首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B. Dahlbender  D. Strack 《Planta》1986,169(3):382-392
The relationships between the metabolism of malate, nitrogen assimilation and biosynthesis of amino acids in response to different nitrogen sources (nitrate and ammonium) have been examined in cotyledons of radish (Raphanus sativus L.). Measurements of the activities of some key enzymes and pulse-chase experiments with [14C]malate indicate the operation of an anaplerotic pathway for malate, which is involved in the synthesis of glutamine during increased ammonia assimilation. It is most likely that the tricarboxylicacid cycle is supplied with carbon through entry of malate, formed via the phosphoenolpyruvate (PEP)-carboxylation pathway, when 2-oxoglutarate leaves the cycle to serve as precursor for an increased synthesis of glutamine via glutamate. This might occur predominantly in the cytosol via the activity of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, the NADH-dependent GOGAT being the rate-limiting activity.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - GDH glutamate dehydrogenase - GOGAT glutamate synthase (glutamine: 2-oxoglutarate aminotransferase) - GOT aspartate aminotransferase (glutamate: oxaloacetate transaminase) - GS glutamine synthetase - HPLC high-performance liquid chromatography - MCF extraction medium of methanol: chloroform: 7M formic acid, 12:5:3, by vol. - MDH malate dehydrogenase - MSO L-methionine, sulfoximine - PEPCase phosphoenolpyruvate carboxylase - TLC thin-layer chromatography  相似文献   

2.
Rhodopseudomonas acidophila strain 7050 can satisfy all its nitrogen and carbon requirements from l-alanine. Addition of 100 M methionine sulfoximine to alanine grown cultures had no effect on growth rate indicating that deamination of alanine via alanine dehydrogenase and re-assimilation of the released NH 4 + by glutamine synthetase/glutamate synthase was an insignificant route of nitrogen transfer in this bacterium. Determination of aminotransferase activities in cell-free extracts failed to demonstrate the presence of direct routes from alanine to either aspartate or glutamate. The only active aminotransferase involving l-alanine was the alanine-glyoxylate enzyme (114–167 nmol·min–1·mg–1 protein) which produced glycine as end-product. The amino group of glycine was further transaminated to yield aspartate via a glycineoxaloacetate aminotransferase (117–136 nmol·min–1 ·mg–1 protein). No activity was observed when 2-oxoglutarate was substituted for oxaloacetate. The formation of glutamate from aspartate was catalysed by aspartate-2-oxoglutarate aminotransferase (85–107 nmol·min–1·mg–1 protein). Determinations of free intracellular amino acid pools in alanine and alanine+100 M methionine sulfoximine grown cells showed the predominance of glutamate, glycine and aspartate, providing further evidence that in alanine grown cultures R. acidophila satisfies its nitrogen requirements for balanced growth by transamination.Abbreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulfoximine - GOT glutamate-oxaloacetate aminotransferase - GPT glutamate-pyruvate amino-transferase - AGAT alanine-glyoxylate aminotransferase - GOAT glycine-oxaloacetate aminotransferase - GOTAT glycine-2-oxoglutarate aminotransferase - AOAT alanine-oxaloacetate aminotransferase  相似文献   

3.
The activities of NAD-malic dehydrogenase, aspartate aminotransferase,phosphoenolpyruvate carboxylase and NADP-malic enzyme in colorlessmutant cells of Chlorella vulgaris (Mutant No. 125) decreasedduring starvation (in phosphate buffer in darkness). The mostpronounced decrease was observed in phosphoenolpyruvate carboxylaseactivity. A trace of ribulose diphosphate carboxylase activitydetected in the growing cells disappeared on starvation andno activity of pyruvate carboxylase was detected in these mutantcells. Blue light (462 or 465 nm) enhanced phosphoenolpyruvatecarboxylase activity in the starved cells about 2-fold, whilethe activities of aspartate aminotransferase and NADP-malicenzyme were slightly lowered by the blue light. Red light (mainly600–650 nm) brought about a slight decrease in all theenzyme activities tested. Cycloheximide (5 µ/ml) completelyabolished the enhancing effect of blue light on phosphoenolpyruvatecarboxylase activity, indicating that the short wavelength lightspecifically increased the de novo synthesis of this enzyme. (Received March 14, 1975; )  相似文献   

