首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The influence of infection with Septoria nodorum of leaves belowthe flag leaf on the translocation of 14C-labelled assimilatesin wheat was followed. In the vegetative phase export of assimilatesfrom a single infected leaf was reduced, but export from a healthyleaf on a heavily infected plant was increased. During the reproductivephase export from leaves was not affected by disease. Heavyleaf infection had little effect on the patterns of distributionof export especially during reproductive growth when only changesin the proportion of assimilates in leaf sheaths and tillerstumps were found. Distribution of export from a healthy flagleaf on an otherwise heavily infected plant was unaltered. Duringvegetative growth changes in the distribution of assimilateswere more marked, the greatest changes occurring when a singleinfected leaf on a healthy plant was exposed to 14CO2.  相似文献   

2.
A quantitative study was made of the effect of infection bya facultative parasite, Alternaria solani, on the translocationof 14C-labelled assimilates in the tomato plant. In a plantwith a single diseased leaf, this leaf retained a greater proportionof its assimilated radiocarbon during the early stages of infection.The export of assimilates from a diseased leaf when diseasedevelopment was purposely retarded and was found to be similarto that from a control leaf. At a late stage in the disease,where there was extensive chlorosis and necrosis, export fromdiseased leaves was generally increased and the distributionof the translocated assimilates was altered. Non-infected leaveswere at first unaffected by the disease, but later there wasincreased contribution to the actively growing regions of theplant. In some cases there was a slight increase in total exportfrom healthy leaves but, more generally, a change in the distributionof assimilates occurred. In particular, there was a consistentincrease in activity in the roots. This response to infectionwas not related to the amount of disease present. No evidencewas obtained for an increased import into infected leaves fromnon-infected leaves at any stage of the disease.  相似文献   

3.
In both reproductive and vegetative plants of Lolium temulentumL., the export of 14C-labelled assimilates from each healthyleaf on the main shoot to terminal meristem, stem, tillers,and roots was measured each time a new leaf was expanded, fora period of 5 to 6 weeks. Some labelled assimilates moved fromeach leaf on the main shoot to every meristem in the same shoot,as well as to the tops and roots of adjacent organically attachedtillers. The terminal meristem of the reproductive shoot, which includedthe developing inflorescence, received 70–80 per centof the carbon assimilated by the emerged portion of the growingleaf, 15–25 per cent of the carbon assimilated by thetwo youngest expanded leaves, and 5–10 per cent of thatfrom each of the older leaves. A similar pattern of carbon supplyto the terminal meristem was found in vegetative shoots, exceptthat older leaves on young vegetative shoots supplied even lessof their carbon to the terminal meristem. The general conclusionis that developing leaves at the tip of the shoot receive aboutthe same proportion of carbon from each leaf as does a developinginflorescence. Young expanded leaves provided most labelled assimilates forstem growth; during both reproductive and vegetative growth,expanded leaves increased their export of labelled carbon tostem, and exported less of their 14C to roots and sometimesto tillers. In these reproductive and vegetative shoots, grown in a constantexternal environment, the major changes in the pattern of distributionof labelled assimilates appeared to be the result of increasedmeristematic activity in stem internodes; the development ofan inflorescence had no obvious direct effect on the carboneconomy of shoots.  相似文献   

