl acetate, and a more hydrophobic substrate, 4-nitrophenyl palmitate, has also been measured in media containing small unilamelar vesicles of egg phosphatidylcholine in both the absence and presence of taurocholate, and also in the presence of free taurocholate in the absence of liposomes. (3) The enzyme-catalyzed hydrolysis of 4-nitrophenyl acetate is enhanced in all of these systems, but 4-nitrophenyl palmitate is protected from enzymic attack in the phosphatidylcholine-bile salt systems. If free taurocholate be present in the system before 4-nitrophenyl palmitate is added, then, and only then, is enzymic activity observed. (4) These results have been interpreted in terms of the importance of the microenvironment around the substrate and the role played by the bile salt surfactant in stimulating the enzyme.  相似文献   

4.
The influence of taurocholate on very low density lipoprotein (VLDL) triacylglycerol synthesis and secretion was studied by isolated rat liver-parenchymal cells. The incorporation of [3H]glycerol into cell-associated and VLDL triacylglycerols were measured after incubation in medium containing 0.75 mM oleate. Taurocholate caused a maked decrease in VLDL [3H]triacylglycerol secretion from the hepatocytes: 50-150 microM taurocholate inhibited secretion of VLDL [3H]triacylglycerols by 70-90%. Similar results were obtained when the mass of secreted VLDL triacylglycerols was measured. Taurocholate caused a decreased secretion of VLDL [3H]triacylglycerols after 15-30 min incubation. A higher amount of cellular triacylglycerols was found in taurocholate-supplemented cells. Furthermore taurocholate did not change the intracellular lipolysis of triacylglycerols. These results suggest that bile acids interfere more probably with the assembly and/or secretion of VLDL-particles and not with earlier stages of VLDL formation, e.g. triacylglycerol synthesis.  相似文献   

5.
Phosphatidate (PA) phosphatase, the enzyme that catalyzes the penultimate step in triacylglycerol synthesis, is a cytosolic enzyme that must associate with the membrane where its substrate PA resides. Fluorescence spectroscopy was used to measure the interaction of yeast PAH1-encoded PA phosphatase with model liposome membranes. PA phosphatase contains five tryptophan residues and exhibited inherit fluorescence that increased upon interaction with phosphatidylcholine liposomes. The interaction was enhanced by inclusion of other phospholipids and especially the substrate PA. Interaction was dependent on both the concentration of phosphatidylcholine-PA liposomes as well as the surface concentration of PA in liposomes. Mg(2+) ions, which were required for catalysis, did not affect PA phosphatase interaction with phosphatidylcholine-PA liposomes. PA phosphatase was a substrate for protein kinase A, protein kinase C, and casein kinase II, and these phosphorylations decreased PA phosphatase interaction with phosphatidylcholine-PA liposome membranes.  相似文献   

6.
Oral administration of epsilon-polylysine to rats reduced the peak plasma triacylglycerol concentration. In vitro, epsilon-polylysine and polylysine strongly inhibited the hydrolysis, by either pancreatic lipase or carboxylester lipase, of trioleoylglycerol (TO) emulsified with phosphatidylcholine (PC) and taurocholate. The epsilon-polylysine concentration required for complete inhibition of pancreatic lipase, 10 microg/ml, is 1,000 times lower than that of BSA required for the same effect. Inhibition requires the presence of bile salt and, unlike inhibition of lipase by other proteins, is not reversed by supramicellar concentrations of bile salt. Inhibition increases with the degree of polylysine polymerization, is independent of lipase concentration, is independent of pH between 5.0 and 9.5, and is accompanied by an inhibition of lipase binding to TO-PC emulsion particles. However, epsilon-polylysine did not inhibit the hydrolysis by pancreatic lipase of TO emulsions prepared using anionic surfactants, TO hydrolysis catalyzed by lingual lipase, or the hydrolysis of a water-soluble substrate. In the presence of taurocholate, epsilon-polylysine becomes surface active and adsorbs to TO-PC monomolecular films. These results are consistent with epsilon-polylysine and taurocholate forming a surface-active complex that binds to emulsion particles, thereby retarding lipase adsorption and triacylglycerol hydrolysis both in vivo and in vitro.  相似文献   

