首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.  相似文献   

2.
Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory infection with as yet unclear epidemiology. We previously showed that MERS-CoV counteracts parts of the innate immune response in human bronchiolar cells. Here we analyzed accessory proteins 3, 4a, 4b, and 5 for their abilities to inhibit the type I interferon response. Accessory protein 4a was found to block interferon induction at the level of melanoma differentiation-associated protein 5 (MDA5) activation presumably by direct interaction with double-stranded RNA.  相似文献   

3.
4.
Fluorescent microplate assay for cancer cell-associated cathepsin B.   总被引:3,自引:0,他引:3  
Cathepsin B and in particular cell-surface and secreted cathepsin B has been implicated in the invasive and metastatic phenotype of numerous types of cancer. We describe here a method to easily survey cancer cell lines for cathepsin B activity using the highly selective substrate Z-Arg-Arg-AMC. Intact human U87 glioma cells hydrolyze Z-Arg-Arg-AMC with a Km of 460 microM at pH 7.0 and 37 degrees C. This is nearly the same as the Km of 430 microM obtained with purified cathepsin B assayed under the same conditions. The pericellular (i.e. both cell-surface and released) cathepsin B activity was inhibited by the cysteine protease inhibitors E-64, leupeptin, Mu-Np2-HphVS-2Np, Mu-Leu-HpHVSPh and the cathepsin B selective inhibitor Mu-Tyr(3,5 I2)-HphVSPh with IC50 values similar to those observed for the inhibition of purified human liver cathepsin B. Other human cancer cell lines with measurable pericellular cathepsin B activity included HT-1080 fibrosarcoma, MiaPaCa pancreatic, PC-3 prostate and HCT-116 colon. Cathepsin B activity correlated with protein levels of cathepsin B as determined by immunoblot analysis. Pericellular cathepsin B activity was also detected in the rat cell lines MatLyLu prostate and Mat B III adenocarcinoma and in the murine lines B16a melanoma and Lewis lung carcinoma. The ability to determine pericellular cathepsin B activity will be useful in selecting appropriate cell lines for use in vivo when analyzing the effects of inhibiting cathepsin B activity on tumor growth and metastasis.  相似文献   

5.
The effect of human recombinant interferon-alpha on lymphocyte proliferation and differentiation was studied in 18 patients with chronic type B hepatitis who were participating in a randomized controlled trial of interferon-alpha therapy. Peripheral blood mononuclear cells (PBMC) were obtained by lymphopheresis before and during a 4 mo course of interferon. Pokeweed mitogen-induced immunoglobulin synthesis by PBMC obtained from patients before therapy was similar to that of PBMC from normal individuals. However, after 2 wk treatment with human recombinant interferon-alpha mitogen-induced immunoglobulin production was decreased by an average of 50%. Staining for cytoplasmic immunoglobulin revealed decreases that paralleled secreted immunoglobulin, indicating that interferon-alpha treatment inhibited immunoglobulin synthesis. Mixing autologous T and B cell enriched populations from before and during interferon treatment revealed that the decrease in immunoglobulin synthesis involved a defect in the B cell-enriched population. In contrast to immunoglobulin synthesis, pokeweed mitogen-induced lymphocyte proliferation was not significantly affected by in vivo administration of interferon-alpha. Thus a major effect of in vivo interferon-alpha on immunoregulation in patients with chronic type B hepatitis appears to be an inhibition of the late stages of B cell differentiation into immunoglobulin producing and secreting plasma cells.  相似文献   

