首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyzed the effects of planktivorous Holeshestes heterodon Eigenmann (Characidae) predation on the plankton community of a small subtropical reservoir, using four enclosures (volume about 17.5 m3), open to the sediment, established in the littoral zone. Two enclosures were stocked with fish (mean TL 5.7 cm), at a density of about 4–5 fish m–3 (approx. 8 g m–3), whereas two remained fishless. The experiment lasted a little longer than one month. In the fish enclosures, most Crustacea and Chaoborus larvae remained scarce, probably as a result of visually selective fish predation. In both fishless enclosures, Chaoborus larvae became abundant. However, in only one of these did large individuals become relatively numerous; this discrepancy in the demographic structure of the Chaoborus populations between the two fishless enclosures is unexplained. Only in the fishless enclosure without appreciable numbers of large Chaoborus did densities of Crustacea increase greatly. It is suggested that in the enclosure containing large Chaoborus individuals, crustacean populations were prevented from developing due to predation pressure, while the small Chaoborus larvae of the other enclosure could not readily consume these prey. Rotifers were low in abundance in the absence of fish, probably as a consequence of Chaoborus predation. Phytoplankton density increased in all four enclosures, due probably to the lack of water flow. Only in the fishless enclosure with high densities of crustaceans did phytoplankton abundance decrease markedly at the end of the experiment, perhaps because of grazing losses.  相似文献   

2.
Fauvet  Guillaume  Claret  Cécile  Marmonier  Pierre 《Hydrobiologia》2001,464(1-3):121-131
An enclosure study was conducted in Ranger Lake in south-central Ontario, Canada from 4 July to 5 August 1997 to determine predation effects of the larvae of the phantom midge fly Chaoboruson the zooplankton community. Zooplankton assemblages were established in 12 enclosures (2 m in diameter, 7.5 m deep). Three densities of fourth-instar Chaoborus trivittatus (0 l–1, 0.1 l–1 and 0.5 l–1) were introduced as predator treatments to the enclosures. Temperature, dissolved oxygen and zooplankton community composition were monitored for six weeks. To determine if the zooplankton community composition changed, a repeated measures multivariate analysis was performed on percent biomass of Bosmina and calanoid copepods. There were no significant differences in mean taxon percent biomass among predator treatments. There were significant differences in mean taxon percent biomass between water layers (epilimnion and metalimnion). There were also significant differences in lengths of Bosmina and calanoid copepods among predator treatments at the end of the experiment. Crop content analysis of C. trivittatusshowed that Bosmina constituted 88–98% of the prey items found in the crops. These results demonstrate that the use of deep enclosures, a Chaoborus species which vertically migrates, and lower natural densities of Chaoborus may provide prey with an important natural refuge from predation and so allow a more accurate determination of the predation impact of Chaoborus trivittatusin temperate lakes where fish control Chaoborus densities.  相似文献   

3.
A. F. Sell 《Oecologia》2000,125(1):150-160
The presence of plankton predators may induce altered morphology in their potential prey. To date, the mechanism of induction and adaptive value of such defensive responses have been examined in the laboratory. This study investigated the morphological defense structures induced by the invertebrate predator Chaoborus in two coexisting Daphnia species, D. pulex and D. rosea, in the field. In Piscivore Lake (Gr?fenhain, Germany), continuous and intense biomanipulation had led to near elimination of planktivorous fish and greatly increased abundances of Chaoborus (up to >10 larvae l–1). Here, the density of Chaoborus was manipulated within the lake by an enclosure/exclosure setup and resulting morphological responses of Daphnia spp. were investigated in situ. Three replicate enclosures (4.6 m3) contained no Chaoborus (predator exclusion bags), whereas Chaoborus entered three others at ambient densities (predator enclosures). In both species of Daphnia, formation of neckteeth and elongation of the tail spine were recorded in the predator enclosures, but not in the predator exclusion treatments. Additionally, D. rosea responded to predator inclusion with an increase of the size at first reproduction. Despite the induced defense structures, the presence of Chaoborus caused increased mortality of both Daphnia species. In addition, Chaoborus affected the coexistence of the two populations of Daphnia by causing higher relative mortality in D. rosea. Neckteeth formation was always more pronounced in D. pulex than in D. rosea of the same size. Neckteeth were induced specifically in vulnerably sized juvenile instars of D. pulex, but were not found in all vulnerable instars of D. rosea. In D. rosea, neckteeth were few or absent in the ephippial hatchlings, and neckteeth formation ceased before juveniles reached a body size outside the range that larger larval stages of Chaoborus could ingest. This study provides the first experimental demonstration in the field of the inducibility of morphological defense structures in Daphnia at ambient densities of Chaoborus larvae, and quantifies these in situ responses. This expands on earlier observations of a correlation between predator density in the field and the expression of neckteeth in Daphnia. The term ”maximum size for neckteeth formation” (MSNF) is defined as the limit in body size above which no production of neckteeth was evident. This limit was used to distinguish the size classes of Daphnia that show a sensitive response to Chaoborus kairomone. This new term may be used for further comparisons among species and among different types of predator-induced responses as well as for the evaluation of the adaptive value of defense structures. Received: 10 April 1999 / Accepted: 6 April 2000  相似文献   

