首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential effects of IL-27 on human B cell subsets   总被引:4,自引:0,他引:4  
IL-27 is a novel heterodimeric cytokine of the IL-12 family that plays an important role in the regulation of T cell responses. Its role on human B cells has not been previously studied. In this study, we show that both chains of the IL-27 receptor complex, IL-27R and gp130, are constitutively expressed at the surface of naive and memory human tonsillar B cells, and are induced on germinal center B cells following CD40 stimulation. In naive B cells, IL-27 induced strong STAT1 and STAT3 phosphorylation, whereas it induced moderate STAT1 and low STAT3 activation in memory B cells. IL-27 induced T-bet expression in naive and memory B cells stimulated by CD40 or surface Ig engagement, but induced significant IL-12Rbeta2 surface expression in anti-Ig-stimulated naive B cells only. In anti-Ig-stimulated naive or memory B cells, IL-27 also induced CD54, CD86, and CD95 surface expression. In addition, IL-27 increased proliferation of anti-Ig-activated naive B cells and of anti-CD40-activated naive and germinal center B cells, but not of CD40-activated memory B cells. These data indicate that the B cell response to IL-27 is modulated during B cell differentiation and varies depending on the mode of B cell activation.  相似文献   

2.
Although recent studies indicated that IL-21 is an important regulator of human B cell activation, detailed comparison of the effects of IL-21 on distinct B cell subsets have not been performed. Our studies revealed that IL-21R is expressed by naive and germinal center B cells, but not memory or plasma cells. IL-21R was increased on naive and memory B cells following in vitro activation. Investigation into the kinetics and magnitude of responses of human B cells to IL-21 revealed that IL-21 potently augmented proliferation of CD40L-stimulated neonatal, splenic naive, and memory and tonsil germinal center B cells. This response exceeded that induced by IL-4, IL-10, and IL-13, cytokines that also induce B cell proliferation. Remarkably, CD40L/IL-21-stimulated naive B cells underwent the same number of divisions as memory cells and exhibited a greater enhancement in their response compared with CD40L alone than memory B cells. Therefore, IL-21 is a powerful growth factor for naive B cells. This may result from the higher expression of IL-21R on naive, compared with memory, B cells. Stimulation of human B cells with CD40L/IL-21 also induced IL-10 production and activation of STAT3. We propose that IL-21 may have therapeutic application in conditions of immunodeficiency where it could expand naive B cells, the predominant B cell subset in such patients. Conversely, because IL-21 is increased in murine models of lupus, dysregulated IL-21 production may contribute to perturbed B cell homeostasis observed in systemic lupus erythematosus. Thus, antagonizing IL-21 may be a novel strategy for treating Ab-mediated autoimmune diseases.  相似文献   

3.
Factors that control the survival and proliferation of Ag-stimulated B cells within the germinal center (GC) are crucial for humoral immune responses with high affinity Abs against infectious agents. The follicular dendritic cell (FDC) is known as a key cellular component of the GC microenvironment for GC-B cell survival and proliferation. In this study, we report that IL-15 is produced by human FDC in vivo and by an FDC cell line, FDC/HK cells, in vitro. IL-15 is captured by IL-15Ralpha on the surface of FDC/HK cells. The surface IL-15 is functionally active and augments GC-B cell proliferation. Because GC-B cells have the signal-transducing components (IL-2/15Rbetagamma), but not a receptor for binding of soluble IL-15 (IL-15Ralpha), IL-15 signaling is possibly transduced by transpresentation from FDCs to GC-B cells via cell-cell contact. Together, these results suggest that IL-15 from FDC, in membrane-bound form, plays an important role in supporting GC-B cell proliferation, proposing a new target for immune modulation as well as treatment of B cell tumors of GC origin.  相似文献   

4.
Selection of B cells subjected to hypermutation in germinal centres (GC) during T cell-dependent (TD) antibody responses yields memory cells and long-lived plasma cells that produce high affinity antibodies biased to foreign antigens rather than self-antigens. GC also form in T-independent (TI) responses to polysaccharide antigens but failed selection results in GC involution and memory cells are not generated. To date there are no markers that allow phenotypic distinction of T-dependent and TI germinal centre B cells. We compared the global gene expression of GC B cells purified from mice immunized with either TD or TI antigens and identified eighty genes that are differentially expressed in TD GC. Significantly, the largest cluster comprises genes involved in growth and guidance of neuron axons such as Plexin B2, Basp1, Nelf, Shh, Sc4mol and Sult4alpha. This is consistent with formation of long neurite (axon and dendrite)-like structures by mouse and human GC B cells, which may facilitate T:B cell interactions within GC, affinity maturation and B cell memory formation. Expression of BASP1 and PLEXIN B2 protein is very low or undetectable in resting and TI GC B cells, but markedly upregulated in GC B cells induced in the presence of T cell help. Finally we show some of the axon growth genes upregulated in TD-GC B cells including Basp1, Shh, Sult4alpha, Sc4mol are also preferentially expressed in post-GC B cell neoplasms.  相似文献   

