首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unilateral lesions of the nigro-neostriatal dopaminergic projection were induced by injections of 6-hydroxydopamine into the zona compacta of the substantia nigra. This resulted in a reduction of neostriatal dopamine to less than 6 percent of the control side. Two months later intraperitoneal injections of apomorphine (1 mg/kg) produced contralateral turning and a significant increase in neostriatal acetylcholine levels. The increase was significantly greater in the neostriatum ipsilateral to the lesion than in the intact side. Haloperidol (1 mg/kg) produced a significant decrease in neostriatal acetylcholine but this decrease did not differ between the “denervated” and intact neostriata. The nigral 6-hydroxydopamine lesions did not by themselves affect neostriatal acetylcholine levels. The fact that apomorphine produces a greater increase in neostriatal acetylcholine after lesions of the dopaminergic nigro-neostriatal projection supports earlier behavioral data suggestive of denervation supersensitivity of neostriatal dopaminergic receptors after these lesions.  相似文献   

2.
Summary The dopamine innervation of the frontal cortex originates in the A9 and A10 mesencephalic dopamine cell groups. In weaver mutant mice, there is a 77% frontocortical dopamine deficiency associated with losses of dopamine neurones in areas A9 and A10. The dopamine-depleted cortical areas of weaver mutant mice are receptive to reinnervation by afferent fibres originating in dopamine-containing mesencephalic grafts from normal donor embryos. In the anteromedial frontal lobe, reinnervation by tyrosine hydroxylase immunoreactive fibres is largely confined to the basal cortical layers whereas in the anterior cingulate cortex, tyrosine hydroxylase immunoreactive fibres also occupy superficial layers, including the molecular layer. Normally, the dopaminergic innervation of the anteromedial frontal lobe is distributed among the basal cortical layers (IV–VI), and the dopaminergic innervation of the cingulate cortex occupies both basal and superficial cortical layers. The pattern of innervation following transplantation indicates that, in repopulating dopamine-deficient cortical areas of recipient weaver mutants, graft-derived dopamine fibres show a preference for those layers which are normally invested by dopamine afferents.  相似文献   

3.
N M White  J Blackburn 《Life sciences》1986,38(24):2255-2262
The effect of 1 g/kg D-glucose on amphetamine-induced increases in activity; stereotypy; and rotation in rats with unilateral 6-OHDA lesions of nigro-striatal neurons was examined. The amphetamine dose-response curve for stereotypy was shifted to the right by glucose but retained the same slope as the control curve, suggesting that glucose competes for amphetamine or dopamine receptors that mediate this behavior. The slope of the dose-response curve for activity was significantly decreased by glucose, suggesting that glucose reduces activity levels in a manner that is non-competitive with the action of amphetamine or dopamine. Amphetamine-induced turning was unaffected by glucose at all doses tested. These data suggest that the effect of amphetamine on each of the three motor behaviors may be mediated by different dopamine-containing neurons, or by different post-synaptic dopamine receptors. The findings are also consistent with other data suggesting that glucose antagonizes dopamine function, but they suggest that this antagonism may not be uniform over all dopaminergic neurons or receptor types.  相似文献   

4.
Transplantation of embryonic nigral tissue ameliorates functional deficiencies in Parkinson's disease (PD). A main constraint of neural grafting is the poor survival of dopaminergic neurones grafted into patients. Studies in rats indicated that many grafted neurones die by apoptosis. CEP-1347 is a mixed-lineage-kinase (MLK) inhibitor with neuroprotective action in several in vitro and in vivo models of neuronal apoptosis. We studied the effect of CEP-1347 on the survival of embryonic rat dopaminergic neurones in culture, and after transplantation in hemiparkinsonian rats. CEP-1347 and the alternative MLK inhibitor CEP-11004 significantly increased the survival of dopaminergic neurones in primary cultures from rat ventral mesencephalon and in Mn2+-exposed PC12 cells, a surrogate model of dopaminergic lethal stress. Moreover, combined treatment of the grafting cell suspension and the host animal with CEP-1347 significantly improved the long-term survival of rat dopaminergic neurones transplanted into the striatum of hemiparkinsonian rats. Also, the protective effect of CEP-1347 resulted in an increase in total graft size and in enhanced fibre outgrowth. Thus, treatment with CEP-1347 improved dopaminergic cell survival under severe stress and might be useful to improve the positive outcome of transplantation therapy in PD and reduce the amount of human tissue required.  相似文献   

