首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Siglecs and their roles in the immune system   总被引:2,自引:0,他引:2  
Cell surfaces in the immune system are richly equipped with a complex mixture of glycans, which can be recognized by diverse glycan-binding proteins. The Siglecs are a family of sialic-acid-binding immunoglobulin-like lectins that are thought to promote cell-cell interactions and regulate the functions of cells in the innate and adaptive immune systems through glycan recognition. In this Review, we describe recent studies on signalling mechanisms and discuss the potential role of Siglecs in triggering endocytosis and in pathogen recognition. Finally, we discuss the postulated functions of the recently discovered CD33-related Siglecs and consider the factors that seem to be driving their rapid evolution.  相似文献   

2.
Siglecs are sialic-acid-binding immunoglobulin-like lectins involved in cell-cell interactions and signalling functions in the haemopoietic, immune and nervous systems. Significant advances have been made in our understanding of the link between carbohydrate recognition and signalling for two well-characterised siglecs, CD22 and myelin-associated glycoprotein. Over the past few years, several novel siglecs have been discovered through genomics and functional screens. These "CD33-related" siglecs have molecular features of inhibitory receptors and may be important in regulating leucocyte activation during immune and inflammatory responses.  相似文献   

3.
The CD33-related sialic acid binding Ig-like lectins (CD33rSiglecs) are predominantly inhibitory receptors expressed on leukocytes. They are distinguishable from conserved Siglecs, such as Sialoadhesin and MAG, by their rapid evolution. A comparison of the CD33rSiglec gene cluster in different mammalian species showed that it can be divided into subclusters, A and B. The two subclusters, inverted in relation to each other, each encode a set of CD33rSiglec genes arranged head-to-tail. Two regions of strong correspondence provided evidence for a large-scale inverse duplication, encompassing the framework CEACAM-18 (CE18) and ATPBD3 (ATB3) genes that seeded the mammalian CD33rSiglec cluster. Phylogenetic analysis was consistent with the predicted inversion. Rodents appear to have undergone wholesale loss of CD33rSiglec genes after the inverse duplication. In contrast, CD33rSiglecs expanded in primates and many are now pseudogenes with features consistent with activating receptors. In contrast to mammals, the fish CD33rSiglecs clusters show no evidence of an inverse duplication. They display greater variation in cluster size and structure than mammals. The close arrangement of other Siglecs and CD33rSiglecs in fish is consistent with a common ancestral region for Siglecs. Expansion of mammalian CD33rSiglecs appears to have followed a large inverse duplication of a smaller primordial cluster over 180 million years ago, prior to eutherian/marsupial divergence. Inverse duplications in general could potentially have a stabilizing effect in maintaining the size and structure of large gene clusters, facilitating the rapid evolution of immune gene families. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Siglecs are sialic-acid-binding proteins of the Ig superfamily that are involved in cell-cell interactions and signalling. In recent years, several novel siglecs that are highly related to CD33/Siglec-2 have been identified through genomics and functional screens. In addition to their distinct sialic-acid-binding properties, most of these novel siglecs bear tyrosine-based signalling motifs that are typically found in inhibitory receptors of the immune system. The restricted expression patterns of CD33-related siglecs in the haemopoietic and immune systems suggests that they are involved in regulating leucocyte activation during inflammatory and immune responses.  相似文献   

5.
Lectin galactoside-binding soluble 3 binding protein (LGALS3BP, also called Mac-2 binding protein) is a heavily glycosylated secreted molecule that has been shown previously to be up-regulated in many cancers and has been implicated in tumor metastatic processes, as well as in other cell adhesion and immune functions. The CD33-related subset of sialic acid-binding immunoglobulin-like lectins (Siglecs) consists of immunomodulatory molecules that have recently been associated with the modulation of immune responses to cancer. Because up-regulation of Siglec ligands in cancer tissue has been observed, the characterization of these cancer-associated ligands that bind to inhibitory CD33-related Siglecs could provide novel targets for cancer immunomodulatory therapy. Here we used affinity chromatography of tumor cell extracts to identify LGALS3BP as a novel sialic acid-dependent ligand for human Siglec-9 and for other immunomodulatory Siglecs, such as Siglec-5 and Siglec-10. In contrast, the mouse homolog Siglec-E binds to murine LGALS3BP with lower affinity. LGALS3BP has been observed to be up-regulated in human colorectal and prostate cancer specimens, particularly in the extracellular matrix. Finally, LGALS3BP was able to inhibit neutrophil activation in a sialic acid- and Siglec-dependent manner. These findings suggest a novel immunoinhibitory function for LGALS3BP that might be important for immune evasion of tumor cells during cancer progression.  相似文献   