6.
IntroductionType I interferons are pivotal in the activation of autoimmune response in systemic lupus erythematous. However, the pathogenic role of interferon-alpha in patients affected by lupus nephritis remains uncertain. The aim of our study was to investigate the presence of a specific interferon signature in lupus nephritis and the effects of interferon-alpha at renal level.MethodsWe performed immunohistochemical analysis for MXA-protein and in situ hybridization to detect interferon-alpha signature and production in human lupus nephritis. Through microarray studies, we analyzed the gene expression profile of renal tubular epithelial cells, stimulated with interferon-alpha. We validated microarray results through real-time polymerase chain reaction, flow cytometry on renal tubular epithelial cells, and through immunohistochemical analysis and confocal microscopy on renal biopsies.ResultsType I interferons signature was characterized by MXA-specific staining in renal tubular epithelial cells; in addition, in situ hybridization showed that renal tubular epithelial cells were the major producers of interferon-alpha, indicating a potential autocrine effect. Whole-genome expression profile showed interferon-alpha induced up-regulation of genes involved in innate immunity, protein ubiquitination and switching to immunoproteasome. In accordance with the in vitro data, class IV lupus nephritis showed up-regulation of the immunoproteasome subunit LMP7 in tubular epithelial cells associated with type I interferon signature.ConclusionsOur data indicate that type I interferons might have a pathogenic role in lupus nephritis characterized by an autocrine effect of interferon-alpha on renal tubular epithelial cells. Therefore we hypothesize that inhibition of type I interferons might represent a therapeutic target to prevent tubulo-interstitial damage in patients with lupus nephritis.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0588-3) contains supplementary material, which is available to authorized users.  相似文献   

7.
Sequentially treating human melanoma cell lines by priming with interferon-gamma before adding interferon-beta was previously found to be the most efficient protocol for producing concurrently increased expression of the three surface antigens B7-1, intercellular adhesion molecule-1 and human histocompatibility leucocyte antigens Class I. The present study describes similar outcomes when the same sequential intercellular adhesion molecule-based protocol is applied to murine B16-F10 melanoma cells as well as preclinical studies using the B16-F10 model as a poorly immunogenic melanoma. Thus, treating B16-F10 cells or a highly expressing B7-1 transfected subline (B16-F10/B7-1 hi) by priming with interferon-gamma for 24 h before adding interferon-beta for a further 48 h (interferon-gamma 72/beta 48) increased expression of all three surface antigens, particularly major histocompatibility complex class I whose increased expression was sustained for several days. As a whole tumour cell vaccine, interferon-gamma 72/beta 48 treated B16-F10 cells produced greater levels of cytoxic T lymphocyte response compared to vaccines prepared from cells treated with a single type of interferon. Furthermore, B16-F10 cells expressing high levels of B7-1 and treated using the interferon-gamma 72/beta 48 protocol (interferon-gamma 72/beta 48-treated B16-F10/B7-1 hi) produced substantially increased cytoxic T lymphocyte responses with a fivefold greater synergy than the combined results of either interferon treated or B7-1 expressing cells tested individually. The resulting CD8+ cytoxic T lymphocyte showed greater specificity for B16-F10 cells with tenfold higher killing than for syngeneic EL-4 lymphoma cells. Killing proceeded via the perforin-mediated pathway. CTL responses were induced independent of CD4+ T helper cells. The majority of mice receiving interferon-gamma 72/beta 48-treated B16-F10/B7-1 hi vaccine in vivo remained tumour free after challenge with 5 x 105 live B16-F10 cells expressing intermediate B7-1 levels. The novel strategy described will help enhance vaccine potency when applied clinically to prepare whole cell based cancer vaccine therapies.  相似文献   

8.
Recombinant human interferon-alpha 2C and recombinant human interferon-gamma (5-1000 U/ml) inhibit the proliferation of normal human bone-derived cells and a human osteosarcoma cell line. In the bone-derived cells the inhibitory effect of interferon-gamma was significantly greater than that of interferon-alpha, whereas in the osteosarcoma cell line the inhibitory effects of both interferons were quantitatively similar. Interferon-alpha did not affect the alkaline phosphatase activity of either type of cells. In contrast, interferon-gamma affected the activity of the enzyme in both cell types: in the bone-derived cells the effect of interferon-gamma was stimulatory whereas in the osteosarcoma cells the effect was inhibitory. In both cell types interferon-gamma selectively inhibited the incorporation of radiolabelled proline into type I collagen. In the osteosarcoma cells, the effects of both interferons on collagen synthesis were quantitatively similar. In the bone-derived cells, however, interferon-alpha decreased proline incorporation into collagen and non-collagen proteins to a similar extent and thus did not affect collagen synthesis when expressed as a percentage of total protein synthesis. Two-dimensional polyacrylamide gel electrophoresis of the radiolabelled proteins of the cell layer synthesised by both cell types in the presence of either interferon demonstrated that this treatment enhanced or induced the synthesis of a total of 21 individual proteins (19 in bone cells, 14 in osteosarcoma), ranging in apparent molecular mass over 14-87 kDa. The set of proteins induced was different in all four combinations of cells and interferon. A tentative identification of several of the proteins was possible based upon estimation of molecular mass, preferential induction by interferon-alpha or interferon-gamma and differential induction in normal and transformed bone-derived cells. The results of this study demonstrate that interferons have complex effects upon the proliferative and biosynthetic activities of human bone-derived cells and demonstrate significant differences between the responses of normal cells and transformed bone-derived cell line. Further investigations will be required in order to determine whether or not these differences are unique to the osteosarcoma cell line or are a characteristic of the effects of interferons on bone-derived cells in general.  相似文献   

