首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
Jonas JL  Joern A 《Oecologia》2007,153(3):699-711
Because both intrinsic and extrinsic factors influence insect population dynamics, operating at a range of temporal and spatial scales, it is difficult to assess their contributions. Long-term studies are ideal for assessing the relative contributions of multiple factors to abundance and community dynamics. Using data spanning 25 years, we investigate the contributions of weather at annual and decadal scales, fire return interval, and grazing by bison to understand the dynamics of abundance and community composition in grasshopper assemblages from North American continental grassland. Each of these three primary drivers of grassland ecosystem dynamics affects grasshopper population and community dynamics. Negative feedbacks in abundances, as expected for regulated populations, were observed for all feeding guilds of grasshoppers. Abundance of grasshoppers did not vary in response to frequency of prescribed burns at the site. Among watersheds that varied with respect to controlled spring burns and grazing by bison, species composition of grasshopper assemblages responded significantly to both after 25 years. However, after more than 20 years of fire and grazing treatments, the number of years since the last fire was more important than the managed long-term fire frequency per se. Yearly shifts in species composition (1983–2005), examined using non-metric multidimensional scaling and fourth-corner analysis, were best explained by local weather events occurring early in grasshopper life cycles. Large-scale patterns were represented by the Palmer Drought Severity Index and the North Atlantic Oscillation (NAO). The NAO was significantly correlated with annual mean frequencies of grasshoppers, especially for forb- and mixed-feeding species. Primary grassland drivers—fire, grazing and weather—contributing both intrinsic and extrinsic influences modulate long-term fluctuations in grasshopper abundances and community taxonomic composition. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
A 5‐year time series of annual censuses was collected from a large floodplain lake to determine how dynamics of the local fish community were affected by changes in hydrological connectivity with the surrounding metacommunity. The lake was disconnected from the metacommunity for 1 year prior to our study and remained disconnected until 3 months before our third annual census, when a flood reconnected the lake to the metacommunity. We determined how changes in connectivity affected temporal dynamics of (1) local community composition and (2) the population composition, condition, and growth of catfish, to shed light on how immigration of other species might affect local population dynamics. Before reconnection, the community was likely shaped by interactions between the local environment and species traits. The reconnection caused significant immigration and change in community composition and correlated with a significant and abrupt decline in catfish condition, growth, and abundance; effects likely due to the immigration of a competitor with a similar trophic niche: carp. The community was slow to return to its preconnection state, which may be due to dispersal traits of the fishes, and a time‐lag in the recovery of the local catfish population following transient intensification of species interactions. The dynamics observed were concordant with the species sorting and mass‐effects perspectives of metacommunity theory. Floods cause episodic dispersal in floodplain fish metacommunities, and so, flood frequency determines the relative importance of regional and local processes. Local processes may be particularly important to certain species, but these species may need sufficient time between floods for population increase, before the next flood‐induced dispersal episode brings competitors and predators that might cause population decline. Accordingly, species coexistence in these metacommunities may be facilitated by spatiotemporal storage effects, which may in turn be regulated by flood frequency.  相似文献   