6.
Siglecs are sialic acid-recognizing animal lectins of the immunoglobulin superfamily. We have cloned and characterized a novel human molecule, Siglec-11, that belongs to the subgroup of CD33/Siglec-3-related Siglecs. As with others in this subgroup, the cytosolic domain of Siglec-11 is phosphorylated at tyrosine residue(s) upon pervanadate treatment of cells and then recruits the protein-tyrosine phosphatases SHP-1 and SHP-2. However, Siglec-11 has several novel features relative to the other CD33/Siglec-3-related Siglecs. First, it binds specifically to alpha2-8-linked sialic acids. Second, unlike other CD33/Siglec-3-related Siglecs, Siglec-11 was not found on peripheral blood leukocytes. Instead, we observed its expression on macrophages in various tissues, such as liver Kupffer cells. Third, it was also expressed on brain microglia, thus becoming the second Siglec to be found in the nervous system. Fourth, whereas the Siglec-11 gene is on human chromosome 19, it lies outside the previously described CD33/Siglec-3-related Siglec cluster on this chromosome. Fifth, analyses of genome data bases indicate that Siglec-11 has no mouse ortholog and that it is likely to be the last canonical human Siglec to be reported. Finally, although Siglec-11 shows marked sequence similarity to human Siglec-10 in its extracellular domain, the cytosolic tail appears only distantly related. Analysis of genomic regions surrounding the Siglec-11 gene suggests that it is actually a chimeric molecule that arose from relatively recent gene duplication and recombination events, involving the extracellular domain of a closely related ancestral Siglec gene (which subsequently became a pseudogene) and a transmembrane and cytosolic tail derived from another ancestral Siglec.  相似文献   

7.
Siglecs--the major subfamily of I-type lectins   总被引:6,自引:0,他引:6  
Varki A  Angata T 《Glycobiology》2006,16(1):1R-27R
Animal glycan-recognizing proteins can be broadly classified into two groups-lectins (which typically contain an evolutionarily conserved carbohydrate-recognition domain [CRD]) and sulfated glycosaminoglycan (SGAG)-binding proteins (which appear to have evolved by convergent evolution). Proteins other than antibodies and T-cell receptors that mediate glycan recognition via immunoglobulin (Ig)-like domains are called "I-type lectins." The major homologous subfamily of I-type lectins with sialic acid (Sia)-binding properties and characteristic amino-terminal structural features are called the "Siglecs" (Sia-recognizing Ig-superfamily lectins). The Siglecs can be divided into two groups: an evolutionarily conserved subgroup (Siglecs-1, -2, and -4) and a CD33/Siglec-3-related subgroup (Siglecs-3 and -5-13 in primates), which appear to be rapidly evolving. This article provides an overview of historical and current information about the Siglecs.  相似文献   