9.
10.
Henipaviruses encode several proteins from the P gene, of which V and W have been demonstrated by gene-based transfection studies to antagonize the innate immune response, blocking both type I interferon production and signaling. This study examines the effects of henipavirus infection on the innate immune response in human cell lines. We report that henipavirus infection does not result in interferon production, with the virus antagonizing this response. In contrast to published transfection studies, our study found that the interferon signaling pathways are only partially blocked by henipavirus infection of human cell lines.  相似文献   

11.
12.
1. The effects of potent protease inhibitors in vitro (leupeptin, pepstatin and E-64[N-[L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl]agmatine]) on intracellular cathepsin B (EC 3.4.22.1), hemoglobin (Hb)-hydrolase and acid phosphatase (EC 3.1.3.2) from cultured B16 melanoma variants (B16-F1, F10 and BL6) were studied. 2. E-64 induced all the cultured B16 melanoma variants to decrease the activity of intracellular cathepsin B but did not have this effect with Hb-hydrolase or acid phosphatase. Furthermore, E-64 decreased the activity of cathepsin B in both the lysosomal and cytosol fractions. 3. Leupeptin induced all the cultured B16 melanoma variants to increase the activities of intracellular cathepsin B and Hb-hydrolase but not that of acid phosphatase. An increase in the level of cathepsin B activity was most significant in B16-BL6 followed by F10 and then F1 variants. 4. Leupeptin induced all the cultured B16 melanoma variants to increase the cathepsin B activity in the lysosomal fraction. Our data differed from the results of Tanaka et al. (1981) in that leupeptin induced rat cultured hepatocytes to inhibit the activity of intracellular cathepsin B and increase the Hb-hydrolase activity, especially in the cytosol fraction.  相似文献   

13.
Para-aminobenzoic acid (PABA) was shown to be an early type interferon inductor. PABA (10 micrograms/ml) induced interferon production in vitro in the cells of human peripheral blood and in vivo in albino mice (10 mg/kg). The results of the study suggested that PABA was able to induce production of interferon-alpha/beta in various immunocyte populations. By its interferonogenic activity PABA was comparable with the known interferon inductors. One of the mechanisms of the previously described in vivo antiherpes action of PABA can be attributed to its interferon inducing activity.  相似文献   

14.
Despite binding to receptors distinct from those of type I interferons (IFNs), human interleukins-28A, -28B and -29 (IL-28A, IL-28B and IL-29; alternatively named IFN lambda-2 {IFN-lambda2}, IFN-lambda3 and IFN-lambda1, respectively, or collectively, type III IFNs), a small family of three structurally-related cytokines, are, like IFNs, known to induce antiviral activity. To further biologically characterize IL-28A and IL-29, we compared their activities with those of IFNs in a range of human cell lines. We found that they induced antiviral activity in fewer cell lines and more weakly than IFNs; also IL-28A was less active than IL-29. Additionally, we showed IL-28A and IL-29 induced reporter genes--protein MxA promoter linked to luciferase, or interferon stimulated response element (ISRE) linked to secreted alkaline phosphatase (SEAP)--more weakly than IFN. Antiproliferative activity was induced by IFNs in most cell lines, but only in one human glioblastoma cell line, LN319, was dose-dependent IL-29-growth inhibition demonstrable. Polymerase chain reaction (PCR) quantification of messenger (m) RNA of IL-28/29 receptor subunits, IL-28Ralpha and IL-10Rbeta, indicated variable expression levels; although their expression was highest in the responsive LN319 cell line, lower but significant expression of both mRNAs was found in relatively unresponsive cell lines. In conclusion, we found IL-28A and IL-29 act similarly to IFNs, but are less effective generally and have activity in a more limited range of cell lines.  相似文献   

