首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cellular function of p70S6K: a role in regulating cell motility   总被引:5,自引:0,他引:5  
The 70 kDa ribosomal S6 kinase (p70S6K) is activated by numerous mitogens, growth factors and hormones. Activation of p70S6K occurs through phosphorylation at a number of sites and the primary target of the activated kinase is the 40S ribosomal protein S6, a major component of the machinery involved in protein synthesis in mammalian cells. In addition to its involvement in regulating translation, p70S6K activation has been implicated in cell cycle control and neuronal cell differentiation. Recent data obtained in this laboratory suggests that p70S6K may also function in regulating cell motility, a cellular response that is important in tumour metastases, the immune response and tissue repair. The present paper reviews the regulation and cellular function of p70S6K and proposes a novel function of p70S6K in regulating cell motility.  相似文献   

3.
Ribosomal protein S6 (S6rp) is phosphorylated by the p70S6K enzyme in mammals, under mitogen/IGF regulation. This event has been correlated with an increase in 5'TOP mRNA translation. In this research, a maize S6 kinase (ZmS6K) was isolated from maize (Zea mays L.) embryonic axes by human p70S6K antibody immunoprecipitation. This enzyme, a 62 kDa peptide, proved to be specific for S6rp phosphorylation, as revealed by in vivo and in vitro kinase activity using either the 40S ribosomal subunit or the RSK synthetic peptide as the substrates. ZmS6K activation was achieved by phosphorylation on serine/threonine residues. Specific phospho-Threo recognition by the p70S6K antibody directed to target phospho-Threo residue 389 correlated with ZmS6K activation. The ZmS6K protein content remained almost steady during maize seed germination, whereas the ZmS6K activity increased during this process, consistent with Zm6SK phosphorylation. Addition of insulin to germinating maize axes proved to increase ZmS6K activity and the extent of S6rp phosphorylation. These events were blocked by rapamycin, an inhibitor of the insulin signal transduction pathway in mammals, at the TOR (target of rapamycin) enzyme level. We conclude that ZmS6K is a kinase, structurally and functionally ortholog of the mammalian p70S6K, responsible for in vivo S6rp phosphorylation in maize. Its activation is induced by insulin in a TOR-dependent manner by phosphorylation on conserved serine/threonine residues.  相似文献   

4.
The signals generated by the IFNgamma receptor to initiate mRNA translation and generation of protein products that mediate IFNgamma responses are largely unknown. In the present study, we provide evidence for the existence of an IFNgamma-dependent signaling cascade activated downstream of the phosphatidylinositol (PI) 3'-kinase, involving the mammalian target of rapamycin (mTOR) and the p70 S6 kinase. Our data demonstrate that p70 S6K is rapidly phosphorylated and activated during engagement of the IFNgamma receptor in sensitive cell lines. Such activation of p70 S6 kinase is blocked by pharmacological inhibitors of the PI 3' kinase and mTOR, and is abrogated in double-knockout mouse embryonic fibroblasts for the alpha and beta isoforms of the p85 regulatory subunit of the PI 3'-kinase. The IFNgamma-activated p70 S6 kinase subsequently phosphorylates the 40S S6 ribosomal protein on serines 235/236, to regulate IFNgamma-dependent mRNA translation. In addition to phosphorylation of 40S ribosomal protein, IFNgamma also induces phosphorylation of the 4E-BP1 repressor of mRNA translation on threonines 37/46, threonine 70, and serine 65, sites whose phosphorylation is required for the inactivation of 4E-BP1 and its dissociation from the eukaryotic initiation factor-4E (eIF4E) complex. Thus, engagement of the PI 3'-kinase and mTOR by the IFNgamma receptor results in the generation of two distinct signals that play roles in the initiation of mRNA translation, suggesting an important role for this pathway in IFNgamma signaling.  相似文献   

5.
Maintenance of cellular protein stores in skeletal muscle depends on a tightly regulated synthesis-degradation equilibrium that is conditionally modulated under an extensive range of physiological and pathophysiological circumstances. Recent studies have established the initiation phase of mRNA translation as a pivotal site of regulation for global rates of protein synthesis, as well as a site through which the synthesis of specific proteins is controlled. The protein synthetic pathway is exquisitely sensitive to the availability of hormones and nutrients and employs a comprehensive integrative strategy to interpret the information provided by hormonal and nutritional cues. The translational repressor, eukaryotic initiation factor 4E binding protein 1 (4E-BP1), and the 70-kDa ribosomal protein S6 kinase (S6K1) have emerged as important components of this strategy, and together they coordinate the behavior of both eukaryotic initiation factors and the ribosome. This review discusses the role of 4E-BP1 and S6K1 in translational control and outlines the mechanisms through which hormones and nutrients effect changes in mRNA translation through the influence of these translational effectors.  相似文献   