4.
The activities of several enzymes, including ribulose-1,5-diphosphate (RuDP) carboxylase (EC 4.1.1.39) and phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured as a function of leaf age in Z. mays. Mature leaf tissue had a RuDP-carboxylase activity of 296.7 mol CO2 g-1 fresh weight h-1 and a PEP-carboxylase activity of 660.6 mol CO2 g-1 fresh weight h-1. In young corn leaves the activity of the two enzymes was 11 and 29%, respectively, of the mature leaves. In senescent leaf tissue, RuDP carboxylase activity declined more rapidly than that of any of the other enzymes assayed. On a relative basis the activities of NADP malic enzyme (EC 1.1.1.40), aspartate (EC 2.6.1.1) and alanine aminotransferase (EC 2.6.1.2), and NAD malate dehydrogenase (EC 1.1.1.37) exceeded those of both PEP and RuDP carboxylase in young and senescent leaf tissue. Pulse-chase labeling experiments with mature and senescent leaf tissue show that the predominant C4 acid differs between the two leaf ages. Labeling of alanine in senescent tissue never exceeded 4% of the total 14C remaining during the chase period, while in mature leaf tissue alanine accounted for 20% of the total after 60 s in 12CO2. The activity of RuDP carboxylase during leaf ontogeny in Z. mays parallels the development of the activity of this enzyme in C3 plants.Abbreviations RuDP ribulose-1,5-diphosphate - PEP phosphoenol pyruvate - PGA 3-phosphoglycerate  相似文献   

5.
Summary An albino seedling of Zea mays L. was investigated for its potential for CO2-assimilation. In the mesophyll the number, dimensions and fine structure of chloroplasts are drastically reduced but to a lesser extent in the bundle sheath. Chlorophyll concentration is zero and carotenoid concentration almost zero. Albinism also exerts a strong influence on the stroma of bundle sheath chloroplasts; ribulose-1.5-biphosphate carboxylase (EC 4.1.1.39) activity and glyceraldehyde-3-phosphate dehydrogenase (NADP) (EC 1.2.1.13) activity is not detectable. The C4-enzymes phosphoenolpyruvate carboxylase (EC 4.1.1.31) and malate dehydrogenase (decarboxylating) (EC 1.1.1.40) and the non-photosynthetic linked enzymes malate dehydrogenase (NAD) (EC 1.1.1.37), aspartate-2-oxoglutarate aminotransferase (EC 1.1.1.37), aspartate-2-oxoglutarate aminotransferase (EC 2.6.1.1.) and glyceraldehyde-3-phosphate dehydrogenase (NAD) (EC 1.2.1.1.) are present in the albino seedling with activities comparable to those in etiolated maize seedlings. The potential for CO2 fixation of the albino seedlings exceeds that of comparable dark seedlings considerably. The results are discussed with regard to enzyme localization of the C4 pathway of photosynthesis.Abbreviations Aspartate aminotransferase L-aspartate-2-oxoglutarate aminotransferase-EC 2.6.1.1. - GAPDH (NAD) glyceraldehyde-3-phosphate dehydrogenase (NAD dep.)-EC 1.2.1.12 - GAPDH (NADP) glyceraldehyde-3-phosphate dehydrogenase (NADP dep.)-EC 1.2.1.13 - malic enzyme malate dehydrogenase (NADP dep., decarboxylating)-EC 1.1.1.40 - MDH malate dehydrogenase (NAD dep.)-1.1.1.37 - PEP carboxylase phosphoenolpyruvate carboxylase-EC 4.1.1.31 - RuDP carboxylase ribulose-1.5-biphosphate carboxylase-EC 4.1.1.39  相似文献   