5.
Analyses of B cells in the bone marrow and secondary lymphoid tissues have revealed a broad range of cell surface markers defining B cell subpopulations, but only a few of these have been used to analyze B cell subpopulations in peripheral blood (PB). We report here the delineation of circulating PB B cell subpopulations by staining for CD19, CD38, and IgD in combination with CD10, CD44, CD77, CD95, CD23, IgM, and the B cell memory marker CD27. The utility of this approach is shown by the demonstration of disturbances of circulating B cell subpopulations in patients with autoimmune disease. Five mature B cell (Bm) subpopulations were identified in normal PB that were comparable with the tonsillar Bm1, Bm2, early Bm5, Bm5 subpopulations and, surprisingly, to the germinal center (GC) founder cell subpopulation (Bm2' and Bm3delta-4delta), suggesting that some GC founder cells are circulating. No PB B cells resembled the Bm3 and Bm4 GC cells. Remarkably, some cells with the CD38-IgD+ phenotype, previously known as naive Bm1 cells, expressed CD27. The CD38-IgD+ subpopulation therefore includes both naive Bm1 cells and IgD+ memory B cells. This new classification of B cell developmental stages reveals disturbances in the proportions of B cell subpopulations in primary Sj?gren's syndrome (pSS) patients compared with healthy donors and rheumatoid arthritis patients. Patients with pSS contained a significantly higher percentage of B cells in two activated stages, which might reflect a disturbance in B cell trafficking and/or alteration in B cell differentiation. These findings could be of diagnostic significance for pSS.  相似文献   

6.
IL-27 induces stronger proliferation of naive than memory human B cells and CD4(+) T cells. In B cells, this differential response is associated with similar levels of IL-27 receptor chains, IL-27Rα and gp130, in both subsets and stronger STAT1 and STAT3 activation by IL-27 in naive B cells. Here, we show that the stronger proliferative response of CD3-stimulated naive CD4(+) T cells to IL-27 is associated with lower levels of IL-27Rα but higher levels of gp130 compared with memory CD4(+) T cells. IL-27 signaling differs between naive and memory CD4(+) T cells, as shown by more sustained STAT1, -3, and -5 activation and weaker activation of SHP-2 in naive CD4(+) T cells. In the latter, IL-27 increases G0/G1 to S phase transition, cell division and, in some cases, cell survival. IL-27 proliferative effect on naive CD4(+) T cells is independent of MAPK, but is dependent on c-Myc and Pim-1 induction by IL-27 and is associated with induction of cyclin D2, cyclin D3, and CDK4 by IL-27 in a c-Myc and Pim-1-dependent manner. In BCR-stimulated naive B cells, IL-27 only increases entry in the S phase and induces the expression of Pim-1 and of cyclins A, D2, and D3. In these cells, inhibition of Pim-1 inhibits IL-27 effect on proliferation and cyclin induction. Altogether, these data indicate that IL-27 mediates proliferation of naive CD4(+) T cells and B cells through induction of both common and distinct sets of cell cycle regulators.  相似文献   

7.
Human C5a is a potent chemoattractant for granulocytes, monocytes, and dendritic cells. In mice C5a has been shown to be chemotactic for germinal center (GC) B cells. To date, no information is available on the effects of C5a on human B cell locomotion. Here we demonstrate that rC5a increases polarization and migration of human tonsillar B cells. The locomotory response was due to both chemokinetic and chemotactic activities of rC5a. Moreover, memory and, at a lesser extent, naive B cell fractions from purified tonsillar populations displayed rC5a-enhanced migratory properties, whereas GC cells did not. Flow cytometry revealed C5aR (CD88) on approximately 40% memory and 10% naive cells, respectively, whereas GC cells were negative. Immunohistochemistry showed that a few CD88+ cells were of the B cell lineage and localized in tonsillar subepithelial areas, where the majority of memory B cells settle. Pretreatment of memory B cells with the CD88 mAb abolished their migratory responsiveness to rC5a. Finally, the C5 gene was found to be expressed in naive, GC, and memory B lymphocytes at both the mRNA and the protein level. This study delineates a novel role for C5a as a regulator of the trafficking of human memory and naive B lymphocytes and supports the hypothesis that the B cells themselves may serve as source of C5 in secondary lymphoid tissues.  相似文献   