6.
Glucocorticoids comprise an important class of hormonal mediators of fuel and protein homeostasis in normal and pathological scenarios. In skeletal muscle, exposure to glucocorticoids is characterized by a reduction in protein synthetic rate coincident with hampered translation initiation. However, it is unclear whether this involves attenuation of anabolic stimuli or is simply due to inhibition of the basally activated translational apparatus. Therefore, this inquiry was designed to determine whether leucine, administered orally, could rescue the translational inhibition induced by glucocorticoids. Dexamethasone, injected intraperitoneally, acutely diminished protein synthetic rates to 80% of control values in skeletal muscle from rat hindlimb. The eukaryotic initiation factor (eIF)4 regulatory element was simultaneously and negatively impacted via sequestration of eIF4E by the hypophosphorylated form of the translational suppressor, eIF4E binding protein 1 (4E-BP1). The 70-kDa ribosomal protein S6 kinase (S6K1) was also dephosphorylated, notably at T389, in response to glucocorticoids. Leucine, administered orally, effectively restored each aforementioned translational parameter to control levels. Inasmuch as leucine's potency in modulation of the translational machinery, and indeed of protein turnover in general, is widely appreciated, this amino acid may prove useful in normalizing the impairment of mRNA translation associated with various muscle-wasting pathologies, such as glucocorticoid excess.  相似文献   

7.
The serine/threonine kinase p70 S6 kinase (p70S6K) phosphorylates the 40 S ribosomal protein S6, modulating the translation of an mRNA subset that encodes ribosomal proteins and translation elongation factors. p70S6K is activated in response to mitogenic stimuli and is required for progression through the G(1) phase of the cell cycle and for cell growth. Activation of p70S6K is regulated by phosphorylation of seven different residues distributed throughout the protein, a subset of which depends on the activity of p85/p110 phosphatidylinositol 3-kinase (PI3K); in fact, the phosphorylation status of Thr(229) and Thr(389) is intimately linked to PI3K activity. In the full-length enzyme, however, these sites are also acutely sensitive to the action of FKBP 12-rapamycin-associated protein (FRAP). The mechanism by which PI3K and FRAP cooperate to induce p70S6K activation remains unclear. Here we show that the p85 regulatory subunit of PI3K also controls p70S6K activation by mediating formation of a ternary complex with p70S6K and FRAP. The p85 C-terminal SH2 domain is responsible for p85 coupling to p70S6K and FRAP, because deletion of the C-terminal SH2 domain inhibits complex formation and impairs p70S6K activation by PI3K. Formation of this complex is not required for activation of a FRAP-independent form of p70S6K, however, underscoring the role of p85 in regulating FRAP-dependent p70S6K activation. These studies thus show that, in addition to the contribution of PI3K activity, the p85 regulatory subunit plays a critical role in p70S6K activation.  相似文献   

8.
It has been known for 20 years that the ribosomal protein S6 is rapidly phosphorylated when cells are stimulated to grow or divide. Furthermore, numerous studies have documented that there is a strong correlation between increases in S6 phosphorylation and protein synthesis, leading to the idea that S6 phosphorylation is involved in up-regulating translation. In an attempt to define a mechanism by which S6 phosphorylation exerts translational control, other studies have focused on characterizing the sites of phosphorylation of this protein and its location within the ribosome. Recent data show that S6 is a protein which may have diverse cellular functions and is essential for normal development, and that it may be involved in the translational regulation of a specific class of messages.  相似文献   