4.
William E. Neill 《Oecologia》1981,48(2):164-177
Summary During ice-free seasons of 1975, 1977 and 1978, replicated experimental alteration of spring densities of predatory Chaoborus larvae inside 20–27 m3 enclosures in a fishless oligotrophic lake had relatively small, but significant, short-term effects upon prey species abundances. Enhancement of predator densities generally had greater numerical effects relative to controls than did complete removal of predators. With the exceptions Diaphanosoma and Bosmina under artificially elevated Chaoborus densities, numerical effects on prey species did not persist for more than a few weeks after midsummer in these 3 years. During cooler 1976, however, much larger Chaoborus effects in May and June persisted into September. Low temperatures and small initial population densities slowed population growth and tended to increase the proportion of each species' recruitment lost to Chaoborus predation. As water temperatures increased during 3 of 4 summers, rapid juvenile development and compensating increase in adult fertility generally permitted most prey species to escape regulation by these large, univoltine and semivoltine predators. With growing prey population size, declining food levels suppressed crustacean fecundity in July and August, thereby permitting predatory losses to climb again to substantial fractions of the reduced prey recruitment. Nevertheless, prey densities in predator-free and control or predator-enhanced enclosures differed little from July through September (except in 1976). Thus, summer population growth of most prey species seemed more limited by food shortages than by predators per se. Growth of individual zooplankters was affected by food availability during critical periods in July and August in all years, and Chaoborus predation seemed to influence the timing of this food limitation in at least 2 of the 4 years  相似文献   

5.
Effect of cyanobacterial blooms on thermal stratification   总被引:2,自引:0,他引:2  
Enclosure experiments were performed at Akanoi Bay, Lake Biwa, in 1995 to determine whether the blooms of cyanobacterial algae changed thermal stratification in the lake. We used four rectangular enclosures, each 10 m × 10 m, with a volume of 200 m3, which were open to the sediments. Two enclosures, A and B, were mixed artificially by aquatic pumps from 1000 to 1400 every day, and the other two enclosures, C and D, were controls with no mixing. The experiment was conducted during late summer from August 3 to September 27. Chlorophyll a concentrations were highest in enclosure D, followed by enclosure C, both of which were controls without mixing. Enclosure A had lower concentrations than enclosures C and D, and enclosure B had the lowest concentrations. No large cyanobacterial algae blooms of Anabaena sp. and Microcystis sp. were seen in the mixed enclosures A and B. In enclosures C and D, blooms of Anabaena sp. occurred in the middle of August, and Microcystis sp. later became dominant in enclosure D at the end of August. In enclosure D, the water temperature changed over the diel cycle before August 17, with thermal stratification during the day and complete mixing at night. After August 17, as Anabaena sp. and Microcystis sp. became dominant, the temperature at the bottom of the enclosure did not change clearly over the 24-h cycle. The APE (available potential energy) density (a measure of water column stability) in the enclosures increased by almost 100% when the biovolume of Anabaena sp. + Microcystis sp. exceeded 20 mm3 l−1. These results indicate that blooms of Anabaena sp. and Microcystis sp. can increase the available potential energy in the water column and create more stable stratification for their growth. Received: September 25, 1999 / Accepted: January 6, 2000  相似文献   

6.
J. B. Rasmussen 《Oecologia》1987,73(1):133-138
Summary The effect of a predatory leech, Nephelopsis obscura, on survivorship, growth, and production of chronomid larvae was studied by enclosure experiments carried out in a small pond. The prey population was composed almost entirely of the tubiculous, microphagous chironomid larvae, Chironomus riparius and Glyptotendipes paripes. Nephelopsis significantly reduced chironomid survivorship within the enclosures, and accounted for most of the measured mortality of fourth instar larvae. The cropping by Nephelopsis was not significantly biased toward either prey species. In long-term experiments (66 d) chironomid biomass in enclosures without leeches reached much higher levels than in enclosures containing Nephelopsis. This increase in biomass was due to growth of surviving larvae, rather than recruitment, since emergence and oviposition were not going on during the course of the experiments. The enhanced survivorship of larvae within leech-free enclosures was eventually accompanied by reduced growth and specific production (daily production/biomass) for C. riparius, which made up about 90% of the larval population. Growth and specific production of G. paripes (10% of larval population) was not affected. Short-term experiments (25 d) involving manipulation of densities and species ratio (9:1 CR:GP and 1:9 CR:GP) of larvae revealed that growth of the majority species was strongly influenced by larval density, whereas growth of the minority species was not. The same pattern was observed both in the presence and in the absence of Nephelopsis and was a result of differences in resource utilization between the two species. In the shortterm experiments, growth rates estimated for larvae exposed to leeches were significantly less than those for larvae in leech-free enclosures. This could be due either to size-biased consumption of larvae by Nephelopsis, or possibly a disturbance factor leading to reduced larval food intake and/or increased metabolic costs.  相似文献   