8.
We show herein that B cell Ag receptor (BCR) triggering, but not stimulation by CD40 mAb and/or IL-4, rapidly induced the coordinated expression of two closely related T cell chemoattractants, macrophage inflammatory protein-1 beta (MIP-1 beta) and MIP-1 alpha, by human B cells. Naive, memory, and germinal center B cells all produced MIP-1 alpha/beta in response to BCR triggering. In contrast to MIP-1 alpha/beta, IL-8, which is spontaneously produced by germinal center B cells but not by naive and memory B cells, was not regulated by BCR triggering. Culturing follicular dendritic cell-like HK cells with activated B cells did not regulate MIP-1 alpha/beta production, but it did induce production of IL-8 by HK cells. Microchemotaxis assays showed that CD4+CD45RO+ T cells of the effector/helper phenotype actively migrated along a chemotactic gradient formed by BCR-stimulated B cells. This effect was partially blocked by anti-MIP-1 beta and anti-CC chemokine receptor 5 Ab, but not by anti-MIP-1 alpha Ab suggesting that MIP-1 beta plays a major role in this chemoattraction. Since maturation of the B cell response to a peptide Ag is mostly dependent on the availability of T cell help, the ability of Ag-stimulated B cells to recruit T cells via MIP-1 alpha/beta, may represent one possible mechanism enabling cognate interactions between rare in vivo Ag-specific T and B cells.  相似文献   

9.
10.
Following antigen activation in germinal centers, B cells develop into memory B cells or plasma cells. Triggering via B-cell immunoglobulin receptors by antigens, cytokines and direct cell-to-cell contact by B and T cells plays an important role in the B cell differentiation into memory or plasma cells. Adult human peripheral blood B cells are separated into three subtypes by the expression of IgD and CD27, which belong to the tumor necrosis factor receptor (TNFR) family: IgD+ CD27- naive B cells, IgD+ CD27+ and IgD- CD27+ B cells. CD27+ B cells are larger cells with abundant cytoplasm carrying somatic hypermutation, and have an ability to produce immunoglobulin, indicating that CD27 is a memory marker of B cells. The ligation of CD27 yields crucial signals that positively control the entry of B cells into the pathway to plasma cells. We review observations on subpopulations and differentiation of mature B-cells by T/B cell interaction via CD27/CD70 as compared with CD40/CD154 interaction, and discuss about memory B cells.  相似文献   

11.
12.
Follicular Th (T(FH)) cells are specialized in provision of help to B cells that is essential for promoting protective Ab responses. CD28/B7 (B7-1 and B7-2) interactions are required for germinal center (GC) formation, but it is not clear if they simply support activation of naive CD4 T cells during initiation of responses by dendritic cells or if they directly control T(FH) cells and/or directly influence follicular B cell differentiation. Using a model of vaccinia virus infection, we show that B7-2 but not B7-1 deficiency profoundly impaired T(FH) cell development but did not affect CD4 T cell priming and Th1 differentiation. Consistent with this, B7-2 but not B7-1 was required for acquisition of GC B cell phenotype, plasma cell generation, and virus-specific neutralizing Ab responses. Mixed adoptive transfer experiments indicated that bidirectional interactions between CD28 expressed on activated T cells and B7-2 expressed on follicular B cells were essential for maintenance of the T(FH) phenotype and GC B cell development. Our data provide new insight into the source and nature of molecules required for T(FH) cells to direct GC B cell responses.  相似文献   