6.
DEVELOPMENT OF MITOCHONDRIAL PYRUVATE METABOLISM IN RAT BRAIN   总被引:10,自引:6,他引:4  
The activities of a number of mitochondrial enzymes involved in the metabolism of pyruvate during development of the rat brain were investigated. The rates of decarboxylation of [1-14C]pyruvate to 14CO2 via pyruvate dehydrogenase and the fixation of H14CO3? in the presence of pyruvate via pyruvate carboxylase by brain homogenates were very low in newborn rats. These rates increased markedly by about four-fold and 15-fold respectively during 10–35 postnatal days. The rates of the fixation of H14CO3? by cerebral homogenates were supported by the development of the activity of pyruvate carboxylase in rat brain. The activities of citrate synthase, aconitase, NAD-malate dehydrogenase, aspartate aminotransferase, alanine aminotransferase and phosphoenol-pyruvate carboxykinase were very low in the particulate fraction of the newborn rat brain. The activities of all these enzymes increased makedly by about three- to 10-fold during 10–35 days after birth. The activity of mitochondrial phosphoenolpyruvate carboxykinase from rat brain was not precipitated by an antibody prepared against rat liver cytosolic phosphoenolpyruvate carboxykinase suggesting that cerebral mitochondrial enzyme is immunologically different from that of the cytosolic form in hepatocytes. The significance of the development of the cerebral mitochondrial metabolism is discussed in relation to biochemical maturation of the brain.  相似文献   

7.
Activities of some enzymes related to carbon metabolism were studied in different ecotypes of Rumex nepalensis growing at 1 300, 2 250, and 3 250 m above mean sea level. Activities of ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, and glutamine synthetase increased with altitude, whereas activities of malate dehydrogenase, NAD-malic enzyme, and citrate synthase did not show a significant difference with change in altitude.  相似文献   

8.
The mangroves Rhizophora lamarkii, Ceriops roxburghiana, Bruguiera gymnorrhiza, Aegiceras corniculatum, and Lumnitzera racemosa were screened for their carbon metabolic pathways by measuring net photosynthetic rate (P N), 13C discrimination rate, leaf anatomy, titratable acidity, and activities of phosphoenolpyruvate carboxylase, NADH-malate dehydrogenase, alanine aminotransferase, aspartate aminotransferase, and pyruvate phosphate dikinase. The tested mangroves had a well developed succulence, opening of stomata during day time and closure in the night hours, and absence of diurnal fluctuation of organic acids in their leaves which excludes the possibility of these species being CAM plants. Moreover, the leaf anatomy had not exhibited Kranz syndrome. The high values of discrimination against 13C, low P N, high CO2 compensation concentration, and the activities of aminotransferases in the direction of alanine formation suggest that the species may follow C3 mode of carbon metabolic pathway.  相似文献   

9.
A Tn5 insertional prototrophic mutant of Paracoccus denitrificans (UBM219) was generated which grew on high (>1 mM) but not low (<0.5 mM) ammonium as sole nitrogen source. It did not utilize nitrate and most amino acids except glutamate and aspartate. UBM219 showed more than 10-fold lower levels of ammonium (methylammonium) transport, aspartate and alanine aminotransferase, but more than 10-fold higher activities of glutamate dehydrogenase and glutamate synthase. This pleiotropy indicates a mutation in a regulatory gene affecting nitrogen metabolism in general. — Ammonia assimilation pathways and regulation in Paracoccus resemble the patterns in enterobacteria with the exception, that alanine is generated by amino transfer from glutamate to pyruvate.Non-standard abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GluDH glutamate dehydrogenase - GPT glutamate/pyruvate aminotransferase - GOT glutamate/oxaloacetate aminotransferase  相似文献   