7.
Large bag-type (75 m3) and tube-type (105 m3) enclosures were set up in the shallow eutrophic Lake Suwa and were each stocked with exotic planktivorous whitefish (Coregonus lavaretus maraena). The release of whitefish caused the increase in nutrient concentration in the tube-type enclosure whereas no such increase was observed in the bag-type enclosure. Bottom sediment seemed to be an important source of chironomid food for whitefish. The proportion of phytoplankton measuring<10μm and 20–40μm, which respectively corresponded toOchromonas spp. andCryptomonas sp., were lower in the fish enclosures than in the control, which might have been caused by high grazing pressure by rotifers. The predation by whitefish might have affected the species composition of phytoplankton through reducing copepod predation on rotifers, not through reducing the densities of cladocerans which directly feed on phytoplankton as many investigators have reported. The phytoplankton biomass was not affected much by the release of fish. Possible reasons are that the increase in density of rotifers reduced the biomass of available phytoplankton and also that inedible Cyanophyceae were in the decreasing phase of their seasonal succession and could not increase successfully in spite of elevated nutrient levels.  相似文献   

8.
Invertebrate predation on zooplankton was investigated in mesocosms in the shallow tropical Lake Monte Alegre, São Paulo State, Brazil, in the summer of 1999. Two treatments were applied: one with natural densities of prey and the predators Chaoborus brasiliensis and the water mite Krendowskia sp. (Pr+), and another without predators (Pr-). Three enclosures (volume: 6.6 m3 of water per enclosure) per treatment were installed in the sediment of the deepest area of the lake (5.0 m). At the beginning, Chaoborus larvae were present in Pr- enclosures, because of technical difficulties in preventing their entrance, but they virtually disappeared in the course of the experiment. Water mites were almost absent in Pr- enclosures. Chaoborus predation negatively influenced the Daphnia gessneri population, but not the populations of the copepods Tropocyclops prasinus and Thermocyclops decipiens and the rotifers Keratella spp. Death rates of Daphnia were generally significantly higher in the Pr+ treatment; Daphnia densities increased after the disappearance of Chaoborus in Pr-. Copepod losses to predation in the experiment may be compensated by higher fecundity, shorter egg development time, and lower pressure on egg-bearing females, resulting in a lower susceptibility to Chaoborus predation. The predation impact of water mite on microcrustaceans and rotifers in the experiment was negligible.  相似文献   

9.
Bag-type enclosures (75 m3) with bottom sheets and tube-type enclosures (105 m3) open to the bottom sediment were stocked with exotic whitefish (Coregonus lavaretus maraena) to study their predation effects on the plankton community. The fish fed mainly on adult chironomids during the period of their emergence (earlier part of the experimental period). Thereafter, the food preference was shifted to larvae of chironomids and crustacean zooplankters. The predation effects on the plankton community were not evident in the bag-type enclosures where zooplankton densities were consistently low. The fish reduced the crustacean populations composed ofBosmina fatalis, B. longirostris andCyclops vicinus in the tube-type enclosures where the prey density was high (above ca. 50 individuals 1−1). The results suggested that the intensity of predation depended on the prey density. Rotifers increased in the fish enclosure, probably becauseCoregonus reduced the predation pressure byCyclops vicinus on rotifers and allowed the latter to increase. In the fish enclosures, no marked changes in species composition were observed. Zooplankton predated by the fish seemed to be distributed near the walls of the enclosures. Problems of enclosure experiments for examining the effects of fish predation on pelagic zooplankton communities are discussed.  相似文献   