13.
IL-7 plays important roles in development and homeostatic proliferation of lymphocytes. IL-7 uses a receptor composed of IL-7Ralpha (CD127) and the common gamma-chain (CD132) to transmit its signal. It has been unknown how CD127 is regulated during Th cell differentiation to the B cell-helping T cell lineage. In this study, we report that loss of CD127 defines terminally differentiated B cell-helping effector T cells in human tonsils. Although naive CD4(+) T cells uniformly express CD127, the memory/effector (non-FOXP3(+)) CD4(+) T cells are divided into CD127(+) and CD127(-) cells. The CD127(-) T cells are exclusively localized within the germinal centers where B cells become plasma and memory B cells, whereas CD127(+) T cells are found in T cell areas and the area surrounding B cell follicles. Consistently, the CD127(-) T cells highly express the B cell zone homing receptor CXCR5 with concomitant loss of CCR7. Compared with CD127(+) memory T cells, CD127(-) T cells have considerably shorter telomeres, do not proliferate in response to IL-7, and are prone to cell death. The CD127(-) T cells produce a large amount of the B cell follicle-forming chemokine CXCL13 upon stimulation with B cells and Ags. Most importantly, they are highly efficient in helping B cells produce Igs of all isotypes in a manner dependent on CD40L and ICOS and inducing activation-induced cytidine deaminase and Ig class switch recombination. The selective loss of CD127 on the B cell-helping effector T cells would have implications in regulation and termination of Ig responses.  相似文献   

14.
We have reported previously that in vitro generated dendritic cells (DC) can directly regulate B cell responses. Recently, germinal center DC (GCDC) were identified within B cell follicles. Due to their particular localization, we have tested in the present study whether GCDC could contribute to key events characteristic of the GC reaction. Our present results demonstrate that 1) ex vivo GCDC induce a dramatic GC B cell expansion upon CD40 and IL-2 activation and drive plasma cell differentiation, 2) this property is shared by GCDC and blood DC, but not by Langerhans cells, 3) IL-12 production by GCDC is critical in GC B cell expansion and differentiation, and 4) importantly, GCDC also induce IL-10-independent isotype switching toward IgG1. These observations support the novel concept that GCDC directly contribute to the germinal center reaction.  相似文献   

15.
Shortly after secondary immunization germinal center (GC) B cells obtain antigen from follicular dendritic cells (FDC) in the form of immune complexes. This antigen appears to be degraded by the GC B cells and may be processed for presentation to T cells. The present study was undertaken to determine whether GC B cells can process and present antigen obtained from FDC in vivo to appropriate T cells in vitro. GC B cells were isolated from immune mice with the use of Percoll density separation followed by a panning procedure which utilizes the ability of the plant lectin, peanut agglutinin (PNA), to selectively bind to GC B cells. The enriched GC B cells were approximately 80% highly positive for PNA, 97% positive for Ia and surface IgM, but less than 0.01% positive for Thy-1.2 or esterase. In some experiments, this population was further purified to near 100% highly PNA-positive cells with the use of fluoresceinated PNA and a fluorescence-activated cell sorter. Cell sorting analysis indicated that the antigen (125I-labeled ovalbumin (OVA)) was restricted to the highly PNA-positive cell fraction. The capacity of these highly PNA-positive B cells to present antigen was assessed by monitoring interleukin 2 (IL-2) production by the OVA-specific T cell hybridoma, 3DO-54.8. GC B cells obtained from mice 3 wk or more after secondary immunization did not elicit IL-2 production in the absence of added OVA. However, GC B cells isolated as early as 1 day and for over 1 wk after a challenge with OVA, were able to stimulate high levels of IL-2 production, in the absence of adding OVA to the cell cultures. This response was maximal on day 5 and corresponded precisely with the kinetics of the ultrastructural studies which document the uptake of antigen by GC B cells in vivo. The FDC-derived antigen was remarkably immunogenic when compared with exogenous antigen. These findings demonstrated that antigen obtained in vivo by GC B cells could be processed and presented to T cells. In vivo, GC B cells may induce the T cell help needed for the germinal center reaction, generate B memory cells, and help induce the high titers of antibody associated with the secondary antibody response.  相似文献   