10.
Rhodopseudomonas acidophila strain 7050 achieved balanced growth when provided with either asparagine or glutamine as nitrogen source. Under these growth conditions R. acidophila synthesized a mixed amidase which exhibited similar activity (223–422 nmol/min·mg protein) against either nitrogen source. Determination of the free intracellular amino acid pools show that deamidation of asparagine and glutamine resulted in elevated levels of both aspartate and glutamate. Cell-free extracts of R. acidophila showed significant aminotransferase activity, particulary glutamine-oxaloacetate aminotransferase (89.7–209.3 nmol/min·mg protein), glycine oxaloacetate aminotransferase (135–227 nmol/min ·mg protein), alanine glyoxylate aminotransferase (66.3–163.2 nmol/min·mg protein) and serineglyoxylate aminotransferase (57.1–68.4 nmol/min ·mg protein). Short term labelling experiments using 14C-glyoxylate show that glycine plays an important role in amino nitrogen transfer in R. acidophila and that the enzymes for the metabolism of glyoxylate via glycine, serine and hydroxypyruvate were present in cell-free extracts. These data confirm that R. acidophila can satisfy all its' nitrogen requirements by transamination.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulfoximine - GOT glutamate—oxaloacetate aminotransferase - GPT glutamate-pyruvate aminotransferase - AGAT alanineglyoxylate aminotransferase - GOAT glycine-oxaloacetate aminotransferase - GOGAT glycine-2-oxoglutarate aminotransferase - AOAT alanine-oxaloacetate aminotransferase - SGAT serineglyoxylate aminotransferase - INH isonicotinylhydrazide  相似文献   

11.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

12.
The activity of 6-phosphogluconate dehydrogenase, aspartate kinase and phosphoenolpyruvate carboxylase has been studied at different dilution rates in aerobic continuous culture of Corynebacterium glutamicum. 6-Phosphogluconate dehydrogenase and aspartate kinase reached their maximum values at the lower dilution rates (0.02–0.06 h–1), when L-lysine was produced. The phosphoenolpyruvate carboxylase activity seemed to be independent of metabolite synthesis. The production of L-lysine was also studied in non-growing cells in batch cultures. In these conditions, statistical analysis revealed significant differences in L-lysine titres when glucose or gluconic acid were used as carbon sources. Higher L-lysine concentration obtained with gluconic acid was found to be associated with a high 6-phosphogluconate dehydrogenase activity.  相似文献   

13.
Abstract– Various aspects of amino acid metabolism were studied in striatum of rats with unilateral, kainic acid-induced lesions. Tissue slices were prepared from the lesioned and the contralateral, unlesioned, striatum. The preparations were incubated with a mixture of d -[2-14C]glucose and [3H]acetate in a Krebs-Ringer bicarbonate medium to evaluate oxidative metabolism. Glutamate and aspartate levels were decreased in the slices prepared from the lesioned striata by 35-40% and that of GABA by 75% compared to the levels found in the slices from the contralateral striata; glutamine levels were not different in the two preparations. Glucose utilization was decreased 60% in the slices from the lesioned striatum; this was caused not only by decreased levels of glutamate, aspartate and GABA but also by a decreased rate of labelling of glutamate and aspartate. On the other hand, the metabolism of [3H]acetate was greatly increased. The specific activities of glutamate and aspartate were 4-5-fold higher in the slices from kainic acid-lesioned striata; those of glutamine and GABA were unchanged. Thus, there was a 6-7-fold increase in the ratio of 3H to 14C in the specific activities of glutamate, aspartate and GABA with no change in this ratio in glutamine. The labelling of glutamine relative to that of glutamate, especially from [3H]acetate, suggested that the compartmentation of the glutamate-glutamine system was greatly altered in the kainate-lesioned striatum which now more closely resembled a single compartment system. The activities of lactate dehydrogenase, glutamate dehydrogenase, GABA transaminase and ‘cytoplasmic’ aspartate aminotransferase were decreased in homogenates of lesioned striatum. Succinate dehydrogenase, glutaminase (phosphate-activated) and ‘mitochondrial’ aspartate aminotransferase activities were unchanged whilst that of glutamine synthetase was increased. The results are consistent with hypotheses concerning the assignment of labelled acetate metabolism to glial cells as well as the distribution of the above enzymes between glia, neurones and nerve endings.  相似文献   