10.
1. Based on two mesocosm experiments and 10 in vitro predation experiments, this work aimed to evaluate the impact of nutrient supply and Chaoborus predation on the structure of the zooplankton community in a small reservoir in Côte d'Ivoire. 2. During the first mesocosm experiment (M1), P enrichment had no effect on phytoplankton biomass (chlorophyll a) but significantly increased the biomass of some herbivorous zooplankton species (Filinia sp, Ceriodaphnia affinis). During the second experiment (M2), N and P enrichment greatly increased phytoplankton biomass, rotifers and cladocerans (C. affinis, C. cornuta, Moina micrura and Diaphanosoma excisum). In both experiments, nutrient addition had a negative impact on cyclopoid copepods. 3. Larger zooplankton, such as cladocerans or copepodites and adults of Thermocyclops sp., were significantly reduced in enclosures with Chaoborus in both mesocosm experiments, whereas there was no significant reduction of rotifers and copepod nauplii. This selective predation by Chaoborus shaped the zooplankton community and modified its size structure. In addition, a significant Chaoborus effect on chlorophyll a was shown in both experiments. 4. The preference of Chaoborus for larger prey was confirmed in the predation experiments. Cladocerans D. excisum and M. micrura were the most selected prey. Rotifer abundance was not significantly reduced in any of the 10 experiments performed. 5. In conclusion, both bottom‐up and top‐down factors may exert a structuring control on the zooplankton community. Nutrients favoured more strictly herbivorous taxa and disadvantaged the cyclopoid copepods. Chaoborus predation had a strong direct negative impact on larger crustaceans, favoured small herbivores (rotifer, nauplii) and seemed to cascade down to phytoplankton.  相似文献   