15.
Three predominantly CD8+ CTL lines, TIL 501, TIL 620, and TIL 660, were generated from three HLA-A2+ melanoma patients by culturing tumor-infiltrating lymphocytes in 1000 U/ml IL-2. These tumor-infiltrating lymphocytes lysed 12 of 18 HLA-A2+ autologous and allogeneic melanomas, but none of 20 HLA-A2-negative melanomas. They also did not lyse the MHC class I negative lymphoma-leukemia cell lines, Daudi, K562, or HLA-A2+ non-melanoma cell lines including PHA or Con A-induced lymphoblast, fibroblast, EBV-transformed B cell, Burkitt's B cell lymphoma, and colon cancer cell lines. Autologous and allogeneic melanoma lysis was inhibited by anti-CD3, by anti-MHC class I, and by anti-HLA-A2 mAb, indicating recognition of shared tumor Ag among melanoma cell lines in a TCR-dependent, HLA-A2-restricted manner. Six HLA-A2-negative melanoma cell lines obtained from five HLA-A2-negative patients were co-transfected with the HLA-A2.1 gene and pSV2neo. All 17 cloned transfectants expressing cell surface HLA-A2 molecules, but none of 12 transfectants lacking HLA-A2 expression, were lysed by these three HLA-A2-restricted, melanoma-specific CTL. Lysis of the HLA-A2+ transfectants was inhibited by anti-CD3, by anti-MHC class I, and by anti-HLA-A2 mAb, indicating recognition of shared tumor Ag on transfectants in a TCR-dependent, HLA-A2-restricted manner. These results identify the HLA-A2.1 molecule as an Ag-presenting molecule for melanoma Ag. They also suggest that common melanoma Ag are expressed among melanoma patients regardless of HLA type. These findings have implications for the development of melanoma vaccines that would induce antitumor T cell responses.  相似文献   

16.
The oncolytic potential of the attenuated mumps virus (MV) vaccine strain Leningrad-3 (L-3) was evaluated in a panel of four human metastatic melanoma cell lines. The lines were shown to be susceptible and permissive to MV infection. Efficient MV replication led to death of melanoma cells, but the effect differed among the cell lines. Possible mechanisms mediating the selectivity of MV L-3 towards the cell lines were explored. Replicative and oncolytic activity of MV was found to depend on the expression pattern of type I interferon genes. None of the melanoma cell lines showed induction of expression of the total spectrum of genes required to inhibit virus replication. Based on the results, MV L-3 was assumed to be a promising oncolytic agent for human melanoma cells.  相似文献   

17.
Interleukin (IL)-1-mediated inflammation is proposed to contribute to the development and progression of some cancers. IL-1 family member proteins are known to be expressed constitutively in many melanoma tumor cells, and we hypothesize that these support molecular pathways of inflammation and facilitate tumor growth. To investigate the expression of IL-1α and IL-1β in melanoma patients, and their association with disease progression, immunohistochemical staining was carried out on tissues from 170 patients including benign nevi, primary melanomas, and metastatic melanomas. IL-1β levels were low (or zero) in benign nevi and higher in primary and metastatic melanomas (P < 0.0001). IL-1α was expressed in about 73% of nevi and 55% of metastatic melanomas, with levels significantly higher in primary tumors (P < 0.0001); most (98%) primary melanoma samples were positive for IL-1α. In vitro studies with seven human melanoma cell lines showed that five cell lines expressed IL-1α and IL-1β proteins and mRNA. We identified for the first time several important downstream signaling pathways affected by endogenous IL-1, including reactive oxygen and nitrogen species, COX-2, and phosphorylated NF-κB inhibitor (IκB) and stress-activated protein kinase/c-jun-NH(2)-kinase; all of which were decreased by siRNA to IL-1s. Downregulation of IL-1α, IL-1β, or MyD88 substantially increased p21 and p53 levels. Treatment with IL-1 receptor type I neutralizing antibody or IL-1 pathway-specific siRNAs led to growth arrest in IL-1-positive melanoma cells. Furthermore, blocking the IL-1 pathway increased autophagy in IL-1-positive melanoma cells. These results indicate that the endogenous IL-1 system is functional in most human melanoma and interrupting its signaling inhibits the growth of IL-1-positive melanoma cells.  相似文献   