7.
A series of one- and two-dimensional 1H-NMR relaxation measurements has been conducted on simple and mixed micellar aggregates of taurocholate, diphenylvaleroylphosphatidylcholine (diPVPC) and egg yolk phosphatidylcholine (egg PC). The results are interpreted to provide structural and dynamic comparisons between micelles and vesicles, between phospholipids of varying chain length, and between different lipid components within the same micellar aggregate. Both chemical shift changes and two-dimensional nuclear Overhauser effect cross peaks suggest direct interaction of taurocholate and PC chemical sites, although the latter observations may also be accounted for by PC-PC interactions. These experiments demonstrate the promise of NMR relaxation techniques for investigations of molecular organization in model substrate for lipolytic enzymes.  相似文献   

8.
Previous studies have shown that up to a half of infused triacylglycerol does not exit the intestine via lymphatics. This suggests the presence of a mucosal lipase which could provide fatty acids for potential transport via the portal vein. The present study describes an acid-active lipase in rat intestinal mucosa. Acid lipase was assayed using a glyceryl tri[14C]oleate emulsion (pH 5.8). Mucosal homogenates were differentially centrifuged to yield cellular organelles and cytosol. Cells were sequentially released from villi using citrate and EDTA. The enzyme was found to be most active in the proximal quarter intestine and in the upper third of villi. Its greatest activity was in the lysosomal fraction. Esophageal diversion demonstrated that lingual lipase was not the precursor of the mucosal acid lipase. Bile salts stimulated activity 3- to 5-fold, but other neutral or anionic detergents were inhibitory. Of the detergents tested, taurocholate at super critical micellar concentrations could restore activity only with SDS. Sepharose 6B chromatography suggested that the enzyme partitioned into an SDS and taurocholate mixed micelle. We conclude that mucosal acid lipase is a distinct, intrinsic enzyme of the intestinal mucosa. It is predominantly lysosomal in origin. The location of its greatest activity in the villus tips of the proximal intestine suggests that it is potentially involved in mucosal triacylglycerol disposal.  相似文献   

9.
This paper reports the results of ultracentrifugation experiments devised for investigating the interactions occurring in the conditions of the enzymatic assay between glucosylceramidase and the components of the substrate dispersion. This dispersion contains, besides glucosylceramide, taurocholate and oleic acid. It has been found that glucosylceramide aggregates with oleic acid, while taurocholate is unable to associate with the sphingolipid, but improves the stability of the dispersion. When a crude glucosylceramidase placental preparation is incubated with the assay mixture the enzyme is almost totally bound to the glucosylceramide-oleic acid particles. The binding between glucosylceramidase and the substrate-containing particles is dramatically depressed by changes of experimental conditions which negatively influence also the enzyme activity such as: (1) a decrease in the molarity of the citrate/phosphate buffer; (2) an increase of the buffer pH, and (3) an increase of the taurocholate concentration. An excess of oleic acid neither inhibits the binding nor the activity. These results strongly suggest that glucosylceramidase activity is directly correlated with the binding of the enzyme to the lipid interface of the substrate-containing particles. We conclude that the enzymatic mechanism of glucosylceramide hydrolysis involves at least two steps: first the physical localization of the enzyme at the lipid-water interface, second the hydrolysis of the substrate glucosidic bond.  相似文献   

10.
C S Wang  J A Hartsuck  D Downs 《Biochemistry》1988,27(13):4834-4840
The simplest reaction scheme for the conversion of trioleoylglycerol to glycerol catalyzed by human milk bile salt activated lipase can be described by consecutive first-order reactions: triacylglycerol k1----diacylglycerol k2----monoacylglycerol k3----glycerol. In these equations, k1, k2, and k3 represent the pseudo-first-order rate constants for the indicated reactions. The results from this study show that although the relative ratio of k2/k1 or k3/k1 may change somewhat, depending on the reaction conditions, the enzyme has a reactivity with the order of dioleoylglycerol greater than trioleoylglycerol greater than monooleoylglycerol. The incomplete equilibration of the intermediary diacylglycerol and monoacylglycerol with the bulk of the substrate during sequential lipolysis of triacylglycerol provides a means for their efficient lipolysis and minimizes the effect of partial acylglycerol as competitive substrates for intact triacylglycerol lipolysis. Taurocholate functions both as an activator of the enzyme and also as fatty acid acceptor to relieve product inhibition. In the presence of sufficient taurocholate, bovine serum albumin is no longer required as a fatty acid acceptor for the in vitro lipolysis.  相似文献   