11.
Density-dependent behavior underpins white-tailed deer (Odocoileus virginianus) theory and management application in North America, but strength or frequency of the phenomenon has varied across the geographic range of the species. The modifying effect of stochastic environments and poor-quality habitats on density-dependent behavior has been recognized for ungulate populations around the world, including white-tailed deer populations in South Texas, USA. Despite the importance of understanding mechanisms influencing density dependence, researchers have concentrated on demographic and morphological implications of deer density. Researchers have not focused on linking vegetation dynamics, nutrition, and deer dynamics. We conducted a series of designed experiments during 2004–2012 to determine how strongly white-tailed deer density, vegetation composition, and deer nutrition (natural and supplemented) are linked in a semi-arid environment where the coefficient of variation of annual precipitation exceeds 30%. We replicated our study on 2 sites with thornshrub vegetation in Dimmit County, Texas. During late 2003, we constructed 6 81-ha enclosures surrounded by 2.4-m-tall woven wire fence on each study site. The experimental design included 2 nutrition treatments and 3 deer densities in a factorial array, with study sites as blocks. Abundance targets for low, medium, and high deer densities in enclosures were 10 deer (equivalent to 13 deer/km2), 25 deer (31 deer/km2), and 40 deer (50 deer/km2), respectively. Each study site had 2 enclosures with each deer density. We provided deer in 1 enclosure at each density with a high-quality pelleted supplement ad libitum, which we termed enhanced nutrition; deer in the other enclosure at each density had access to natural nutrition from the vegetation. We conducted camera surveys of deer in each enclosure twice per year and added or removed deer as needed to approximate the target densities. We maintained >50% of deer ear-tagged for individual recognition. We maintained adult sex ratios of 1:1–1:1.5 (males:females) and a mix of young and older deer in enclosures. We used reconstruction, validated by comparison to known number of adult males, to make annual estimates of density for each enclosure in analysis of treatment effects. We explored the effect of deer density on diet composition, diet quality, and intake rate of tractable female deer released into low- and high-density enclosures with natural nutrition on both study sites (4 total enclosures) between June 2009 and May 2011, 5 years after we established density treatments in enclosures. We used the bite count technique and followed 2–3 tractable deer/enclosure during foraging bouts across 4 seasons. Proportion of shrubs, forbs, mast, cacti, and subshrubs in deer diets did not differ (P > 0.57) between deer density treatments. Percent grass in deer diets was higher (P = 0.05) at high deer density but composed only 1.3 ± 0.3% (SE) of the diet. Digestible protein and metabolizable energy of diets were similar (P > 0.45) between deer density treatments. Likewise, bite rate, bite size, and dry matter intake did not vary (P > 0.45) with deer density. Unlike deer density, drought had dramatic (P ≤ 0.10) effects on foraging of tractable deer. During drought conditions, the proportion of shrubs and flowers increased in deer diets, whereas forbs declined. Digestible protein was 31%, 53%, and 54% greater (P = 0.06) during non-drought than drought during autumn, winter, and spring, respectively. We studied the effects of enhanced nutrition on the composition and quality of tractable female deer diets between April 2007 and February 2009, 3 years after we established density treatments in enclosures. We also estimated the proportion of supplemental feed in deer diets. We used the 2 low-density enclosures on each study site, 1 with enhanced nutrition and 1 with natural nutrition (4 total enclosures). We again used the bite count technique and 2–3 tractable deer living in each enclosure. We estimated proportion of pelleted feed in diets of tractable deer and non-tractable deer using ratios of stable isotopes of carbon. Averaged across seasons and nutrition treatments, shrubs composed a majority of the vegetation portion of deer diets (44%), followed by mast (26%) and forbs (15%). Enhanced nutrition influenced the proportion of mast, cacti, and flowers in the diet, but the nature and magnitude of the effect varied by season and year. The trend was for deer in natural-nutrition enclosures to eat more mast. We did not detect a statistical difference (P = 0.15) in the proportion of shrubs in diets between natural and enhanced nutrition, but deer with enhanced nutrition consumed 7–24% more shrubs in 5 of 8 seasons. Deer in enhanced-nutrition enclosures had greater (P = 0.03) digestible protein in their overall diet than deer in natural-nutrition enclosures. The effect of enhanced nutrition on metabolizable energy in overall diets varied by season and was greater (P < 0.04) for enhanced-nutrition deer during summer and autumn 2007 and winter 2008. In the enhanced-nutrition treatment, supplemental feed averaged 47–80% of the diet of tractable deer. Of non-tractable deer in all density treatments with enhanced nutrition, 97% (n = 128 deer) ate supplemental feed. For non-tractable deer averaged across density treatments, study sites, and years, percent supplemental feed in deer diets exceeded 70% for all sex and age groups. We determined if increasing deer density and enhanced nutrition resulted in a decline in preferred forbs and shrubs and an increase in plants less preferred by deer. We sampled all 12 enclosures via 20, 50-m permanent transects in each enclosure. Percent canopy cover of preferred forbs was similar (P = 0.13) among deer densities averaged across nutrition treatments and sampling years (low density: = 8%, SE range 6–10; medium density: 5%, 4–6; high density: 4%, 3–5; SE ranges are presented because SEs associated with backtransformed means are asymetrical). Averaged across deer densities, preferred forb canopy cover was similar between nutrition treatments in 2004; but by 2012 averaged 20 ± 17–23% in enhanced-nutrition enclosures compared to 10 ± 8–13% in natural-nutrition enclosures (P = 0.107). Percent canopy cover of other forbs, preferred shrubs, other shrubs, and grasses, as well as Shannon's index, evenness, and species richness were similar (P > 0.10) among deer densities, averaged across nutrition treatments and sampling years. We analyzed fawn:adult female ratios, growth rates of fawns and yearlings, and survival from 6 to 14 months of age and for adults >14 months of age. We assessed adult body mass and population growth rates (lambda apparent, λAPP) to determine density and nutrition effects on deer populations in the research enclosures during 2004–2012. Fawn:adult female ratios declined (P = 0.04) from low-medium density to high density in natural-nutrition enclosures but were not affected (P = 0.48) by density in enhanced nutrition enclosures although, compared to natural nutrition, enhanced nutrition increased fawn:adult female ratios by 0.15 ± 0.12 fawns:adult female at low-medium density and 0.44 ± 0.17 fawns:adult female at high density. Growth rate of fawns was not affected by deer density under natural or enhanced nutrition (P > 0.17) but increased 0.03 ± 0.01 kg/day in enhanced-nutrition enclosures compared to natural nutrition (P < 0.01). Growth rate of yearlings was unaffected (P > 0.71) by deer density, but growth rate increased for males in some years at some density levels in enhanced-nutrition enclosures. Adult body mass declined in response to increasing deer density in natural-nutrition enclosures for both adult males (P < 0.01) and females (P = 0.10). Enhanced nutrition increased male body mass, but female mass did not increase compared to natural nutrition. Survival of adult males was unaffected by deer density in natural- (P = 0.59) or enhanced- (P = 0.94) nutrition enclosures. Survival of adult females was greatest in medium-density enclosures with natural nutrition but similar at low and high density (P = 0.04). Enhanced nutrition increased survival of females (P < 0.01) and marginally for males (P = 0.11). Survival of fawns 6–14 months old was unaffected (P > 0.35) by density in either natural- or enhanced-nutrition treatments but was greater (P = 0.04) under enhanced nutrition. Population growth rate declined (P = 0.06) with increasing density in natural-nutrition enclosures but not (P = 0.55) in enhanced nutrition. Enhanced nutrition increased λAPP by 0.32. Under natural nutrition, we found only minor effects of deer density treatments on deer diet composition, nutritional intake, and plant communities. However, we found density-dependent effects on fawn:adult female ratios, adult body mass, and population growth rate. In a follow-up study, deer home ranges in our research enclosures declined with increasing deer density. We hypothesized that habitat quality varied among home ranges and contributed to density-dependent responses. Variable precipitation had a greater influence on deer diets, vegetation composition, and population parameters than did deer density. Also, resistance to herbivory and low forage quality of the thornshrub vegetation of our study sites likely constrained density-dependent behavior by deer. We posit that it is unlikely that, at our high-density (50 deer/km2) and perhaps even medium-density (31 deer/km2) levels, negative density dependence would occur without several wet years in close association. In the past century, this phenomenon has only happened once (1970s). Thus, density dependence would likely be difficult to detect in most years under natural nutrition in this region. Foraging by deer with enhanced nutrition did not result in a reduction in preferred plants in the vegetation community and had a protective effect on preferred forbs because ≤53% of deer diets consisted of vegetation. However, enhanced nutrition improved fitness of individual deer and deer populations, clearly demonstrating that nutrition is limiting for deer populations under natural conditions in western South Texas. © 2019 The Authors. Wildlife Monographs published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