18.
During melanoma progression, migrating cells must cross human dermis, a type I collagen-rich tissue. We have show that MMP-1 and MMP-2 act in a cumulative manner in the in vitro invasion of a three-dimensional type I collagen matrix by melanoma cells. Two melanoma cell lines (M1Dor and M3Da) previously reported to secrete proMMP-2 in a direct relationship with their tumorigenic potential into nude mice were used (F. Capon et al., 1999, Clin. Exp. Metastasis 17, 463-469). The highly tumorigenic cell line (M3Da) displayed a five-fold faster migration rate in type I collagen matrix, compared to its lower tumorigenic counterpart (M1Dor). In parallel, activation of proMMP-2 was evidenced in M3Da- but not M1Dor-populated collagen lattices. Such enzyme activation was associated with a significant decrease in TIMP-2 and TIMP-1 production. Agents known to interfere with proMMP-2 activation, i.e., excess TIMP-2, furin convertase inhibitor, and alphavbeta3 blocking antibody, reduced by 30-40% the type I collagen invasive capacity of M3Da cells. By comparison, batimastat, a wide-spectrum MMP inhibitor, exhibited a more pronounced inhibitory effect (>70%). It suggested that other collagenases than MMP-2 could participate in type I collagen invasion. Collagenase-3 (MMP-13) was produced at low levels by melanoma cells whatever the cell culture conditions. In contrast, M3Da and M1Dor cells secreted collagenase-1 (MMP-1) following 48 h of culture on plastic dishes. Growing melanoma cells in type I collagen gel did not modify enzyme production, but induced proMMP-1 activation in M3Da but not M1Dor cell-populated lattices. Blocking the plasmin-mediated proMMP-1 activation by aprotinin inhibited type I collagen gel invasion by 30%. Since the combination of aprotinin and furin convertase inhibitor reduced collagen invasiveness by melanoma cells to a level comparable to that attained with batimastat, we conclude that both MMP-2 and MMP-1 are involved in such tissue invasion.  相似文献   

19.
20.
Therapy options for patients with metastatic melanoma (MM) have considerably improved over the past decade. However, many patients still need effective therapy after unsuccessful immunotherapy, especially patients with BRAF-negative tumors who lack the option of targeted treatment second line. Therefore, the elucidation of efficient and personalized therapy options for these patients is required. In this study, three patient-derived cancer cells (PDCs) were established from NRAS Q61-positive MM patients. The response of PDCs and five established melanoma cell lines (two NRAS-positive, one wild type, and two BRAF V600-positive) was evaluated toward a panel of 527 oncology drugs using high-throughput drug sensitivity and resistance testing. The PDCs and cell lines displayed strong responses to MAPK inhibitors, as expected. Additionally, the PDCs and cell lines were responsive to PI3K/mTOR, mTOR, and PLK1 inhibitors among other effective drugs currently undergoing clinical trials. Combinations with a MEK inhibitor were tested with other targeted agents to identify effective synergies. MEK inhibitor showed synergy with multikinase inhibitor ponatinib, ABL inhibitor nilotinib, PI3K/mTOR inhibitor pictilisib, and pan-RAF inhibitor LY3009120. The application of the patients’ cancer cells for functional drug testing ex vivo is one step further in the process of identifying potential agents and agent combinations to personalize treatment for patients with MM. Our preliminary study results suggest that this approach has the potential for larger-scale drug testing and personalized treatment applications in our expansion trial. Our results show that drug sensitivity and resistance testing may be implementable in the treatment planning of patients with MM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号