8.
The Siglecs are a subfamily of I-type lectins (immunoglobulin superfamily proteins that bind sugars) that specifically recognize sialic acids. We report the cloning and characterization of human Siglec-9. The cDNA encodes a type 1 transmembrane protein with three extracellular immunoglobulin-like domains and a cytosolic tail containing two tyrosines, one within a typical immunoreceptor tyrosine-based inhibitory motif (ITIM). The N-terminal V-set Ig domain has most amino acid residues typical of Siglecs. Siglec-9 is expressed on granulocytes and monocytes. Expression of the full-length cDNA in COS cells induces sialic-acid dependent erythrocyte binding. A recombinant soluble form of the extracellular domain binds to alpha2-3 and alpha2-6-linked sialic acids. Typical of Siglecs, the carboxyl group and side chain of sialic acid are essential for recognition, and mutation of a critical arginine residue in domain 1 abrogates binding. The underlying glycan structure also affects binding, with Galbeta1-4Glc[NAc] being preferred. Siglec-9 shows closest homology to Siglec-7 and both belong to a Siglec-3/CD33-related subset of Siglecs (with Siglecs-5, -6, and -8). The Siglec-9 gene is on chromosome 19q13.3-13.4, in a cluster with all Siglec-3/CD33-related Siglec genes, suggesting their origin by gene duplications. A homology search of the Drosophila melanogaster and Caenorhabditis elegans genomes suggests that Siglec expression may be limited to animals of deuterostome lineage, coincident with the appearance of the genes of the sialic acid biosynthetic pathway.  相似文献   

9.
Most mammalian cell surfaces display two major sialic acids (Sias), N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Humans lack Neu5Gc due to a mutation in CMP-Neu5Ac hydroxylase, which occurred after evolutionary divergence from great apes. We describe an apparent consequence of human Neu5Gc loss: domain-specific functional adaptation of Siglec-9, a member of the family of sialic acid-binding receptors of innate immune cells designated the CD33-related Siglecs (CD33rSiglecs). Binding studies on recombinant human Siglec-9 show recognition of both Neu5Ac and Neu5Gc. In striking contrast, chimpanzee and gorilla Siglec-9 strongly prefer binding Neu5Gc. Simultaneous probing of multiple endogenous CD33rSiglecs on circulating blood cells of human, chimp, or gorilla suggests that the binding differences observed for Siglec-9 are representative of multiple CD33rSiglecs. We conclude that Neu5Ac-binding ability of at least some human CD33rSiglecs is a derived state selected for following loss of Neu5Gc in the hominid lineage. These data also indicate that endogenous Sias (rather than surface Sias of bacterial pathogens) are the functional ligands of CD33rSiglecs and suggest that the endogenous Sia landscape is the major factor directing evolution of CD33rSiglec binding specificity. Exon-1-encoded Sia-recognizing domains of human and ape Siglec-9 share only approximately 93-95% amino acid identity. In contrast, the immediately adjacent intron and exon 2 have the approximately 98-100% identity typically observed among these species. Together, our findings suggest ongoing adaptive evolution specific to the Sia-binding domain, possibly of an episodic nature. Such domain-specific divergences should also be considered in upcoming comparisons of human and chimpanzee genomes.  相似文献   

10.
A novel mouse Siglec (mSiglec-F) belonging to the subfamily of Siglec-3-related Siglecs has been cloned and characterized. Unlike most human Siglec-3 (hSiglec-3)-related Siglecs with promiscuous linkage specificity, mSiglec-F shows a strong preference for alpha2-3-linked sialic acids. It is predominantly expressed in immature cells of the myelomonocytic lineage and in a subset of CD11b (Mac-1)-positive cells in some tissues. As with previously cloned Siglec-3-related mSiglecs, the lack of strong sequence similarity to a singular hSiglec made identification of the human ortholog difficult. We therefore conducted a comprehensive comparison of Siglecs between the human and mouse genomes. The mouse genome contains eight Siglec genes, whereas the human genome contains 11 Siglec genes and a Siglec-like gene. Although a one-to-one orthologous correspondence between human and mouse Siglecs 1, 2, and 4 is confirmed, the Siglec-3-related Siglecs showed marked differences between human and mouse. We found only four Siglec genes and two pseudogenes in the mouse chromosome 7 region syntenic to the Siglec-3-related gene cluster on human chromosome 19, which, in contrast, contains seven Siglec genes, a Siglec-like gene, and thirteen pseudogenes. Although analysis of gene maps and exon structures allows tentative assignments of mouse-human Siglec ortholog pairs, the possibility of unequal genetic recombination makes the assignments inconclusive. We therefore support a temporary lettered nomenclature for additional mouse Siglecs. Current information suggests that mSiglec-F is likely a hSiglec-5 ortholog. The previously reported mSiglec-3/CD33 and mSiglec-E/MIS are likely orthologs of hSiglec-3 and hSiglec-9, respectively. The other Siglec-3-like gene in the cluster (mSiglec-G) is probably a hSiglec-10 ortholog. Another mouse gene (mSiglec-H), without an apparent human ortholog, lies outside of the cluster. Thus, although some duplications of Siglec-3-related genes predated separation of the primate and rodent lineages (about 80-100 million years ago), this gene cluster underwent extensive duplications in the primate lineage thereafter.  相似文献   