14.
15.
Excised maize (Zea mays L.) root tips were used to monitor the effects of prolonged glucose starvation on nitrogen metabolism. Following root-tip excision, sugar content was rapidly exhausted, and protein content declined to 40 and 8% of its initial value after 96 and 192 h, respectively. During starvation the contents of free amino acids changed. Amino acids that belonged to the same synthetic family showed a similar pattern of changes, indicating that their content, during starvation, is controlled mainly at the level of their common biosynthetic steps. Asparagine, which is a good marker of protein and amino-acid degradation under stress conditions, accumulated considerably until 45 h of starvation and accounted for 50% of the nitrogen released by protein degradation at that time. After 45 h of starvation, nitrogen ceased to be stored in asparagine and was excreted from the cell, first as ammonia until 90–100 h and then, when starvation had become irreversible, as amino acids and aminated compounds. The study of asparagine metabolism and nitrogen-assimilation pathways throughout starvation showed that: (i) asparagine synthesis occurred via asparagine synthetase (EC 6.3.1.1) rather than asparagine aminotransferase (EC 2.6.1.14) or the -cyanoalanine pathway, and asparagine degradation occurred via asparaginase (EC 3.5.1.1); and (ii) the enzymic activities related to nitrogen reduction and assimilation and amino-acid synthesis decreased continuously, whereas glutamate dehydrogenase (EC 1.4.1.2–4) activities increased during the reversible period of starvation. Considered together, metabolite analysis and enzymic-activity measurements showed that starvation may be divided into three phases: (i) the acclimation phase (0 to 30–35 h) in which the root tips adapt to transient sugar deprivation and partly store the nitrogen released by protein degradation, (ii) the survival phase (30–35 to 90–100 h) in which the root tips expel the nitrogen released by protein degradation and starvation may be reversed by sugar addition and (iii) the cell-disorganization phase (beyond 100 h) in which all metabolites and enzymic activities decrease and the root tips die.Abbreviations AlaAT alanine aminotransferase - AspAT aspartate aminotransferase - AS asparagine synthetase - Asnase asparaginase - AsnAT asparagine aminotransferase - -CS -cyanoalanine synthase - GDH glutamate dehydrogenase - Glnase glutaminase - GOGAT glutamate synthase - GS glutamine synthetase - NiR nitrite reductase - NR nitrate reductase  相似文献   

16.
Günter Döhler 《Planta》1976,131(2):129-133
Summary CO2 exchange, 14CO2 fixation and 14C-labelled photosynthetic products of differently pigmented Anacystis nidulans (strain L 1402-1) were studied during the induction period at +30°C. The algae were grown at +35° C in an atmosphere of 0.04 vol.-% CO2 and measured under the same low CO2 concentrations. Changing the culture conditions caused alterations in the pigment composition. Under normal illumination (white light; 0.6×103 erg/ cm2 s) the relation between amounts of chlorophyll a and phycocyanin was 1:7 to 1:10. In a high light intensity (30.8×103 erg/cm2 s) the phycocyanin content was reduced (1:5 to 1:2). When the cells were grown in red light of high intensity (20×103 erg/ cm2 s) phycocyanin synthesis increased; the pigment ratio varied between 1:20 and 1:33. Anacystis cells grown under strong white light were filamentous.Photosynthetic CO2 uptake, measured with an infrared gas analyzer, was very low in algae grown in high light intensity. The pattern of 14C-labelled photosynthetic products of these algae was very similar to those of the Calvin cycle. In Anacystis cells grown under low intensities of white light or in red light 14CO2 was, at the beginning of the light period, incorporated mainly into aspatate and glycerine/serine. The enzyme activities of NAD+-specific malate dehydrogenase, ribulose-1,5-diphosphate carboxylase, aspartate and alanine aminotransferase decreased with increasing phycocyanin content. NADP+-specific malic enzyme activities showed practically no change. In contrast, phosphoenolpyruvate carboxylase activity increased with a higher rate of phycocyanin synthesis. In another series of experiments the behaviour of the PEP carboxylase activity after breakdown of the Anacystis cells was tested in differently pigmented cultures. In all cases the enzyme activities very rapidly decreased within two hours. The results obtained are discussed with reference to the correlation of pigment composition and CO2 fixation of the phosphoenolpyruvate system.
Abkürzungen Asp Aspartat - Gly/Ser Glycin/Serin - PGS 3-Phosphoglycerat - ZmP Zuckermonophosphat Herrn Professor Dr. Andre Pirson in Verehrung gewidmet  相似文献   