11.
1,2-Ethylene-di-N-n-propylcarbamate (1) is characterized as an essential activator of Pseudomonas species lipase while 1,2-ethylene-di-N-n-butyl-, t-butyl-, n-heptyl-, and n-octyl-carbamates (2-5) are characterized as the pseudo substrate inhibitors of the enzyme in the presence of the detergent taurocholate or triton X-100. The inhibition and activation reactions are more sensitive in taurocholate than in triton X-100. From CD studies, the enzyme changes conformations in the presence of the detergent and further alters conformations by addition of the carbamate activator or inhibitor into the enzyme-detergent adduct. Therefore, this study suggests that the conformational change of lipase during interfacial activation is a continuous process to expose the active site of the enzyme to substrate. From 600 MHz (1)H NMR studies, the conformations of the alpha- and beta-methylene moieties of the activator 1,2-ethylene-di-N-n-propylcarbamate in the presence of substrate change after adding taurocholate into the mixture, and the conformations of the beta-methylene moieties of the inhibitor 1,2-ethylene-di-N-n-butylcarbamate in the presence of substrate alter after adding taurocholate into the mixture.  相似文献   

12.
The lipase from Malassezia globosa (SMG1) was identified to be strictly specific for mono- and diacylglycerol but not triacylglycerol. The crystal structures of SMG1 were solved in the closed conformation, but they failed to provide direct evidence of factors responsible for this unique selectivity. To address this problem, we constructed a structure in the open, active conformation and modeled a diacylglycerol analogue into the active site. Molecular dynamics simulations were performed on this enzyme-analogue complex to relax steric clashes. This bound diacylglycerol analogue unambiguously identified the position of two pockets which accommodated two alkyl chains of substrate. The structure of SMG1-analogue complex revealed that Leu103 and Phe278 divided the catalytic pocket into two separated moieties, an exposed groove and a narrow tunnel. Analysis of the binding model suggested that the unique selectivity of this lipase mainly resulted from the shape and size of this narrow tunnel, in which there was no space for the settlement of the third chain of triacylglycerol. These results expand our understanding on the mechanism underlying substrate selectivity of enzyme, and could pave the way for site-directed mutagenesis experiments to improve the enzyme for application.  相似文献   

13.
The previously observed differences in properties of human leucocyte and fibroblast cerebroside sulphate sulphatase (cerebroside-3-sulphate 3-sulphohydrolase, EC 3.1.6.8) measured in vitro have been found to be due to subtle differences in incubation conditions. Maximum enzyme activity was observed with either crude sodium taurocholate or with pure sodium taurodeoxycholate. The optimum bile salt concentration of the enzyme in leucocyte or fibroblast extracts, but not the pure ox liver enzyme, was critically dependent on protein concentration. At low concentrations of the latter (less than 0.1 mg/ml), maximum activity was observed at taurocholate concentrations less than 0.5 mg/ml; at protein concentrations greater than 0.20 mg/ml substantially more bile acid (more than 1.3 mg/ml) was required to stimulate maximum activity. Addition of Triton X-100 or bovine serum albumin to the incubation mixtures increased the optimum taurocholate concentration. The dependence of the bile salt optimum on protein concentration appears to be related to the binding of the lipid substrate to membranous protein present in the tissue extracts. Release of the bound lipid is effected either by increasing the bile salt concentration or by adding Triton X-100. In the presence of excess bile salt human leucocyte, fibroblast and liver cerebroside sulphate sulphatase activity is stimulated by Triton at low protein concentrations; under identical conditions the pure or crude ox-liver enzyme is substatially inhibited. Our data also show that cerebroside sulphate sulphatase activity measured in extracts from leucocytes and fibroblasts, the tissues normally used to effect a diagnosis of metachromatic leucodystrophy, is the result of a complex interaction of bile salt, protein, Triton X-100 and probably the substrate itself. Any slight alteration in any of those factors, without a corresponding change in any or all of the others, can have a marked effect on the measured enzyme activity, and may lead to errors in the diagnosis of metachromatic leucodystrophy.  相似文献   