9.
Converging signals from the mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K) pathways are well established to modulate translation initiation. Less is known regarding the molecular basis of protein synthesis regulated by other inputs, such as agonists of the Ras/extracellular signal-regulated kinase (ERK) signaling cascade. Ribosomal protein (rp) S6 is a component of the 40S ribosomal subunit that becomes phosphorylated at several serine residues upon mitogen stimulation, but the exact molecular mechanisms regulating its phosphorylation and the function of phosphorylated rpS6 is poorly understood. Here, we provide evidence that activation of the p90 ribosomal S6 kinases (RSKs) by serum, growth factors, tumor promoting phorbol esters, and oncogenic Ras is required for rpS6 phosphorylation downstream of the Ras/ERK signaling cascade. We demonstrate that while ribosomal S6 kinase 1 (S6K1) phosphorylates rpS6 at all sites, RSK exclusively phosphorylates rpS6 at Ser(235/236) in vitro and in vivo using an mTOR-independent mechanism. Mutation of rpS6 at Ser(235/236) reveals that phosphorylation of these sites promotes its recruitment to the 7-methylguanosine cap complex, suggesting that Ras/ERK signaling regulates assembly of the translation preinitiation complex. These data demonstrate that RSK provides an mTOR-independent pathway linking the Ras/ERK signaling cascade to the translational machinery.  相似文献   

10.
Vertebrate TOP mRNAs contain an oligopyrimidine tract at their 5' termini (5'TOP) and encode components of the translational machinery. Previously it has been shown that they are subject to selective translational repression upon growth arrest and that their translational behavior correlates with the activity of S6K1. We now show that the translation of TOP mRNAs is rapidly repressed by amino acid withdrawal and that this nutritional control depends strictly on the integrity of the 5'TOP motif. However, neither phosphorylation of ribosomal protein (rp) S6 nor activation of S6K1 per se is sufficient to relieve the translational repression of TOP mRNAs in amino acid-starved cells. Likewise, inhibition of S6K1 activity and rpS6 phosphorylation by overexpression of dominant-negative S6K1 mutants failed to suppress the translational activation of TOP mRNAs in amino acid-refed cells. Furthermore, TOP mRNAs were translationally regulated by amino acid sufficiency in embryonic stem cells lacking both alleles of the S6K1 gene. Inhibition of mTOR by rapamycin led to fast and complete repression of S6K1, as judged by rpS6 phosphorylation, but to only partial and delayed repression of translational activation of TOP mRNAs. In contrast, interference in the phosphatidylinositol 3-kinase (PI3-kinase)-mediated pathway by chemical or genetic manipulations blocked rapidly and completely the translational activation of TOP mRNAs. It appears, therefore, that translational regulation of TOP mRNAs, at least by amino acids, (i) is fully dependent on PI3-kinase, (ii) is partially sensitive to rapamycin, and (iii) requires neither S6K1 activity nor rpS6 phosphorylation.  相似文献   

11.
After confirming that adrenalectomy per se does not affect skeletal muscle protein synthesis rates, we examined whether endogenously produced glucocorticoids modulate the effect of physiological insulin concentrations on protein synthesis in overnight-fasted rats 4 days after either a bilateral adrenalectomy (ADX), ADX with dexamethasone treatment (ADX + DEX), or a sham operation (Sham; n = 6 each). Rats received a 3-h euglycemic insulin clamp (3 mU. min(-1). kg(-1)). Rectus muscle protein synthesis was measured at the end of the clamp, and the phosphorylation states of protein kinase B (Akt), eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and ribosomal protein S6 kinase (p70(S6K)) were quantitated before and after the insulin clamp. The basal phosphorylation states of Akt, 4E-BP1, and p70(S6K) were similar between ADX and Sham rats. Insulin significantly enhanced the phosphorylation of Akt (P < 0.03), 4E-BP1 (P = 0.003), and p70(S6K) (P < 0.002) in ADX but not in Sham rats. Protein synthesis was significantly greater after insulin infusion in ADX than in Sham rats (P = 0.01). Glucocorticoid replacement blunted the effect of insulin on Akt, 4E-BP1, and p70(S6K) phosphorylation and protein synthesis. In conclusion, glucocorticoid deficiency enhances the insulin sensitivity of muscle protein synthesis, which is mediated by increased phosphorylation of translation initiation-regulatory proteins.  相似文献   