3.
Niche processes and other spatial processes, such as dispersal, may simultaneously control beta diversity, yet their relative importance may shift across spatial and temporal scales. Although disentangling the relative importance of these processes has been a continuing methodological challenge, recent developments in multi-scale spatial and temporal modeling can now help ecologists estimate their scale-specific contributions. Here we present a statistical approach to (1) detect the presence of a space–time interaction on community composition and (2) estimate the scale-specific importance of environmental and spatial factors on beta diversity. To illustrate the applicability of this approach, we use a case study from a temperate forest understory where tree seedling abundances were monitored during a 9-year period at 40 permanent plots. We found no significant space–time interaction on tree seedling composition, which means that the spatial abundance patterns did not vary over the study period. However, for a given year the relative importance of niche processes and other spatial processes was found to be scale-specific. Tree seedling abundances were primarily controlled by a broad-scale environmental gradient, but within the confines of this gradient the finer scale patchiness was largely due to other spatial processes. This case study illustrates that these two sets of processes are not mutually exclusive and can affect abundance patterns in a scale-dependent manner. More importantly, the use of our methodology for future empirical studies should help in the merging of niche and neutral perspectives on beta diversity, an obvious next step for community ecology. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The search for general mechanisms of community assembly is a major focus of community ecology. The common practice so far has been to examine alternative assembly theories using dichotomist approaches of the form neutrality versus niche, or compensatory dynamics versus environmental forcing. In reality, all these mechanisms will be operating, albeit with different strengths. While there have been different approaches to community structure and dynamics, including neutrality and niche differentiation, less work has gone into separating out the temporal variation in species abundances into relative contributions from different components. Here we use a refined statistical machinery to decompose temporal fluctuations in species abundances into contributions from environmental stochasticity and inter-/intraspecific interactions, to see which ones dominate. We apply the methodology to community data from a range of taxa. Our results show that communities are largely driven by environmental fluctuations, and that member populations are, to different extents, regulated through intraspecific interactions, the effects of interspecific interactions remaining broadly minor. By decomposing the temporal variation in this way, we have been able to show directly what has been previously inferred indirectly: compensatory dynamics are in fact largely outweighed by environmental forcing, and the latter tends to synchronize the population dynamics.  相似文献   

5.
Spatial niche segregation between two habitats and the related adaptive dynamics are investigated. Independent population regulations operate in the two patches by a single resource in each. The populations migrate between the habitats with a constant rate. In line with a general mathematical concept published elsewhere, the niche of a species is described by the measures of the two-way interactions between the species and the resources. Increasing migration rate tends to equalize the population sizes between the habitats and diminish the dependence of the niches on the environmental tolerances of the species. In line with the expectations, when two species coexist, their realized niches are more segregated than their fundamental ones. We demonstrate that robust coexistence requires sufficient niche segregation. That is, the parameter range that allows coexistence of the two species shrinks to nil when the niche-differences between the species disappear. In turn, niche segregation requires separation of tolerances and sufficiently low migration rate. For the evolutionary study we assume a continuous, clonally inherited character that has different optima at the two patches. Evolution of this trait may end up in an intermediate “generalist” optimum, or it can branch and leads to a dimorphic population. The condition of the latter outcome is in line with the conditions that allow niche segregation: the patches have to be sufficiently different and the migration has to be sufficiently low. Electronic supplementary material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

6.
1. Several mechanisms can mediate the coexistence of species, such as the neutral dynamic, niche filtering and niche partitioning. The present study investigated which of these mechanisms mediate the coexistence of closely related spider species at the scale of one locality. 2. The coexistence of three spider species of the genus Philodromus (Philodromidae) (Philodromus albidus, Philodromus aureolus and Philodromus cespitum) was studied. The study area comprised three habitat types, including a deciduous forest, a scrub and a plum tree stand. The spatial niche properties of the Philodromus species were explored by comparing their micro/macrohabitat preferences. The natural diet of these species was analysed. Laboratory experiments involving prey acceptance were conducted to investigate the trophic niche properties. The species' phenologies were studied to compare their temporal niches. 3. The philodromids had differentiated their trophic and habitat niches. The coexistence mechanisms were therefore assessed by studying the relationships between niche overlaps and the pairwise product of relative abundances. A negative relationship was observed between functional niche overlaps and the product of relative abundances, whereas a positive relationship was observed between spatial niche overlaps and the product of relative abundances. 4. The present results suggest that different mechanisms influence different niche dimensions. Niche partitioning influenced functional niches, whereas niche filtering influenced spatial niches. The results also suggest that the filtering process in one dimension was facilitated by niche differentiation in another dimension.  相似文献   