14.
An enzyme with lipase and esterase activity was purified from bovine pancreas. Furthermore, a non-radioactive lipase assay was developed which is 100 times more sensitive than the conventional methods and allowed the characterization of the lipase activity of the enzyme. The lipase activity increased 42 times in the presence of 10 mM sodium taurocholate, which for the first time provides direct evidence that a bile salt-activated lipase (bp-BAL) was isolated from bovine pancreas. This conclusion is further supported by the fact that the N-terminal amino acid sequence of this lipase/esterase is 88% homologous to human milk BAL and human pancreatic BAL. Staining with various lectins showed that bp-BAL is a glycoprotein which contains fucose residues. Previously from bovine pancreas a lysophospholipase has been purified and a gene was cloned and sequenced encoding an enzyme with cholesterol esterase/lysophospholipase activity. Comparison of the N-terminal amino acid sequence of bp-BAL with the deduced amino acid sequence of the latter revealed that they are identical. Furthermore, the molecular weight of the purified bp-BAL of 63,000, as estimated by SDS-PAGE, is very similar to that of the purified lysophospholipase (65,000) and to the theoretical molecular weight of 65,147 of the cholesterol esterase/lysophospholipase. These data suggest that these three enzymes are one and the same.  相似文献   

15.
We have recently proposed a catalytic mechanism for human plasma lecithin-cholesterol acyltransferase (EC 2.3.1.43) (J. Biol. Chem. (1986) 261, 7032-7043), implicating single serine and histidine residues in phosphatidylcholine cleavage and two cysteine residues in cholesterol esterification. We now confirm the involvement of serine and histidine in catalysing the phospholipase A2 action of lecithin-cholesterol acyltransferase by demonstrating the inhibition of this activity by phenylboronic acid (Ki = 1.23 mM) and m-aminophenylboronic acid (Ki = 2.32 mM), inhibitors of known serine/histidine hydrolases. The specificity of the interaction of aromatic boronic acids with catalytic serine and histidine residues and the putative formation of a tetrahedral adduct between boron and the lecithin-cholesterol acyltransferase serine hydroxyl group which is similar to the transition-state intermediate formed between phosphatidylcholine and the catalytic serine residue was suggested by: substrate protection against inhibition by phenylboronic acids; a much reduced incorporation of phenylmethane[35S]sulphonyl fluoride into the enzyme in the presence of phenylboronic acid; the lack of interaction of histidine- or serine-modified enzyme with immobilized phenylboronic acid in the presence of glycerol (Ve/Vo = 2.7 and 2.3 respectively) when compared to the native enzyme (Ve/Vo = 5.25). Fatty acyl-lecithin-cholesterol acyltransferase, produced by incubation of the enzyme with a lecithin-apolipoprotein A-I proteoliposome substrate, was not retarded upon the sorbent column (Ve/Vo = 1.5). Modification of the enzyme's two free cysteine residues with 5,5'-dithiobis(2-nitrobenzoic acid) or potassium ferricyanide reduced (Ve/Vo = 3.5) but did not abolish retardation on the sorbent column, indicating that these modifications resulted in steric hinderance of the interaction of the boron atom with the lecithin-cholesterol acyltransferase serine hydroxyl group. These data suggest that the serine and histidine residues are proximal within the enzyme catalytic site and that both cysteine thiol groups are close to the serine hydroxyl group. The presence of significant amino-acid sequence homologies between lecithin-cholesterol acyltransferase, triacylglycerol lipases and the transacylases of fatty acid synthase is also reported.  相似文献   