17.
Günter Döhler 《Planta》1974,117(1):97-99
Summary The blue-green alga Anacystis nidulans (strain L 1402-1) was grown in air (0.03 vol. % CO2) and in 3.0 vol. % CO2 at +35° C. Levels of carbonic anhydrase were 3-fold higher in air-grown cells than in CO2-grown algae. CO2 content during growth has no effect on activity of RuDP carboxylase. Activities of PEP carboxylase, malic enzyme and catalase were higher in CO2-grown Anacystis cells. In air-grown cells higher activities of malate dehydrogenase, glycolate dehydrogenase, serine-pyruvate aminotransferase and aspartate--ketoglutarate aminotransferase were found. Levels of these enzymes are relatively low compared to those in green algae and higher plants.  相似文献   

18.
Alanine dehydrogenase in Arthrobacter fluorescens exhibited an allosteric behaviour and two K m values for ammonium were estimated. In batch cultures at different ammonium concentrations and in continuous culture following an NH4 + pulse, the level of ADH activity seems to be regulated by the ammonium concentration, high activities being observed when extracellular ammonium was in excess. The response to the growth rate of an ammonium-limited chemostat culture of A. fluorescens seems to indicate that alanine dehydrogenase and glutamine synthetase activities were inversely related. High activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase have been found in crude extract of ammonium-limited cultures. From the results obtained in batch cultures grown at different glucose concentrations and in carbon-limited chemostat culture it appeared that the limitation by glucose influenced alanine dehydrogenase activity negatively. No glutamate dehydrogenase activity and no glutamate synthase activity could be detected with either NADH or NADPH as coenzymes.Abbreviations ADH alanine dehydrogenase - GS glutamine synthetase - GDH glutamate dehydrogenase - GOGAT glutamine oxoglutarate aminotransferase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   

19.
Fibroblast cultures were used to study the effect of crude venom and six venom protein fractions (F2–F7) fromWalterinnesia aegyptia) on their metabolic activity. This was done by incubation of six fibroblast cultures with 10 g of crude venom for 3 h at 37°C. The activities of phosphofructokinase, lactate dehydrogenase, and citrate synthase were significantly lowered upon incubation with all fractions except F2. Glycogen phosphorylase activity was significantly increased, leading to a significant concurrent drop of glycogen content. This effect was only seen for fractions F3 and F5. Creatine kinase activity and cellular ATP levels rose significantly upon incubation with all venom proteins except fractions F2 and F7. Increases were seen for aspartate and alanine amino-transferases by all venom proteins except fractions F2 and F4. Incubation of cell sonicates with all the venom proteins did not significantly alter activities of any of the parameters. Thus, fibroblasts in culture under such conditions appear to mobilize glycogen, phosphocreatine, and protein for ATP production to compensate for decreased glucose.Abbreviations ALT alanine aminotransferase - AST aspartate aminotransferase - ATP adenosine 5-triphosphate - CS citrate synthhase - GP glycogen phosphorylase - LDH lactate dehydrogenase - PFK phosphofructokinase  相似文献   

20.
Summary The pathway of gluconeogenesis from pyruvate, lactate and alanine was investigated in isolated liver cells of the eel. Amino-oxyacetate, a transaminase inhibitor, inhibited gluconeogenesis not only from lactate, but also from pyruvate by 60%.d-Malate did not inhibit gluconeogenesis from either of the substrates (Table 1 A).The effects of various amino acids on gluconeogenesis were investigated. Leucine accelerated gluconeogenesis from pyruvate or alanine (Table 2). Leucine promoted the incorporation of14C-pyruvate into glutamate and aspartate, and increased the glutamate content. The specific activity of14C-aspartate was increased markedly by leucine (Table 5).From the investigation of subcellular distribution of enzymes unique to gluconeogenesis, it was found that pyruvate carboxylase was located almost exclusively in the mitochondrial fraction, and that phophoenolpyruvate carboxykinase and aspartate transaminase were located in both the mitochondrial and the cytosolic fractions (Table 7).From these results it is concluded that the oxaloacetate-aspartate pathway is a major route in gluconeogenesis from any of the substrates in the eel liver.Abbreviations AOA amino-oxyacetate - PEP phosphoenolpyruvate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号