7.
Despite the general acknowledgment of the role of niche and stochastic process in community dynamics, the role of species relative abundances according to both perspectives may have different effects regarding coexistence patterns. In this study, we explore a minimum probabilistic stochastic model to determine the relationship of populations relative and total abundances with species chances to outcompete each other and their persistence in time (i.e., unstable coexistence). Our model is focused on the effects drift (i.e., random sampling of recruitment) under different scenarios of selection (i.e., fitness differences between species). Our results show that taking into account the stochasticity in demographic properties and conservation of individuals in closed communities (zero-sum assumption), initial population abundance can strongly influence species chances to outcompete each other, despite fitness inequalities between populations, and also, influence the period of coexistence of these species in a particular time interval. Systems carrying capacity can have an important role in species coexistence by exacerbating fitness inequalities and affecting the size of the period of coexistence. Overall, the simple stochastic formulation used in this study demonstrated that populations initial abundances could act as an equalizing mechanism, reducing fitness inequalities, which can favor species coexistence and even make less fitted species to be more likely to outcompete better-fitted species, and thus to dominate ecological communities in the absence of niche mechanisms. Although our model is restricted to a pair of interacting species, and overall conclusions are already predicted by the Neutral Theory of Biodiversity, our main objective was to derive a model that can explicitly show the functional relationship between population densities and community mono-dominance odds. Overall, our study provides a straightforward understanding of how a stochastic process (i.e., drift) may affect the expected outcome based on species selection (i.e., fitness inequalities among species) and the resulting outcome regarding unstable coexistence among species.  相似文献   

8.
We examine the conditions under which spatial structure can mediate coexistence of apparent competitors. We use a spatially explicit, host-parasitoid metapopulation model incorporating local dynamics of Nicholson-Bailey type and global dispersal. Depending on the model parameters, the resulting system displays a plethora of asynchronous dynamical behaviors for which permanent or transient coexistence is observed. We identify a number of spatially mediated tradeoffs which apparent competitors can utilize and demonstrate that the dynamics of spatial coexistence can typically be understood from consideration of two and three patch systems. The phase relationships of species abundances are different for our model than for some other mechanisms of spatial coexistence. We discuss the implications of our findings relative to issues of community organization and biological conservation.  相似文献   

9.
Many competitive communities exhibit a puzzling amount of species diversity. In this study, we model a community of symmetric competitors in a fluctuating environment. We use biologically realistic temperature-dependent growth curves with a widely hypothesized trade-off between maximum growth and nice breadth to control the shapes of the curves of different species. We perform three analyses of the community dynamics to investigate the role of environmental fluctuations in community composition and species diversity. We initiate communities with equal abundances of all species and randomize the temperature fluctuations so that there is no correlation between species responses, only noise. We initiate single populations and allow other species to randomly invade the community. We also knock out extant species one by one from an established community and allow them to reinvade after the remaining species have adjusted. We find that competitors with sufficiently different temperature niches coexist via temporal niche differentiation. We also find long-term persistence of species that are very similar to a dominant competitor. This creates communities with species clumped along a temperature niche axis, with stable coexistence between groups and near neutrality within groups. The near neutrality results in interspecific synchrony within the groups, providing an explanation for the maintenance of high diversity in competitive communities where synchrony is commonly observed.  相似文献   

10.
The mechanisms that drive species coexistence and community dynamics have long puzzled ecologists. Here, we explain species coexistence, size structure and diversity patterns in a phytoplankton community using a combination of four fundamental factors: organism traits, size-based constraints, hydrology and species competition. Using a 'microscopic' Lotka-Volterra competition (MLVC) model (i.e. with explicit recipes to compute its parameters), we provide a mechanistic explanation of species coexistence along a niche axis (i.e. organismic volume). We based our model on empirically measured quantities, minimal ecological assumptions and stochastic processes. In nature, we found aggregated patterns of species biovolume (i.e. clumps) along the volume axis and a peak in species richness. Both patterns were reproduced by the MLVC model. Observed clumps corresponded to niche zones (volumes) where species fitness was highest, or where fitness was equal among competing species. The latter implies the action of equalizing processes, which would suggest emergent neutrality as a plausible mechanism to explain community patterns.  相似文献   