5.
Abstract: In the neostriatum, amphetamine and other dopamine agonists elevate the extracellular level of ascorbate, which is known to modulate neostriatal function. Although both D1 and D2 receptors have been linked to neostriatal ascorbate release, ample evidence suggests it is controlled by areas outside the neostriatum. The present series of experiments used selective lesions and intracerebral drug infusions to probe the involvement of the ventromedial thalamus and substantia nigra pars reticulata. Our results implicate both of these sites in amphetamine-induced increases in the release of neostriatal ascorbate. Thus, whereas unilateral electrolytic lesions of the substantia nigra pars reticulata completely abolished the ability of systemic amphetamine (2.5 mg/kg) to increase extracellular ascorbate in ipsilateral neostriatum, intranigral infusions of this drug (10 and 30 µg/µl) elevated neostriatal ascorbate release. This infusion effect, moreover, was blocked by electrolytic lesions of the ipsilateral ventromedial thalamus, which receives input from the substantia nigra pars reticulata and projects to the cerebral cortex. These results, combined with previous evidence implicating cortical projections to neostriatum as the source of extracellular ascorbate, suggest that neostriatal ascorbate release is regulated, at least in part, by a nigro-thalamo-cortico-neostriatal pathway.  相似文献   

6.
In experiments on 60 Sprague-Dawley rats, effects of systemic and intrastriatal injections of se-lective blocker of D1 receptors SCH23390 on elaboration of discriminational conditioned reflex of active avoidance (CRAA) were studied in T-maze and on behavior in test of the "open field". Systemic administration of this inhibitor at doses of 0.025 mg/kg produced a several fold decrease of percentage of correct realizations of the discriminational CRAA and of motor activity in the "open field" test. Bilateral microinjections of SCH23390 into the rat neostriatum at a dose of 0.004-1.0 mkg did not deteriorate learning of the discriminational CRAA as compared with intact control, although a marked inhibition of motor activity was observed in the open field, test. Analysis of the data has also shown a statistically significant decrease of percentage of errors in the starting maze compartment in experiments with intrastriatal injection of SCH23390 to rats. At the same time, the intrastriatal injection to rats of raclopride, a blocker of D2 dopamine receptors, at a dose of 0.004 mkg produced a sharp and prolonged deterioration of learning of the discriminational CRAA. The data obtained have allowed the following conclusions to be made: 1. Difference of effects of the systemic and intrastriatal SCH23390 injections seems to be due to that the behavioral changes observed at the systemic administration can be provided predominanantly by structures differing from neostriatal D1 receptors; 2. Effect of nigrostriatal dopaminergic system on the neostriatum through D1 receptors is complex: activation of motor activity (efferent spine cells of the direct pathway) and a poor modulation of the learning process (large aspine cholinergic interneurons); 3. The modulation of the learning process seems to occur through neostriatal D2 receptors (large aspine cholinergic interneurons).  相似文献   

7.
Fibroblastic 3T3 and endocrine RIN cells were genetically modified by infection with a recombinant retrovirus encoding the form I of human tyrosine hydroxylase (TH) and selection in tyrosine-free medium. These cells were grafted to rats unilaterally lesioned with 6-hydroxy-dopamine. Both cell types survived implantation into the striatum, expressed TH immunoreactivity, and as assessed by microdialysis 8-9 days after implantation, secreted high amounts of DOPA and/or dopamine into the surrounding host striatum. The modified 3T3 cells secreted large amounts of DOPA that was efficiently decarboxylated to dopamine by the host striatal tissue; the newly synthesized dopamine was stored only to a limited extent in the denervated striatum. The modified RIN cells synthesized dopamine that was stored intracellularly and released in a regulated fashion. The grafted DOPA-secreting cells produced 4-5 times higher extracellular dopamine levels than the dopamine-secreting cells, and they were more efficient in reducing apomorphine-induced rotation. No effect was observed with either cell type on amphetamine-induced turning behavior.  相似文献   