11.
Group B Streptococcus (GBS) is classified into nine serotypes that vary in capsular polysaccharide (CPS) architecture but share in common the presence of a terminal sialic acid (Sia) residue. This position and linkage of GBS Sia closely resembles that of cell surface glycans found abundantly on human cells. CD33-related Siglecs (CD33rSiglecs) are a family of Sia-binding lectins expressed on host leukocytes that engage host Sia-capped glycans and send signals that dampen inflammatory gene activation. We hypothesized that GBS evolved to display CPS Sia as a form of molecular mimicry limiting the activation of an effective innate immune response. In this study, we applied a panel of immunologic and cell-based assays to demonstrate that GBS of several serotypes interacts in a Sia- and serotype-specific manner with certain human CD33rSiglecs, including hSiglec-9 and hSiglec-5 expressed on neutrophils and monocytes. Modification of GBS CPS Sia by O acetylation has recently been recognized, and we further show that the degree of O acetylation can markedly affect the interaction between GBS and hSiglec-5, -7, and -9. Thus, production of Sia-capped bacterial polysaccharide capsules that mimic human cell surface glycans in order to engage CD33rSiglecs may be an example of a previously unrecognized bacterial mechanism of leukocyte manipulation.  相似文献   

12.
13.
Siglec-7 and Siglec-9 are two members of the recently characterized CD33-related Siglec family of sialic acid binding proteins and are both expressed on human monocytes and NK cells. In addition to their ability to recognize sialic acid residues, these Siglecs display two conserved tyrosine-based motifs in their cytoplasmic region similar to those found in inhibitory receptors of the immune system. In the present study, we use the rat basophilic leukemia (RBL) model to examine the potential of Siglecs-7 and -9 to function as inhibitory receptors and investigate the molecular basis for this. We first demonstrate that Siglecs-7 and -9 are able to inhibit the FcepsilonRI-mediated serotonin release from RBL cells following co-crosslinking. In addition, we show that under these conditions or after pervanadate treatment, Siglecs-7 and -9 associate with the Src homology region 2 domain-containing phosphatases (SHP), SHP-1 and SHP-2, both in immunoprecipitation and in fluorescence microscopy experiments using GFP fusion proteins. We then show by site-directed mutagenesis that the membrane-proximal tyrosine motif is essential for the inhibitory function of both Siglec-7 and -9, and is also required for tyrosine phosphorylation and recruitment of SHP-1 and SHP-2 phosphatases. Finally, mutation of the membrane-proximal motif increased the sialic acid binding activity of Siglecs-7 and -9, raising the possibility that "inside-out" signaling may occur to regulate ligand binding.  相似文献   