11.
Research in community ecology has tended to focus on trophic interactions (e.g., predation, resource competition) as driving forces of community dynamics, and sexual interactions have often been overlooked. Here we discuss how sexual interactions can affect community dynamics, especially focusing on frequency-dependent dynamics of horizontal communities (i.e., communities of competing species in a single ecological guild). By combining mechanistic and phenomenological models of competition, we place sexual reproduction into the framework of modern coexistence theory. First, we review how population dynamics of two species competing for two resources can be represented by the Lotka–Volterra competition model as well as frequency dynamics, and how niche differentiation and overlap produce negative and positive frequency-dependence (i.e., stable coexistence and priority effect), respectively. Then, we explore two situations where sexual interactions change the frequency-dependence in community dynamics: (1) reproductive interference, that is, negative interspecific interactions due to incomplete species recognition in mating trials, can promote positive frequency-dependence and (2) density-dependent intraspecific adaptation load, that is, reduced population growth rates due to adaptation to intraspecific sexual (or social) interactions, produces negative frequency-dependence. We show how reproductive interference and density-dependent intraspecific adaptation load can decrease and increase niche differences in the framework of modern coexistence theory, respectively. Finally, we discuss future empirical and theoretical approaches for studying how sexual interactions and related phenomena (e.g., reproductive interference, intraspecific adaptation load, and sexual dimorphism) driven by sexual selection and conflict can affect community dynamics.  相似文献   

12.
The importance of neutral dynamics is contentiously debated in the ecological literature. This debate focuses on neutral theory's assumption of fitness equivalency among individuals, which conflicts with stabilizing fitness that promotes coexistence through niche differentiation. I take advantage of competition-colonization trade-offs between species of aquatic micro-organisms (protozoans and rotifers) to show that equalizing and stabilizing mechanisms can operate simultaneously. Competition trials between species with similar colonization abilities were less likely to result in competitive exclusion than for species further apart. While the stabilizing mechanism (colonization differences) facilitates coexistence at large spatial scales, species with similar colonization abilities also exhibited local coexistence probably due to fitness similarities allowing weak stabilizing mechanisms to operate. These results suggest that neutral- and niche-based mechanisms of coexistence can simultaneously operate at differing temporal and spatial scales, and such a spatially explicit view of coexistence may be one way to reconcile niche and neutral dynamics.  相似文献   

13.
It is widely accepted that niche differentiation plays a key role in coexistence on relatively small scales. With regard to a large community scale, the recently propounded neutral theory suggests that species abundances are more influenced by history and chance than they are by interspecies competition. This inference is mainly based on the probability that competitive exclusion is largely slowed by recruitment limitation, which may be common in species rich communities. In this respect, a theoretical study conducted by Hurtt and Pacala (1995) for a niche differentiated community has been frequently cited to support neutral coexistence. In this paper, we focused on the effect of symmetric recruitment limitation on delaying species competitive exclusion caused by both symmetric and asymmetric competition in a large homogeneous habitat. By removing niche differentiation in space, we found that recruitment limitation could delay competitive exclusion to some extent, but the effect was rather limited compared to that predicted by Hurtt and Pacala's model for a niche differentiated community. Our results imply that niche differentiation may be important for species coexistence even on large scales and this has already been confirmed in some species rich communities.  相似文献   

14.
Long‐term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6–28 years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross‐site comparisons showed that abundance fluctuations were smaller at species‐rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.  相似文献   

15.
1. The mechanisms that structure biological communities hold the key to understanding ecosystem functioning and the maintenance of biodiversity. Patterns of species abundances have been proposed as a means of differentiation between niche-based and neutral processes, but abundance information alone cannot provide unequivocal discrimination. 2. We combined species niche information and species' relative abundances to test the effects of two opposing structuring mechanisms (environmental filtering and niche complementarity) on species' relative abundances in French lacustrine fish communities. The test involved a novel method comparing the abundance-weighted niche overlap within communities against that expected when relative abundances were randomized among species within the community. 3. Observed overlap was consistently significantly lower than expected at random for two (swimming ability and trophic status) of four primary niche axes across lakes of differing physical environments. Thus, for these niche axes, pairs of abundant species tended to have relatively low niche overlap, while rare species tended to have relatively high niche overlap with abundant species. 4. This suggests that niche complementarity may have acted to enhance ecosystem function and that it is important for species coexistence in these fish communities. The method used may be easily applied to any sort of biological community and thus may have considerable potential for determining the generality of niche complementarity effects on community structure.  相似文献   