8.
Primary cell transplantation is currently the gold standard for cell replacement in Parkinson’s disease. However, the number of donors needed to treat a single patient is high, and the functional outcome is sometimes variable. The present work explores the possibility of enhancing the viability and/or functionality of small amounts of ventral mesencephalic (VM) donor tissue by reducing its perturbation during preparation and implantation. Briefly, unilaterally lesioned rats received either: (1) an intact piece of half an embryonic day 13 (E13) rat VM; (2) dissociated cells from half an E13 rat VM; or (3) no transplant. D-amphetamine- induced rotations revealed that animals receiving pieces of VM tissue or dissociated cells showed significant improvement in ipsilateral rotation 4 weeks post transplantation. By 6 weeks post transplantation, animals receiving pieces of VM tissue showed a trend for further improvement, while those receiving dissociated cells remained at their 4 week scores. Postmortem cell counts showed that the number of dopaminergic neurons in dissociated cell transplants was significantly lower than that surviving in transplants of intact tissue. When assessing the correlation between the number of dopamine cells in each transplant, and the improvement in rotation bias in experimental animals, it was shown that transplants of whole pieces of VM tissue offered greater predictability of graft function based on their dopamine cell content. Such results suggest that maintaining the integrity of VM tissue during implantation improves dopamine cell content, and that the dopamine cell content of whole tissue grafts offers a more predictable outcome of graft function in an animal model of Parkinson’s disease.  相似文献   

9.
Huntington's chorea is a degenerative disorder of the human brain characterized by a marked loss of intrinsic neostriatal neurons. This situation can be reproduced by kainic acid injection in the caudate nucleus. Activity of pars reticulata neurons ipsilateral to the injected neostriatum was studied in normal, control (saline-injected) and lesioned rats. They were identified by electrophysiological and histological criteria (Fig. 1). Results obtained in normal and control rats were very similar (Table I). As previously described, the mean frequency of these neurons was high. An important percentage (respectively 72.5 and 73%) and these neurons presented the characteristics of a regular firing pattern (so called "organized neurons"). Results obtained in kainic acid lesioned rats were significantly different (Table I). The mean frequency was lower and only 11% of reticulata cells remained organized after neostriatal lesion. This important dysfunction may be explained in various ways: The neostriato-nigral pathway's destruction involves both the inhibitory GABAergic tract and the excitatory substance P tract (GALE et al., 1978). Other inputs arising from many structures in the brain continue to exert their own action on SN neurons, resulting in an unbalance in the SN inputs. It is well known that the nigral dopamine influences the neuronal activity of pars reticulata neurons (Ruffieux et Schultz, 1980; Waszczak et Walters, 1983). Doudet et al. (1984 b) previously reported a dysfunction of neuronal activity of dopaminergic cells after striatal lesion. A disturbance in the electrical activity may induce a similar disturbance in the intranigral dendritic release of DA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The Fink-Heimer techniques were used to determine the neostriatal projections from cortical M1 and S1 physiologically identified representations of the forepaw. While corticostriatal fibres from S1 enter dorso-lateral parts of the neostriatum fibres from M1 penetrate the dorsal part of the neostriatum more rostrally. Both fibre groups pass in rostrocaudal direction to the globus pallidum, forming terminals on their way. Most of the fibre terminals of M1 projection are located laterally overlapping the zone of distribution of S1 fibre terminals in the neostriatum. Overlapping terminals of the corticofugal fibres of S1 and M1 in the lateral neostriatum can form a basis for interaction of somatosensory and motor impulses. It may be suggested that the role of the neostriatum in sensory integration is associated with certain features of the corticofugal fibre terminals distribution in it at all levels of development of the central nervous system.  相似文献   