12.
Zooplankton communities with a high or low density of Chaoborus larvae were established in outdoor concrete ponds, to which a carbamate insecticide, carbaryl, was applied at 0.1 or 0.5 mg l−1. The lower concentration of the chemical was harmful only to Cladocera. The higher concentration damaged Chaoborus, Copepoda, and some rotifer species, as well as Cladocera. In the ponds with a low density of Chaoborus, chemical application altered the cladoceran community from dominance by Daphnia to that by Bosmina and Moina. In the ponds with a high density of Chaoborus, Chaoborus excluded cladocerans from the zooplankton community presumably by predation, and supported the dominance of rotifers. Cladocera did not recover after application of the chemical, even when Chaoborus was eliminated by the higher concentration of chemical. The relatively rapid recovery of Chaoborus seemed to interrupt the recovery of Cladocera.  相似文献   

13.
Jonas Dahl 《Oecologia》1998,117(1-2):217-226
I assessed the impact of both vertebrate and invertebrate predators on a lotic benthic community in a 1-month-long experiment, using enclosures containing cobble/gravel bottoms, with large-mesh netting that allowed invertebrates to drift freely. Brown trout (Salmo trutta) and leeches (Erpobdella octoculata) were used as predators and four treatments were tested: a predator-free control, leeches only, trout only, and leeches and trout together. A density of 26.7 leeches/m2 (20 leeches/enclosure) and 1.3 trout/m2 (one trout per enclosure) was stocked into the enclosures. The total biomass of invertebrate prey was significantly lower in the trout and trout plus leech treatments than in the leech and control treatments, which were due to strong negative effects of trout on Gammarus. On the individual prey taxon level, both trout and leeches affected the abundance of Asellus , Baetis and Ephemerella, whereas the abundance of Gammarus was only affected by trout, and the abundance of Orthocladiinae and Limnephilidae was only affected by leeches. In the treatment with trout and leeches together, the abundance of Ephemerella and Baetis was higher than when trout or leeches were alone, which was probably due to predator interactions. Leeches and trout had no effects on prey immigration but did affect per capita emigration rates. Both trout and leeches indirectly increased periphyton biomass in enclosures, probably due to their strong effects on grazers. Both trout and leeches were size-selective predators, with trout selecting large prey, and leeches selecting small prey. Size-selective predation by trout and leeches affected the size structure of five commonly consumed prey taxa. Trout produced prey populations of small sizes owing to consumption of large prey as well as increased emigration out of enclosures by these large prey. Leech predation produced prey assemblages of larger size owing to consumption and increased emigration of small prey. These results suggest that in lotic habits, predatory invertebrates can be as strong interactors as vertebrate predators. Received: 23 June 1997 / Accepted: 4 May 1998  相似文献   

14.
The productivity of Nais spp. from periphyton of fishponds of the Dombes area (Ain) was studied in semi-natural conditions by cultivation of zooids in experimental glass enclosures immersed in situ and filled with pond water receiving injections of fertilizers (P2O5) and natural filtered periphyton extracts (particles < 70 µm). The growth rate of the experimental populations was not significantly affected by the concentration of fertilizers added to culture media. On the contrary, the water management of the culture media (as renewal or non-renewal of the water in experimental enclosures), the closing procedure of the enclosures and the load and composition of the nutritive substrate controlled the produced biomass. Temperature and food supply were the principal extrinsic variables controlling the asexual growth rate of the Nais species. The stolonization rate was analyzed as a biological parameter implicated in the instantaneous birth rate of zooids and the growth of naidid populations.  相似文献   