12.
Although the cellular functions of TSC2 and its protein product, tuberin, are not known, somatic mutations in the TSC2 tumor suppressor gene are associated with tumor development in lymphangioleiomyomatosis (LAM). We found that ribosomal protein S6 (S6), which exerts translational control of protein synthesis and is required for cell growth, is hyperphosphorylated in the smooth muscle-like cell lesions of LAM patients compared with smooth muscle cells from normal human blood vessels and trachea. Smooth muscle (SM) cells derived from these lesions (LAMD-SM) also exhibited S6 hyperphosphorylation, constitutive activation of p70 S6 kinase (p70S6K), and increased basal DNA synthesis. In parallel, TSC2-/- smooth muscle cells (ELT3) and TSC2-/- epithelial cells (ERC15) also exhibited hyperphosphorylation of S6, constitutive activation of p70S6K, and increased basal DNA synthesis. Re-introduction of wild type tuberin into LAMD-SM, ELT3, and ERC15 cells abolished phosphorylation of S6 and significantly inhibited p70S6K activity and DNA synthesis. Rapamycin, an immunosuppressant, inhibited hyperphosphorylation of S6, p70S6K activation, and DNA synthesis in LAMD-SM cells. Interestingly, the basal levels of phosphatidylinositol 3-kinase, Akt/protein kinase B, and p42/p44 MAPK activation were unchanged in LAMD-SM and ELT3 cells relative to levels in normal human tracheal and vascular SM. These data demonstrate that tuberin negatively regulates the activity of S6 and p70S6K specifically, and suggest a potential mechanism for abnormal cell growth in LAM.  相似文献   

13.
The p70 ribosomal S6 kinase (S6K1) is rapidly activated following growth factor stimulation of quiescent fibroblasts and inhibition of this enzyme results in a G(1) arrest. Phosphorylation of the ribosomal S6 protein by S6K1 regulates the translation of both ribosomal proteins and initiation factors, leading to an increase in protein synthesis. We have examined the activation of S6K1 in human fibroblasts following mitogen stimulation. In early passage fibroblasts S6K1 is activated following serum stimulation as evidenced by increased kinase activity and site-specific phosphorylation. In contrast, site-specific phosphorylation of S6K1 at Thr421/Ser424 is diminished in senescent fibroblast cultures. A second phosphorylation site within S6K1 (Ser411) is phosphorylated even in the absence of serum stimulation and the enzyme shows increased phosphorylation as judged by decreased electrophoretic mobility. Inhibitor studies indicate that this phosphorylation is dependent upon the mammalian target of rapamycin, PI 3-kinase, and the MAPK pathway. In order to understand the consequences of the altered phosphorylation of the S6K1, we examined the phosphorylation state of the ribosomal S6 protein. In early passage fibroblasts the ribosomal S6 protein is phosphorylated upon serum stimulation while the phosphorylation of the ribosomal S6 protein is drastically reduced in senescent fibroblasts. These results suggest that the intracellular regulators of S6K1 are altered during replicative senescence leading to a deregulation of the enzyme and a loss of ribosomal S6 phosphorylation.  相似文献   

14.
Ribosomal protein S6 (rpS6) is a critical component of the 40 S ribosomal subunit that mediates translation initiation at the 5'-m(7)GpppG cap of mRNA. In response to mitogenic stimuli, rpS6 undergoes ordered C-terminal phosphorylation by p70 S6 kinases and p90 ribosomal S6 kinases on four conserved Ser residues (Ser-235, Ser-236, Ser-240, and Ser-244) whose modification potentiates rpS6 cap binding activity. A fifth site, Ser-247, is also known to be phosphorylated, but its function and regulation are not well characterized. In this study, we employed phospho-specific antibodies to show that Ser-247 is a target of the casein kinase 1 (CK1) family of protein kinases. CK1-dependent phosphorylation of Ser-247 was induced by mitogenic stimuli and required prior phosphorylation of upstream S6 kinase/ribosomal S6 kinase residues. CK1-mediated phosphorylation of Ser-247 also enhanced the phosphorylation of upstream sites, which implies that bidirectional synergy between C-terminal phospho-residues is required to sustain rpS6 phosphorylation. Consistent with this idea, CK1-dependent phosphorylation of rpS6 promotes its association with the mRNA cap-binding complex in vitro. Additionally, we show that protein phosphatase 1 (PP1) antagonizes rpS6 C terminus phosphorylation and cap binding in intact cells. These findings further our understanding of rpS6 phospho-regulation and define a direct link between CK1 and translation initiation.  相似文献   