11.
In acute experiments on cats and rats, we demonstrated that the relative number of neostriatal neurons responding to stimulation of the motor cortex with latencies below 8.0 msec significantly decreased after functional destruction of the nigro-striatal dopaminergic system caused by injections of reserpine. Despite the fact that the level of dopamine (DA) in the neostriatum returned to the initial value 24 h after injection of the above neuroleptic, cortico-striatal impulsation recovered slowly, and the number of short-latency corticofugal reactions attained a near-control value only in one month. The data obtained confirm our earlier hypothesis on the toxic effect of excessive amounts of glutamate (which is observed under conditions of the DA deficiency) on receptors of this neurotransmitter. We conclude that, under normal conditions, DA exerts an inhibitory/protective effect on transmission of impulsation through direct cortico-striatal connections influencing D2 receptors localized on cortico-striatal glutamatergic efferents. Neirofiziologiya/Neurophysiology, Vol. 39, No. 1, pp. 47–51, January–February, 2007.  相似文献   

12.
High-affinity uptake of dopamine (DA), glutamate, and gamma-aminobutyric acid (GABA) was determined in crude synaptosomal preparations from neostriatal regions of rats 7, 17, and 27 months of age. Dopamine uptake was highest in rostral neostriatum, but no age-related differences were detected. On the other hand, the high-affinity uptake of both GABA and glutamate was increased with age. This may reflect astrocytic hypertrophy or hyperplasia, which have been reported to occur in the neostriatum during the aging process.  相似文献   

13.
Abstract: Levodopa was infused under various circumstances of pretreatment into the ear veins of unanesthetized rabbits. Concentrations of neostriatal dopamine formed in response to levodopa administration were determined. The aim was to characterize the temporal relationship between the concentrations of levodopa in plasma and dopamine in the neostriatum. When plasma levodopa was maintained constant by i.v. infusion, the concentration of neostriatal dopamine reached a plateau by 1 h. Increases in dopamine were proportional to the amount of precursor in plasma. The tissue half-life of this dopamine in normal rabbits was not more than 15 min. Half-lives of comparable duration for striatal dopamine were calculated from rabbits treated chronically with levodopa, and from rabbits with monoamine-depleting lesions. The results show that the concentration of dopamine in rabbit neostriatum correlates closely with the concentration of levodopa in plasma. Concurrent analyses of neocortical tissues indicate that the neostriatum may not be different from other brain regions with regard to dopamine storage mechanisms. Interpretation of the results in terms of the clinical use of levodopa suggests that the durations of short-term effects (measured in h) of the drugs are paralleled by changes in concentration of brain dopamine.  相似文献   

14.
Nicotine, acting on nicotinic acetylcholine receptors (nAChRs) expressed at pre-synaptic dopaminergic terminals, has been shown to stimulate the release of dopamine in the neostriatum. However, the molecular consequences of pre-synaptic nAChR activation in post-synaptic neostriatal neurons are not clearly understood. Here, we investigated the effect of nAChR activation on dopaminergic signaling in medium spiny neurons by measuring phosphorylated DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa) at Thr34 (the PKA-site) in mouse neostriatal slices. Nicotine produced dose-dependent responses, with a low concentration (1 microm) causing a sustained decrease in DARPP-32 Thr34 phosphorylation and a high concentration (100 microm) causing a transient increase in DARPP-32 Thr34 phosphorylation. Depending on the concentration of nicotine, either dopamine D2 or D1 receptor signaling was predominantly activated. Nicotine at a low concentration (1 microm) activated dopamine D2 receptor signaling in striatopallidal/indirect pathway neurons, likely by activating alpha4beta2* nAChRs at dopaminergic terminals. Nicotine at a high concentration (100 microm) activated dopamine D1 receptor signaling in striatonigral/direct pathway neurons, likely by activating (i) alpha4beta2* nAChRs at dopaminergic terminals and (ii) alpha7 nAChRs at glutamatergic terminals, which, by stimulating the release of glutamate, activated NMDA/AMPA receptors at dopaminergic terminals. The differential effects of low and high nicotine concentrations on D2- and D1-dependent signaling pathways in striatal neurons may contribute to dose-dependent actions of this drug of abuse.  相似文献   