15.
The responses of nutrients, water transparency, zooplankton and phytoplankton to a gradient of silver carp biomass were assessed using enclosure methods. The gradient of four silver carp biomass levels was set as follows: 0, 116, 176 and 316 g m—2. Nutrients did not show any statistically significant differences among the treatments. An outburst of Daphnia only occurred in fishless enclosures where phytoplankton biomass was the lowest and water clarity significantly increased. While among fish enclosures, the small‐sized Moina micrura dominated throughout the experiment and both zooplankton and phytoplankton biomasses decreased with increased fish biomass. No large colonial cyanobacterial blooms occurred in the fishless enclosures as predicted. This might be due to low water temperature, short experiment time and the occurrence of large bodied Daphnia in our experiment. Cryptophyta was the most dominant group in most of the enclosures and the lake water throughout the experiment. The fishless enclosure had much lower proportion of Cyanophyta but higher proportion of Trachelomonas sp.  相似文献   

16.
The goal of this study was to determine the impact of enclosure size on space use and movement patterns of domestic fowl (Gallus gallus domesticus), independent of group size and density. Research designed to estimate the effects of group size, density, or enclosure size involves inherent confounding between factors, clouding their individual effects. This experimental design enabled us to conduct multiple contrasts in order to tease apart the specific impacts. Treatments consisted of five combinations of three square enclosures: small (S; 1.5 m2), medium (M; 3.0 m2), and large (L; 4.5 m2), and three group sizes of 10, 20, and 30 birds. We made comparisons while holding group size constant, holding density constant, and the third while maintaining a constant enclosure size. Nearest neighbor distances increased with enclosure size but appeared to be constrained by density. Net displacement and minimum convex polygons increased with enclosure size regardless of group size or density. We found no evidence of social restriction on space use. Results indicate that broilers adapted their use of space and movement patterns to the size of the enclosures, spreading out and utilizing a greater amount of space when it was available.  相似文献   

17.
Karl E. Havens 《Hydrobiologia》1990,198(1):215-226
During summer, Chaoborus punctipennis larval densities in the water column of fishless, eutrophic Triangle Lake become very high, and coincidently, the spined loricate rotifer Kelfcottia bostoniensis becomes the dominant zooplankter. Research was done to test the hypothesis that selective predation by Chaoborus on soft-bodied rotifers controls species dominance in the mid-summer zooplankton of this lake. In situ predation experiments showed positive selection by Chaoborus for the soft-bodied Synchaeta oblonga, negative selection for K. bostoniensis, and intermediate selection for Polyarthra vulgaris, a species with rapid escape tactics. However, during a 21 day in situ mesocosm experiment, zooplankton dominance and succession in Chaoborus-free enclosures was identical to that in enclosures with Chaoborus at lake density. Despite the selective predation, Chaoborus larvae may not exert significant top-down control on rotifers, whose intense reproductive output during mid-summer in temperate eutrophic lakes results in new individuals at rates that exceed predatory losses.  相似文献   

18.
1. Published studies show that cyanobacteria have higher Fe requirements than eukaryotic algae. To test whether Fe availability can affect formation of a cyanobacterial bloom, a strong Fe chelator, oxine (8‐hydroxyquinoline, C9H7NO), was added to enclosures in eutrophic Lake 227 in the Experimental Lakes Area (ELA) (northwestern Ontario). 2. Aphanizomenon schindlerii growth was suppressed, and growth of eukaryotic chlorophytes significantly promoted in enclosures to which oxine had been added. Significant eukaryotic growth did not occur in enclosures treated with ammonium, suggesting that N supplied by degradation of oxine was not responsible for eukaryotic success in the oxine enclosures. 3. In situ Fe2+ measurements were unreliable because of interference from high concentrations of dissolved organic compounds. However, oxine rapidly promoted oxidation of Fe2+ to Fe3+ in deionised water, suggesting that rapid removal of Fe2+ also occurred in the oxine‐treated enclosures. 4. In batch cultures, 10 μm Fe and 10 μm oxine (a 1 : 1 ratio) completely inhibited the growth of the cyanobacteria Synechococcus sp. and Anabaena flos‐aquae and the chlorophytes Pseudokirchneriella subcapitata and Scenedesmus quadricauda. Increasing Fe 10‐fold to 100 μm Fe completely and partially reversed oxine inhibition in the two chlorophytes but could not overcome inhibition of the cyanobacteria, indicating that inhibition was Fe‐mediated at least in the eukaryotes. Since oxine binds Fe3+ in a 1 : 3 ratio (Fe : oxine), inhibition at a 1 : 1 ratio indicates that not all of the Fe is bound, and a mechanism involving Fe other than chelation was at least partly responsible for inhibition. 5. Collectively, the enclosure and laboratory results suggest that the outcome of competition between cyanobacteria and eukaryotic algae in the oxine‐treated enclosures in Lake 227 was likely a result of decreased availability of Fe, especially Fe2+. 6. The results suggest that remediation methods that dramatically restrict the supply rate of Fe2+ could reduce the relative abundance of cyanobacteria in eutrophic systems.  相似文献   