16.
Four models of network structure are combined with models of bioenergetic dynamics to study the role of food web topology and nonlinear dynamics on species coexistence in complex ecological networks. Network models range from the highly structured niche model to loosely constrained energetically feasible random networks. Bioenergetic models differ in how they represent primary production, functional responses, and consumption by generalists. Network structure weakly influenced the ability of species to coexist. Species persistence is strongly affected by functional responses and generalists’ consumption rates but weakly affected by models and amounts of primary production. Despite these generalities, specific mechanisms that determine persistence under one dynamical regime, such as top-down control by consumers, may play an insignificant role under different dynamical conditions. Future research is needed to strengthen the weak empirical basis for various functional forms and parameter values that strongly influence whether species can coexist in complex food webs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Intra-specific variability often produces an overlap between species distributions of individual performances which can influence competition relations and community dynamics. We analysed a two-species competition–colonisation model of vegetation with intra-specific variability in juvenile growth. On each patch colonised by both species, the winner was the juvenile with higher individual growth. Intra-specific variability disproportionately favoured the more fecund species because the tail of its distribution represented more individuals. In some cases, this process could even lead to a reversal of competition hierarchy and exclusion of the species with higher mean juvenile performance. In the space of species 2 mean growth and fecundity traits, the combinations of traits allowing coexistence with species 1 appeared close to an ideal trade-off curve. Along this curve, species 2 and species 1 coexisted at similar abundance. The balance of relative abundances diminished with the distance of species 2 from this curve. For a given level of relative species performances, coexistence stability increased continuously as species differentiation increased. In contrast to classical models that exhibit abrupt changes of equilibrium community properties when species traits vary, our model displayed continuous changes of these properties in relation to the balance of life traits within and among species. Intra-specific variability allows flexible patterns of community dynamics and could explain discrepancies between observations and classical theories.  相似文献   

18.
Species abundance distributions (SADs) have played a historical role in the development of community ecology. They summarize information about the number and the relative abundance of the species encountered in a sample from a given community. For years ecologists have developed theory to characterize species abundance patterns, and the study of these patterns has received special attention in recent years. In particular, ecologists have developed statistical sampling theories to predict the SAD expected in a sample taken from a region. Here, we emphasize an important limitation of all current sampling theories: they ignore species identity. We present an alternative formulation of statistical sampling theory that incorporates species asymmetries in sampling and dynamics, and relate, in a general way, the community-level SAD to the distribution of population abundances of the species integrating the community. We illustrate the theory on a stochastic community model that can accommodate species asymmetry. Finally, we discuss the potentially important role of species asymmetries in shaping recently observed multi-humped SADs and in comparisons of the relative success of niche and neutral theories at predicting SADs.  相似文献   

19.
A central issue in ecology is that of the factors determining the relative abundance of species within a natural community. The proper application of the principles of statistical physics to species abundance distributions (SADs) shows that simple ecological properties could account for the near universal features observed. These properties are (i) a limit on the number of individuals in an ecological guild and (ii) per capita birth and death rates. They underpin the neutral theory of Hubbell (2001), the master equation approach of  [Volkov et?al., 2003] and [Volkov et?al., 2005] and the idiosyncratic (extreme niche) theory of Pueyo et al. (2007); they result in an underlying log series SAD, regardless of neutral or niche dynamics. The success of statistical mechanics in this application implies that communities are in dynamic equilibrium and hence that niches must be flexible and that temporal fluctuations on all sorts of scales are likely to be important in community structure.  相似文献   

20.
Source–sink dynamics may be ubiquitous in ecology. We developed a theory for source–sink dynamics using spatial extensions of the net reproductive value, R 0, which has been used elsewhere to define fitness, disease eradication, population growth, and invasion risk. R 0 decomposes into biologically meaningful components—lifetime reproductive output, survival, and dispersal—that are widely adaptable and easily interpreted. The theory provides a general quantitative means for relating fundamental niche, biotic interactions, dispersal, and species distributions. We applied the methods to Dreissena and found a resolution to a paradox in invasion biology—competitive coexistence between quagga (Dreissena bugensis) and zebra (D. polymorpha) mussels among lakes despite extensive niche overlap within lakes. Source–sink dynamics within lakes between deepwater and shallow habitats, which favor quagga and zebra mussels, respectively, yield a metacommunity distribution where quagga mussels dominate large lakes and zebra mussels dominate small lakes. The source–sink framework may also be useful in spatial competition theory, habitat conservation, marine protected areas, and ecological responses to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号