15.
BALB/c mice injected intravenously with a single, sub-lethal dose of Nocardia asteroides GUH-2 develop several levodopa responsive movement disorders. These included head-shake, stooped posture, bradykinesia, and hesitation to forward movement (6). The changes in monoamine levels in the brain of these mice were determined. There was a significant loss of dopamine with greatly increased dopamine turnover in the neostriatum 7 to 29 days after infection. These effects were specific for dopaminergic neurons since minimal changes were found in neostriatal norepinephrine and serotonin even though serotonin turnover was increased. Changes in monoamine metabolism were not limited to the neostriatum. There were reduced levels of serotonin and norepinephrine with increased serotonin turnover in the cerebellum. One year after infection, dopamine metabolism had returned to near normal levels, but many of the movement disorders persisted. Specific changes in neurochemistry did not always appear to correspond with these impairments. Nevertheless, these data are similar to those reported in MPTP treated BALB/c mice.  相似文献   

16.
An attempt to localize dopaminergic receptors in the rat neostriatum by high-resolution radioautography was realized using intracerebral injections of the new ligand (antagonist) 3H-domperidone. In tissue regions located far from the injection site, the weaker diffuse radioautographic reaction permitted us to observe the existence of clusters of silver grains over some cerebral structures. The specificity of this type of labelling was tested using intraperitoneal injections of large amounts of haloperidol in order to block the studied receptors. Thus, we observed specific labelling over some nerve terminals as well as a low number of synaptic contact of the asymmetric type (however some synapses of the symmetric type were also labelled). These result agree with our previous work (1), and confirm the existence of dopaminergic synapses in the rat caudate-putamen.  相似文献   

17.
Effects of methamphetamine (15 mg/kg, s.c.) on fluorescence histochemistry of dopamine nerve fibers in neostriatum, nucleus accumbens, tuberculum olfactorium and medial frontal cortex were investigated in rats treated every 6 hours for 24 hours and killed 6 and 11 days after treatment. In control rats occasional nerve fibers (probably nerve terminals) in the neostriatum showed some distortion and a strong formaldehyde-glyoxylic acid induced catecholamine fluorescence ; 6 and 11 days after methamphetamine, the number of swollen nerve fibers showing strong fluorescence in this region was significantly increased. In contrast, in nucleus accumbens, tuberculum olfactorium and medial frontal cortex, such fiber swellings were virtually absent in both controls and methamphetamine-treated rats. These findings indicated that multiple doses of methamphetamine might be toxic to neostriatal dopamine nerve fibers.  相似文献   

18.
We found sustained activation of the proto-oncogenec-fos in neurons of the medial and dorsal neostriatum and suppression of this activation in NO-synthase (NOS) -containing cells within the islands of Calleja after unilateral lesions of the dopaminergic mesostriatal system induced by 6-hydroxydopamine (6-OHDA). Systemic administration of nitroglycerin (NTG) resulted in a decreased expression of c-Fos protein in the dorsal part of the denervated neostriatum: respective numbers of Fos-positive neuronal nuclei were 420.71 ± 21.32 in control and 141.38 ± 11.48 after NTG injection (the mean numbers in 50-μm-thick slices). However, other brain structures, NTG evoked sustained expression of c-Fos protein in the groups of NOS-containing neurons and sources of catecholaminergic projections involved In the control of cardiovascular reactions. We hypothesize that systemic administration of an NO donor and a potent vasodilator, NTG, partially normalized an excessively Increased glutamate level in the denervated neostriatum manifested in c-Fos protein expression.  相似文献   