16.
The catalytic motif (YSASK) at the active site of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is conserved across different species. The crystal structures of the human, guinea pig and mouse enzymes have been resolved to help identify the non-conserved residues at the active site. A tyrosine residue (Y177) upstream of the catalytic motif in human 11beta-HSD1 represents the largest difference at the active sites between the human and the rodent enzyme where the corresponding residue is glutamine. Although Y177 was postulated as a potential hydrogen bond donor in substrate binding in crystal structure-based modeling, no experimental evidence is available to support this notion. Here, we report that Y177 is not a hydrogen bond donor in substrate binding because removal of the hydroxyl group from its side chain by mutagenesis (Y177F) did not significantly change the Km value for cortisone. However, removal of the hydrophobic side chain by changing tyrosine to alanine (Y177A) or substitution with a hydrophilic side chain by changing tyrosine to glutamine (Y177Q) increased Km values for cortisone. These data suggest that Y177 is involved in substrate binding through its hydrophobic side chain but not by hydrogen bonding. In addition, the three mutations had little effect on the binding of the rodent substrate 11-dehydrocorticosterone, suggesting that Y177 does not confer substrate specificity. However, the same mutations reduced the affinity of the licorice derived 11beta-HSD1 inhibitor glycyrrhetinic acid by about 6- to 10-fold. Interestingly, the affinity of carbenoxolone, the hemisuccinate ester of glycyrrhetinic acid with a similar potency against the wildtype enzyme, was not drastically affected by the same mutations at Y177. These data suggest that Y177 has a unique role in inhibitor binding. Molecular modeling with glycyrrhetinic acid led to findings consistent with the experimental data and provided potential interaction mechanisms. Our data suggest that Y177 plays an important role in both substrate and inhibitor binding but it is unlikely a hydrogen bond donor for the substrate.  相似文献   

17.
Fractionation of pancreatic juice by heparin-Sepharose and cholate-Sepharose affinity chromatography indicated that pancreatic carboxylesterase can be separated from pancreatic lipase with the former retained and the latter unretained by both columns. The chromatographic behavior of pancreatic carboxylesterase was found to be similar to that of human milk bile salt-activated lipase. The partially purified pancreatic carboxylesterase had a specific activity of 30 mumol/min per mg protein when assayed with p-nitrophenyl acetate. The reaction mechanism of human pancreatic carboxylesterase was studied using p-nitrophenyl acetate as substrate and taurocholate as activator. The reaction of the enzyme was found to follow a rapid-equilibrium random mechanism. Because of the presence of basal activity, the role of taurocholate can be considered as a non-essential activator and the dissociation constant for the enzyme-taurocholate binary complex was determined to be 0.20 mM. The activation effect of taurocholate consists in increasing the affinity of the enzyme to the substrate (5.6-fold) and in increasing the Vmax (2.3-fold). Based on the kinetic property of human pancreatic carboxylesterase and human milk bile salt-activated lipase with p-nitrophenyl acetate, cholesterol oleate and triolein as substrate, we conclude that they share common substrate specificity but show minor differences in kinetic parameters. Fluorescence studies indicated that both enzymes showed a decreased intrinsic tryptophanyl fluorescence upon incubation with taurocholate. This indicates that bile salt caused a conformational change of the enzymes, with a resultant decreased hydrophobicity in the microenvironment of tryptophan residues.  相似文献   

18.
The characteristics of neutral cholesteryl ester hydrolase activities found in the microsomal and cytosolic subcellular fractions of rat lactating mammary tissue were investigated. The enzymes were assayed using cholesteryl oleate dispersed as a mixed micelle with phosphatidylcholine and sodium taurocholate (molar ratio 1:4:2) as substrate. This method gave activities approx. 20-fold higher than those seen when cholesteryl oleate was added in ethanol. Addition of phosphatidylcholine and sodium taurocholate to the assays using the ethanol-dissolved substrate did not increase the activities observed. When the cholesteryl oleate was dispersed with phosphatidylcholine only (molar ratio, 1:4) the activity of the two neutral cholesteryl ester hydrolases was also decreased considerably compared to that found with mixed micelles. In this case, however, approx. 60% of the cytosolic, but only 10% of the microsomal activity, was restored by separate addition of sodium taurocholate. The activities of both the microsomal and the cytosolic neutral cholesteryl ester hydrolases were inhibited by MgCl2, and this inhibition was almost completely reversed by the addition of an equimolar concentration of ATP. At a fixed concentration of MgCl2 increasing concentrations of ATP increased the enzyme activities in a dose-dependent way. The activity of the microsomal, but not the cytosolic enzyme was enhanced by a cyclic AMP-dependent protein kinase and both activities were inhibited by alkaline phosphatase (bovine milk). These results provide evidence for the regulation of neutral cholesteryl ester hydrolases in the rat lactating mammary gland by mechanisms involving phosphorylation-dephosphorylation and therefore suggest that these enzymes may be under hormonal control.  相似文献   