14.
The primate SIGLEC12 gene encodes one of the CD33-related Siglec family of signaling molecules in immune cells. We had previously reported that this gene harbors a human-specific missense mutation of the codon for an Arg residue required for sialic acid recognition. Here we show that this R122C mutation of the Siglec-XII protein is fixed in the human population, i.e. it occurred prior to the origin of modern humans. Additional mutations have since completely inactivated the SIGLEC12 gene in some but not all humans. The most common inactivating mutation with a global allele frequency of 58% is a single nucleotide frameshift that markedly shortens the open reading frame. Unlike other CD33-related Siglecs that are primarily found on immune cells, we found that Siglec-XII protein is expressed not only on some macrophages but also on various epithelial cell surfaces in humans and chimpanzees. We also found expression on certain human prostate epithelial carcinomas and carcinoma cell lines. This expression correlates with the presence of the nonframeshifted, intact SIGLEC12 allele. Although SIGLEC12 allele status did not predict prostate carcinoma incidence, restoration of expression in a prostate carcinoma cell line homozygous for the frameshift mutation induced altered regulation of several genes associated with carcinoma progression. These stably transfected Siglec-XII-expressing prostate cancer cells also showed enhanced growth in nude mice. Finally, monoclonal antibodies against the protein were internalized by Siglec-XII-expressing prostate carcinoma cells, allowing targeting of a toxin to such cells. Polymorphic expression of Siglec-XII in humans thus has implications for prostate cancer biology and therapeutics.  相似文献   

15.
Siglecs (sialic acid–binding immunoglobulin-like lectins) are a family of receptors that bind sialic acids in specific linkages on glycoproteins and glycolipids. Siglecs play roles in immune signalling and exhibit cell-type specific expression and endocytic properties. Recent studies suggest that Siglecs are likely to function as immune checkpoints that regulate responses in cancers and inflammatory diseases. In this review, we discuss strategies to target the Siglec–sialic acid axis in human diseases, particularly cancer, and the possibility of exploiting them for therapeutic intervention.  相似文献   

16.
CD33-related Siglecs (sialic acid-binding immunoglobulin-like lectins) 5-11 are inhibitory receptors that contain a membrane proximal ITIM (immunoreceptor tyrosine-based inhibitory motif) (I/V/L/)XYXX(L/V), which can recruit SHP-1/2. However, little is known about the regulation of these receptors. SOCS3 (suppressor of cytokine signaling 3) is up-regulated during inflammation and competes with SHP-1/2 for binding to ITIM-like motifs on various cytokine receptors resulting in inhibition of signaling. We show that SOCS3 binds the phosphorylated ITIM of Siglec 7 and targets it for proteasomal-mediated degradation, suggesting that Siglec 7 is a novel SOCS target. Following ligation, the ECS E3 ligase is recruited by SOCS3 to target Siglec 7 for proteasomal degradation, and SOCS3 expression is decreased concomitantly. In addition, we found that SOCS3 expression blocks Siglec 7-mediated inhibition of cytokine-induced proliferation. This is the first time that a SOCS target has been reported to degrade simultaneously with the SOCS protein and that inhibitory receptors have been shown to be degraded in this way. This may be a mechanism by which the inflammatory response is potentiated during infection.  相似文献   

17.
Sialic acid-binding immunoglobulin-like lectins (siglecs) are predominately expressed on immune cells. They are best known as regulators of cell signaling mediated by cytoplasmic tyrosine motifs and are increasingly recognized as receptors for pathogens that bear sialic acid-containing glycans. Most siglec proteins undergo endocytosis, an activity tied to their roles in cell signaling and innate immunity. Here, we investigate the endocytic pathways of two siglec proteins, CD22 (Siglec-2), a regulator of B-cell signaling, and mouse eosinophil Siglec-F, a member of the rapidly evolving CD33-related siglec subfamily that are expressed on cells of the innate immune system. CD22 exhibits hallmarks of clathrin-mediated endocytosis and traffics to recycling compartments, consistent with previous reports demonstrating its localization to clathrin domains. Like CD22, Siglec-F mediates endocytosis of anti-Siglec-F and sialoside ligands, a function requiring intact tyrosine-based motifs. In contrast, however, we find that Siglec-F endocytosis is clathrin and dynamin independent, requires ADP ribosylation factor 6, and traffics to lysosomes. The results suggest that these two siglec proteins have evolved distinct endocytic mechanisms consistent with roles in cell signaling and innate immunity.  相似文献   