19.
1. Grazing by invasive species can affect many aspects of an aquatic system, but most studies have focused on the direct effects on plants. We conducted mesocosm and laboratory experiments to examine the impact of the invasive apple snail Pomacea canaliculata on macrophytes, filamentous algae, nutrients and phytoplankton. 2. In a freshwater pond, we confined 500 g of Myriophyllum aquaticum or Eichhornia crassipes with 0, 2, 4 or 8 apple snails in 1 m × 1 m × 1 m enclosures for approximately 1 month. Apple snails grazed heavily on both species of macrophytes, with higher overall weight losses at higher snail densities. The damage patterns differed between the two macrophytes. In M. aquaticum, both leaves and stems suffered from substantial herbivory, whereas in E. crassipes, only the roots suffered significant weight reduction. 3. In addition to grazing on macrophytes, apple snails appeared to have controlled the growth of filamentous algae, as these did not develop in the snail treatments. The ability of P. canaliculata to control filamentous algae was supported by a laboratory experiment where the consumption was as high as 0.25 g g−1 snail DW d−1. Because of a lack of native herbivorous snails in the pond, the growth of filamentous algae (mainly Spirogyra sp.) reached 80.3 g m−2, forming a spongy pond scum in the no‐apple snail control. Together with previous reports that apple snails could eat the juveniles and eggs of other freshwater snails, our results indicated that P. canaliculata could have out‐competed native herbivorous snails from the pond by predation on their juveniles or eggs. Alternatively, P. canaliculata might have out‐competed them by monopolisation of food resources. 4. Nitrogen and phosphorous concentrations remained low throughout both experiments and were not correlated with apple snail density. The treatment effects on chlorophyll a (Chl a) and phytoplankton composition varied in the two experiments. In the M. aquaticum experiment, with increasing snail density, Chl a increased, and the phytoplankton community became dominated by Cryptophyceae. In the E. crassipes experiment, Chl a level was independent of snail density, but with increasing snail density, the phytoplankton community became co‐dominated by Cryptophyceae, Chlorophyceae and Bacillariophyceae. 5. Given the multiple effects of P. canaliculata on wetland biodiversity and function, management strategies should be developed to prevent its further spread. In invaded wetlands, strategies should be developed to eradicate the apple snail and re‐introduce native snails which can control the development of filamentous algae.  相似文献   

20.
SUMMARY 1. The ciliate populations of two temporary ponds in southern Ontario were studied throughout their aquatic phases in 2001. Pond I (~1 ha) held water for 98 days, whereas Pond II (~0.25 ha) held water for 34 days. Populations were assessed both within the ponds themselves and within a series of enclosures in which invertebrate predator pressure was manipulated. 2. In the natural pond water, total ciliate abundance in Pond II rose rapidly from day 1 increasing two orders of magnitude by day 7. In contrast, total abundance in Pond I began at the same level as in Pond II but increased much more slowly, reached a plateau of around 500 individuals L?1, and increased again late in the hydroperiod. 3. Despite being only 500 m apart, the two ponds were fairly dissimilar in terms of their species richness and species composition. Pond I contained 50 species compared with 70 species for Pond II, with only 24 species shared. Additional species occurred within the enclosures raising the total species richness to 145 species; 88 from Pond I, 104 from Pond II, with 47 species (30%) in common. Pond II contained more mid‐sized ciliates (50–200 μm), whereas Pond I was dominated by smaller ciliates, especially in mid‐May and early June. In Pond I, cumulative species richness throughout the hydroperiod was highest in the predator addition enclosures (65 ± 4 species), followed by the partial‐predator exclusion enclosures (50 ± 4). Lowest species richness was found in the control enclosures (39 ± 2) and in the pondwater controls (39 ± 0). Differences between the ciliates in the natural pond water and the enclosures appeared to be related to a greater concentration of phytoplankton within the enclosures (perhaps resulting from extensive growth of duckweed, Lemna, outside), and higher densities of zooplankters in the pond. 4. The physicochemical environment influenced species richness, total abundance and the number of rare species (27 in Pond II versus 13 in Pond I). Variation in ciliate abundance in Pond I could be explained by the number of days after filling (39%) and enclosure treatment (23%). These two parameters also explained 72% of the variation in species richness in Pond I (46 and 26%, respectively). Sixty‐five per cent of the variation in abundance in Pond II could be explained by the measured parameters: number of days after filling 27%, pH 19%, and nitrate levels 12%. Fifty‐two per cent of the variation in species richness was explained by the environmental parameters, of which pH was the most influential. Species succession was a strong feature of both ponds and its relationship to environmental variables and the presence of other organisms is discussed. 5. Addition of invertebrate predators resulted in higher abundance and higher species richness for a limited time period in one of the ponds – suggesting that differences in foodweb dynamics may influence ciliate community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号