15.
A defect in protein turnover underlies multiple forms of cell atrophy. Since S6 kinase (S6K)-deficient cells are small and display a blunted response to nutrient and growth factor availability, we have hypothesized that mutant cell atrophy may be triggered by a change in global protein synthesis. By using mouse genetics and pharmacological inhibitors targeting the mammalian target of rapamycin (mTOR)/S6K pathway, here we evaluate the control of translational target phosphorylation and protein turnover by the mTOR/S6K pathway in skeletal muscle and liver tissues. The phosphorylation of ribosomal protein S6 (rpS6), eukaryotic initiation factor-4B (eIF4B), and eukaryotic elongation factor-2 (eEF2) is predominantly regulated by mTOR in muscle cells. Conversely, in liver, the MAPK and phosphatidylinositol 3-kinase pathways also play an important role, suggesting a tissue-specific control. S6K deletion in muscle mimics the effect of the mTOR inhibitor rapamycin on rpS6 and eIF4B phosphorylation without affecting eEF2 phosphorylation. To gain insight on the functional consequences of these modifications, methionine incorporation and polysomal distribution were assessed in muscle cells. Rates and rapamycin sensitivity of global translation initiation are not altered in S6K-deficient muscle cells. In addition, two major pathways of protein degradation, autophagy and expression of the muscle-specific atrophy-related E3 ubiquitin ligases, are not affected by S6K deletion. Our results do not support a role for global translational control in the growth defect due to S6K deletion, suggesting specific modes of growth control and translational target regulation downstream of mTOR. signal transduction; atrophy; autophagy  相似文献   

16.
In mammalian cells, p70(S6K) plays a key role in translational control of cell proliferation in response to growth factors. Because of the reliance on translational control in early vertebrate development, we cloned a Xenopus homolog of p70(S6K) and investigated the activity profile of p70(S6K) during Xenopus oocyte maturation and early embryogenesis. p70(S6K) activity is high in resting oocytes and decreases to background levels upon stimulation of maturation with progesterone. During embryonic development, three peaks of activity were observed: immediately after fertilization, shortly before the midblastula transition, and during gastrulation. Rapamycin, an inhibitor of p70(S6K) activation, caused oocytes to undergo germinal vesicle breakdown earlier than control oocytes, and sensitivity to progesterone was increased. Injection of a rapamycin-insensitive, constitutively active mutant of p70(S6K) reversed the effects of rapamycin. However, increases in S6 phosphorylation were not significantly affected by rapamycin during maturation. mos mRNA, which does not contain a 5'-terminal oligopyrimidine tract (5'-TOP), was translated earlier, and a larger amount of Mos protein was produced in rapamycin-treated oocytes. In fertilized eggs rapamycin treatment increased the translation of the Cdc25A phosphatase, which lacks a 5'-TOP. Translation assays in vivo using both DNA and RNA reporter constructs with the 5'-TOP from elongation factor 2 showed decreased translational activity with rapamycin, whereas constructs without a 5'-TOP or with an internal ribosome entry site were translated more efficiently upon rapamycin treatment. These results suggest that changes in p70(S6K) activity during oocyte maturation and early embryogenesis selectively alter the translational capacity available for mRNAs lacking a 5'-TOP region.  相似文献   

17.
Death-associated protein kinase (DAPK) is a pro-apoptotic, calcium/calmodulin-regulated protein kinase that is a drug discovery target for neurodegenerative disorders. Despite the potential profound physiological role of DAPK in neuronal function and pathophysiology, the endogenous substrate(s) of this kinase and the mechanisms via which DAPK elicits its biological action remain largely unknown. We report here that the mammalian 40S ribosomal protein S6 is a DAPK substrate. Results from immunoprecipitation experiments are consistent with endogenous DAPK being associated with endogenous S6 in rat brain. When S6 is a component of the 40S ribosomal subunit complex, DAPK selectively phosphorylates it at serine 235, one of the five sites in S6 that are phosphorylated by the S6 kinase family of proteins. The amino acid sequence flanking serine 235 matches the established pattern for DAPK peptide and protein substrates. Kinetic analyses using purified 40S subunits revealed a K(m) value of 9 microM, consistent with S6 being a potential physiological substrate of DAPK. This enzyme-substrate relationship has functional significance. DAPK suppresses translation in rabbit reticulocyte lysate, and treatment of neuroblastoma cells with a stimulator of DAPK reduces protein synthesis. In both cases, suppression of translation correlates with increased phosphorylation of S6 at serine 235. These results demonstrate that DAPK is a S6 kinase and provide evidence for a novel role of DAPK in the regulation of translation.  相似文献   