19.
Fluorescent triacylglycerols containing pyrenedecanoic (P10) and pyrenebutanoic (P4) acids were synthesized and their hydrolysis by lipases from human gastric juice and stomach homogenate was investigated. The existence in stomach homogenate of four different lipolytic enzymes hydrolyzing fluorescent triacylglycerols is suggested by the comparison of various enzymatic properties: acyl chain length specificity, heat inactivation and effect of detergents (Triton X-100 and taurocholate), serum albumin, diethyl-para-nitrophenyl phosphate (E600) and other inhibitors. (1) The acid pH4-lipase hydrolyzes P10-triacylglycerols but not P4-triacylglycerol and exhibited the characteristic properties of the lysosomal lipase: the maximal activating effect of detergents occurs at relatively high concentrations (the substrate/detergent optimal molar ratios were 1:5 and 1:25 for triacylglycerols/taurocholate and triacylglycerols/Triton X-100, respectively); its activity was strongly inhibited by para-chloromercuribenzoate (2.5 mmol/l), but was not significantly affected by serum albumin and E600 (10(-2) mmol/l). (2) The neutral pH7-lipase hydrolyzes P10-triacylglycerols but not P4-triacylglycerol. It is resistant to E600 and heat-stable, similarly to the acid pH4-lipase, but it is well discriminated from the acid enzyme by its substrate/detergent optimal molar ratios (1:2 and 1:3 for triacylglycerols/taurocholate and triacylglycerols/Triton X-100, respectively), whereas higher detergent concentrations, optimal for the acid lipase, are strongly inhibitory for the neutral enzyme. (3) The pH5-lipase present in gastric juice as well as in stomach homogenate exhibited properties obviously discriminating it from the other lipolytic enzymes from stomach homogenate: broad substrate specificity for P10- as well as P4-triacylglycerols, activation by low concentrations of amphiphiles (with optimal ratios triacylglycerols/taurocholate, triacylglycerols/taurocholate and triacylglycerols/phosphatidylcholine around 1:1, 1:3 and 1:0.1, respectively), heat-lability, strong activation by serum albumin and inhibition by E600 (10(-2) mmol/l). This pH5-lipase is the sole lipolytic enzyme present in gastric juice and is probably identical with the well-known 'gastric' lipase. (4) A pH7.5-enzyme is characterized by its specificity for P4-triacylglycerols, its heat-lability at 50 degrees C and its strong inhibition by E600 (10(-2) mmol/l).  相似文献   

20.
The nature of transport pathway(s) for the biliary excretion of taurocholate and tauroursodeoxycholate was examined by comparing the biliary transport maximum (Tm) value for taurocholate during the infusion of taurocholate alone with that of taurocholate combined with tauroursodeoxycholate. The combined infusion of tauroursodeoxycholate resulted in an appreaciable excretion of tauroursodeoxycholate while the excretion rate of taurocholate was not reduced in comparison with the Tm value of taurocholate alone. Furthermore, the Tm state of taurocholate was maintained for a much longer period with the simultaneous infusion of tauroursodeoxycholate than by the infusion of taurocholate alone. The cholestasis usually produced by the excess infusion of taurocholate was also prevented when tauroursodeoxycholate was simultaneously infused. Since plasma taurocholate concentration was not significantly different between the two rat groups, the results suggest the presence of the facilitative interaction of tauroursodeoxycholate with the taurocholate excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号