19.
Abstract: The amino acid γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in brain, and GABAergic neurons have been proposed to play a major role in basal ganglia physiology. In the neostriatum (caudate putamen), medium-sized aspiny interneurons, as well as neostriatal output neurons that project to several brain regions, use GABA as their neurotransmitter. Dopamine fibers arising from the substantia nigra represent a major input to the neostriatum where, besides their classic neurotransmitter role, they are seemingly involved in the regulation of amino acid neurotransmitter release. To further characterize the nature of some of the amino acid/dopamine interactions, selective dopaminergic deafferentations were produced in neonatal rats (3 days postnatal) by intraventricular administration of the neurotoxin 6-hydroxydopamine (6-OHDA); the noradrenergic neurons were protected by prior administration of desmethylimipramine. After a 3-month survival, levels of catecholamines, indoleamines, and amino acids were determined in cingulate cortex, thalamus, and neostriatum. In addition, GABAA receptors were measured in membrane preparations from these three regions, using the specific agonist [3H]muscimol. In the 6-hydroxydopamine-lesioned rats, levels of dopamine and its metabolites homovanillic acid, 3,4-dihydroxyphenylacetic acid, and 3-methoxytyramine were decreased, as expected, in cortex and neostriatum, but remained unmodified in thalamus. In all three regions, serotonin content was increased; its metabolite, 5-hydroxyindole-3-acetic acid, was also elevated, but only in cortex and neostriatum. The levels of GABA were increased in neostriatum and thalamus, but remained unmodified in cortex. Glycine was increased in all three regions examined. There were also increases of phosphatylethanolamine and serine in thalamus, and of aspartic acid and alanine in neostriatum. The density of GABAA binding sites was increased in neostriatum, but remained unchanged in cortex and thalamus. The changes in amino acid levels and [3H]muscimol binding sites induced by a neonatal 6-hydroxydopamine treatment differ from those found after similar lesions in adult animals, possibly because of the plastic and synaptic rearrangements that can still occur during early postnatal development. The present results also demonstrate that adaptations occur in response to a dopaminergic deafferentation at an early age and that these exhibit a regional specificity.  相似文献   

20.

Background

Sporadic Parkinson''s disease (PD) is a progressive neurodegenerative disorder with unknown cause, but it has been suggested that neuroinflammation may play a role in pathogenesis of the disease. Neuroinflammatory component in process of PD neurodegeneration was proposed by postmortem, epidemiological and animal model studies. However, it remains unclear how neuroinflammatory factors contribute to dopaminergic neuronal death in PD.

Findings

In this study, we analyzed the relationship among inducible nitric oxide synthase (iNOS)-derived NO, mitochondrial dysfunction and dopaminergic neurodegeneration to examine the possibility that microglial neuroinflammation may induce dopaminergic neuronal loss in the substantia nigra. Unilateral injection of lipopolysaccharide (LPS) into the striatum of rat was followed by immunocytochemical, histological, neurochemical and biochemical analyses. In addition, behavioral assessments including cylinder test and amphetamine-induced rotational behavior test were employed to validate ipsilateral damage to the dopamine nigrostriatal pathway. LPS injection caused progressive degeneration of the dopamine nigrostriatal system, which was accompanied by motor impairments including asymmetric usage of forelimbs and amphetamine-induced turning behavior in animals. Interestingly, some of the remaining nigral dopaminergic neurons had intracytoplasmic accumulation of α-synuclein and ubiquitin. Furthermore, defect in the mitochondrial respiratory chain, and extensive S-nitrosylation/nitration of mitochondrial complex I were detected prior to the dopaminergic neuronal loss. The mitochondrial injury was prevented by treatment with L-N6-(l-iminoethyl)-lysine, an iNOS inhibitor, suggesting that iNOS-derived NO is associated with the mitochondrial impairment.

Conclusions

These results implicate neuroinflammation-induced S-nitrosylation/nitration of mitochondrial complex I in mitochondrial malfunction and subsequent degeneration of the nigral dopamine neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号