16.
Germinal centers (GCs) are histologically defined areas where B cells undergo extensive proliferation and maturation, or die of apoptosis. GC B cells isolated from human tonsils can be phenotypically identified by expression of peanut agglutinin (PNA)-binding sites and can be further divided into subpopulations based on their expression of CD77. To assess the functional potential of GC B cells, we studied CD77+ PNA+ B cells isolated from tonsils by examining their differentiation status and their ability to proliferate in vitro to various cytokines and costimulants. We found that CD77+ GC B cells are less differentiated than CD77- GC B cells; GC B cells less frequently express cytoplasmic IgG and IgM, and spontaneously secrete less Ig compared to CD77- GC B cells. To identify conditions capable of inducing GC B cell proliferation, we examined IL-4, IL-2, IFN-gamma, low molecular weight BCGF (LMW-BCGF), and an MLR supernatant along with costimulants such as anti-IgM antibody, Staphylococcus aureus Cowan I (SAC), PMA, and pokeweed mitogen (PWM). While non-GC B cells proliferate strongly in response to these stimuli, GC B cells did not proliferate. However, CD77+ as well as CD77- GC B cells mounted a rapid and strong proliferative response upon stimulation with IL-4, but only in the presence of anti-CD40 antibody. Moreover, although nine additional cytokines were examined, only IL-4 was capable of supporting CD77+ GC B cell proliferation in the presence of anti-CD40 antibody. When cells were stimulated with IL-4 and anti-CD40 antibody, we also found that IFN-gamma consistently decreased the proliferative response of CD77+ GC B cells without affecting the response of non-GC B cells. Taken together, these data indicate that GC B cells have characteristic growth requirements and that IL-4 may be important for GC B cell growth in vivo.  相似文献   

17.
18.
The Hedgehog (Hh) signaling pathway is involved in the development of many tissues during embryogenesis, but has also been described to function in adult self-renewing tissues. In the immune system, Sonic Hedgehog (Shh) regulates intrathymic T cell development and modulates the effector functions of peripheral CD4(+) T cells. In this study we investigate whether Shh signaling is involved in peripheral B cell differentiation in mice. Shh is produced by follicular dendritic cells, mainly in germinal centers (GCs), and GC B cells express both components of the Hh receptor, Patched and Smoothened. Blockade of the Hh signaling pathway reduces the survival, and consequently the proliferation and Ab secretion, of GC B cells. Furthermore, Shh rescues GC B cells from apoptosis induced by Fas ligation. Taken together, our data suggest that Shh is one of the survival signals provided by follicular dendritic cells to prevent apoptosis in GC B cells.  相似文献   

19.
B cell-activating factor belonging to the TNF family (BAFF) plays a critical role in B cell maturation, yet its precise role in B cell differentiation into Ig-secreting cells (ISCs) remains unclear. In this study, we find that upon isolation human naive and memory B (MB) cells have prebound BAFF on their surface, whereas germinal center (GC) B cells lack detectable levels of prebound BAFF. We attribute their lack of prebound BAFF to cell activation, because we demonstrate that stimulation of naive and MB cells results in the loss of prebound BAFF. Furthermore, the absence of prebound BAFF on GC B cells is not related to a lack of BAFF-binding receptors or an inability to bind exogenous BAFF. Instead, our data suggest that accessibility to soluble BAFF is limited within GCs, perhaps to prevent skewing of the conventional B cell differentiation program. In support of this concept, whereas BAFF significantly enhances ISC differentiation in response to T cell-dependent activation, we report for the first time the ability of BAFF to considerably attenuate ISC differentiation of MB cells in response to CpG stimulation, a form of T cell-independent activation. Our data suggest that BAFF may be providing regulatory signals during specific T cell-independent events, which protect the balance between MB cells and ISCs outside GCs. Taken together, these data define a complex role for BAFF in humoral immune responses and show for the first time that BAFF can also play an inhibitory role in B cell differentiation.  相似文献   

20.
The muscle weakness in myasthenia gravis (MG) is mediated by autoantibodies against the nicotinic acetylcholine receptor (AChR) at the neuromuscular junction. Production of these pathogenic autoantibodies is believed to be associated with germinal centers (GC) and anti-AChR-secreting plasma cells in the hyperplastic thymus of patients with early onset MG (EOMG). Here, we describe the repertoire of rearranged heavy chain V genes and their clonal origins in GC from a typical EOMG patient. Three hundred fifteen rearranged Ig V(H) genes were amplified, cloned, and sequenced from sections of four thymic GC containing AChR-specific B cells. We found that thymic GC contain a remarkably heterogeneous population of B cells. Both naive and circulating memory B cells undergo Ag-driven clonal proliferation, somatic hypermutation, and selection. Numerous B cell clones were present, with no individual clone dominating the response. Comparisons of B cell clonal sequences from different GC and known anti-AChR Abs from other patients showed convergent mutations in the complementarity determining regions. These results are consistent with AChR driving an ongoing GC response in the thymus of EOMG patients. This is the first detailed analysis of B cell clones in human GC responding to a defined protein Ag, and the response we observed may reflect the effects of chronic stimulation by autoantigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号