18.
Siglecs are receptors on cells of the immune, haemopoietic, and nervous systems that recognize sialyl-glycans with differing preferences for sialic acid linkage and oligosaccharide backbone sequence. We investigate here siglec binding using microarrays of Lewis(x) (Le(x))- and 3'-sialyl-Le(x)-related probes with different sulphation patterns. These include sulphation at position 3 of the terminal galactose of Le(x), position 6 of the galactose of Le(x) and sialyl-Le(x), position 6 of N-acetylglucosamine of Le(x) and sialyl-Le(x), or both positions of sialyl-Le(x). Recombinant soluble forms of five siglecs have been investigated: human Siglec-7, -8, -9, and murine Siglec-F and CD22 (Siglec-2). Each siglec has a different binding pattern. Unlike two C-type lectins of leukocytes, L-selectin and Langerin, which also bind to sulphated analogues of sialyl-Le(x), the siglecs do not give detectable binding signals with sulphated analogues that are lacking sialic acid. The sulphate groups modulate, however, positively or negatively the siglec binding intensities to the sialyl-Le(x) sequence.  相似文献   

19.
Microglia are the resident immune cells of the central nervous system (CNS) and perform typical scavenging and innate immune functions. Their capacity to eliminate extracellular aggregates and apoptotic neural material without inflammation is crucial for brain tissue homeostasis and repair. To fulfill these tasks, microglia express a whole set of recognition receptors including toll-like (TLRs), carbohydrate-binding, Fc, complement and cytokine receptors. Receptors recognizing carbohydrate structures are strongly involved in microglial repair function. Carbohydrate-binding receptors can be divided into two major subgroups: the sulfated glycosaminoglycan (SGAG)-binding receptors and the lectins (Siglecs, galectins, selectins). SGAG-binding receptors recognize anionic structural motifs within extended SGAG chains. Siglecs bind to the sialic acid cap of the intact glycocalyx. Other lectin family members such as galectins recognize lactosamine units typically exposed after alteration of the glycocalyx. Dependent on the type of microglial carbohydrate-binding receptors that are stimulated, either a pro-inflammatory cytotoxic or an anti-inflammatory repair-promoting response is evoked. The carbohydrate-binding receptors are also crucial in regulating microglial function such as phagocytosis during neurodegenerative or neuroinflammatory processes. A balance between microglial carbohydrate-binding receptor signaling via an immunoreceptor tyrosine-based activation motif or an immunoreceptor tyrosine-based inhibitory motif is required to polarize microglial cells appropriately so that they create a microenvironment permissive for neural regenerative events.  相似文献   

20.
The sialic acid binding immunglobulin-like lectin (Siglec) family is a recently described member of the immunoglobulin superfamily. Within the Siglec family, there exists a subgroup, which bears a high degree of homology with the molecule CD33 (Siglec-3), and has thus been designated the CD33-like subgroup of Siglecs. Members of this subgroup have been localized to chromosome 19q13.4. Through the positional candidate approach, we identified a novel potential member of this subgroup of Siglecs. We have characterized the complete genomic structure of this gene, determined its chromosomal localization, its homology to other members of the Siglec family, and its tissue expression profile. This new Siglec-like gene is comprised of 11 exons, with 10 intervening introns, and is localized 278 kb telomeric to Siglec-9 and 35 kb centromeric to Siglec-8 and on chromosome 19q13.4. The coding region consists of 2094 base pairs, and encodes for a putative 76.6 kDa protein. All Siglec-conserved structural features, including V-set domain, three C-set domains, transmembrane domain, ITIM and SLAM motifs, were found in this Siglec-like gene. Also, it has the conserved amino acids essential for sialic acid binding. The Siglec-like gene has 40-66% homology with members of the CD33-like subgroup, including Siglecs 5-9. Through RT-PCR we have examined the expression profile of this new gene in a panel of human tissues and found it to be primarily expressed in the bone marrow, spleen, brain, small intestine, colon, and spinal cord. We were also able to identify three different splice variants of the new gene. This gene may represent the latest novel member of the CD33-like subgroup of Siglecs, and, given its high degree of homology, it may also serve a regulatory role in the proliferation and survival of a particular hematopoietic stem cell lineage, as has been found for CD33 and Siglec-7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号