18.
Heat shock protein 90 (Hsp90) was co-immunoprecipitated with raptor, the binding partner of the mammalian target of rapamycin (mTOR) from HEK293 cells. Hsp90 was detected in the anti-raptor antibody immunoprecipitates prepared from the cell extract by immunoblot analysis using the anti-Hsp90 antibody, and the association of these two proteins was confirmed by immunoprecipitation from the cells co-expressing Hsp90 and raptor as epitope-tagged molecules. Geldanamycin, a potent inhibitor of Hsp90, disrupted the in vivo binding of Hsp90 to raptor without affecting the association of raptor and mTOR, and suppressed the phosphorylation by mTOR of the downstream translational regulators p70 S6 kinase (S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). The protein kinase activity of S6K as well as the phosphorylation of the substrate, 40S ribosomal protein S6, were lowered in the geldanamycin-treated cells. These results indicate that Hsp90 is involved in the regulation of protein translation by facilitating the phosphorylation reaction of 4E-BP1 and S6K catalyzed by the mTOR/raptor complex through the association with raptor, and that the mTOR signaling pathway is a novel target of geldanamycin.  相似文献   

19.
Amino acids are unique anabolic agents in that they nutritively signal to mRNA translation initiation and serve as substrates for protein synthesis in skeletal muscle. Glucocorticoid excess antagonizes the anabolic action of amino acids on protein synthesis in laboratory animals. To examine whether excessive glucocorticoids modulate mixed amino acid-signaled translation initiation in human skeletal muscle, we infused an amino acid mixture (10% Travasol) systemically to 16 young healthy male volunteers for 6 h in the absence (n = 8) or presence (n = 8) of glucocorticoid excess (dexamethasone 2 mg orally every 6 h for 3 days). Vastus lateralis muscles were biopsied before and after amino acid infusion, and the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1), ribosomal protein S6 kinase (p70(S6K)), and eIF2alpha and the guanine nucleotide exchange activity of eIF2B were measured. Systemic infusion of mixed amino acids significantly stimulated the phosphorylation of 4E-BP1 (P < 0.04) and p70(S6K) (P < 0.001) and the dephosphorylation of eIF2alpha (P < 0.003) in the control group. Dexamethasone treatment did not alter the basal phosphorylation state of 4E-BP1, p70(S6K), or eIF2alpha; however, it abrogated the stimulatory effect of amino acid infusion on the phosphorylation of 4E-BP1 (P = 0.31) without affecting amino acid-induced phosphorylation of p70(S6K) (P = 0.002) or dephosphorylation of eIF2alpha (P = 0.003). Neither amino acid nor dexamethasone treatment altered the guanine nucleotide exchange activity of eIF2B. We conclude that changes of amino acid concentrations within the physiological range stimulate mRNA translation by enhancing the binding of mRNA to the 43S preinitiation complex, and the activity of p70(S6K) and glucocorticoid excess blocks the former action in vivo in human skeletal muscle.  相似文献   

20.
There is accumulating evidence that mammalian target of rapamycin (mTOR)-activated pathways play important roles in cell growth and survival of BCR-ABL-transformed cells. We have previously shown that the mTOR/p70 S6 kinase (p70 S6K) pathway is constitutively activated in BCR-ABL transformed cells and that inhibition of BCR-ABL kinase activity by imatinib mesylate abrogates such activation. We now provide evidence for the existence of a novel regulatory mechanism by which BCR-ABL promotes cell proliferation, involving p70 S6K-mediated suppression of expression of programmed cell death 4 (PDCD4), a tumor suppressor protein that acts as an inhibitor of cap-dependent translation by blocking the translation initiation factor eIF4A. Our data also establish that second generation BCR-ABL kinase inhibitors block activation of p70 S6K and downstream engagement of the S6 ribosomal protein in BCR-ABL transformed cells. Moreover, PDCD4 protein expression is up-regulated by inhibition of the BCR-ABL kinase in K562 cells and BaF3/BCR-ABL transfectants, suggesting a mechanism for the generation of the proapoptotic effects of such inhibitors. Knockdown of PDCD4 expression results in reversal of the suppressive effects of nilotinib and imatinib mesylate on leukemic progenitor colony formation, suggesting an important role for this protein in the generation of antileukemic responses. Altogether, our studies identify a novel mechanism by which BCR-ABL may promote leukemic cell growth, involving sequential engagement of the mTOR/p70 S6K pathway and downstream suppression of PDCD4 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号