4.
Much of the work on the distribution of 14C-labelled assimilatesin tomato has been done in winter under low light intensities,and consequently the reported distribution patterns of 14C maynot be representative of plants growing in high light. Further,there are several somewhat conflicting reports on patterns ofdistribution of 14C-assimilates in young tomato plants. We soughtto clarify the situation by studying the distribution of 14C-assimilatesin tomato plants of various ages grown in summer when the lightintensity was high. In addition, the role of the stem as a storageorgan for carbon was assessed by (a) identifying the chemicalfractions in the stem internode below a fed leaf and monitoring14 C activity in these fractions over a period of 49 d, and(b) measuring concentrations of unlabelled carbohydrates inthe stem over the life of the plant. The patterns of distribution of 14C-assimilates we found fortomato grown under high light intensity confirmed some of thosedescribed for plants grown under low light, but export of 14Cby fed leaves was generally higher than reported for much ofthe earlier work. Lower leaves of young plants exported over50% of the 14C they fixed, although export fell sharply as theplants aged. Initially, the roots and apical tuft were strongsinks for assimilates, but they had declined in importance bythe time plants reached the nine-leaf stage. On the other hand,the stem became progressively more important as a sink for 14C-assimilates.Older, lower leaves exported more of their 14C-assimilates tothe upper part of the plant than to the roots, whereas youngleaves near the top of the plant exported more of their assimilatesto the roots. The stem internode immediately below a fed leafhad about twice the 14C activity of the internode above theleaf. Mature leaves above and below a fed leaf rarely importedmuch 14C, even when in the correct phyllotactic relationshipto the fed leaf. In the first 3 d after feeding leaf 5 of nine-leaf plants, theorganic and amino acid pools and the neutral fraction of theinternode below the fed leaf had most of the 14C activity, butby 49 d after feeding, the ethanolic-insoluble, starch and lipidfractions had most of the 14C activity. Glucose, fructose andsucrose were the main sugars in the stem. Although concentrationsof these sugars and starch declined in the stem as the plantsmatured, there was little evidence to indicate their use infruit production. Stems of plants defoliated at the 44-leafstage had lower concentrations of sugars and starch at maturity,and produced less fruit than the controls. It was concludedthat tomato is sink rather than source limited with respectto carbon assimilates, and that the storage of carbon in thestem for a long period is possibly a residual perennial traitin tomato.Copyright 1994, 1999 Academic Press Lycopersicon esculentum, tomato, assimilate distribution, 14C, internode storage, sink-source relationships, starch, stem reserves, sugars  相似文献   

5.
A general, heavy infection of Yellow Rust(Puccinia StriiformisWestend.) on the leaf laminas of the spring wheat (Triticumvulgare Host) Jufy I, unlike an infection on one leaf only,modified the distribution pattern of 14C-labelled assimilatetranslocated from the second leaf: the proportion moving tothe roots (in older plants also to the tillers) was decreased,and that moving to the leaves was increased. The proportionof the assimilate translocated out of an infected leaf of asuch plant was, however more than that observed when that leafwas the only one infected, though still less than that froma corresponding leaf in a healthy plant. Age of leaf did notgreatly affect the distribution pattern. The effect of infection on the distribution pattern of assimilatefrom other leaves 15 days after inoculation was comparable tothe effect on that from the second leaf at the same intervalafter inoculation. In the case of the upper leaves the proportionmoving to the tillers was appreciably reduced by infection.These results are considered in relation to data obtained froma parellel growth analysis experiment, with which they are ingood agreement.  相似文献   

6.
The relationship between plant water status and distributionof 14C-labelled assimilates in cacao (Theobroma cacao L.) wasevaluated after 14CO2 pulse labelling leaves of seedlings subjectedto varying levels of water deficiency. The proportion of 14Cexported by source leaves was strongly affected by seedlingwater status. An increasing proportion of labelled assimilatesremained in source leaves at both 24-h and 72-h harvests aswater stress intensity increased. Water stress reduced the distributionof exported label to leaves and to the expanding flush in particularbut increased the proportion of label in stems and roots. Theresults suggest that current photoassimilates may be temporarilystored in source leaves and stems of cacao seedlings duringperiods of plant water deficit. The stress-induced changes inpartitioning of labelled carbon were in concordance with changesin shoot to root biomass ratios, which was likely due to greaterreduction in growth of above-ground organs to that of roots. Theobroma cacao L, assimilate partitioning, cacao, 14C-photoassimilate, water stress, water potential  相似文献   

7.
Patterns of distribution of 14C were determined in 47-day-oldtomato plants (Lycopersicon esculentum Mill.) 24 h after theapplication of [14C]sucrose to individual source leaves fromleaves 1–10 (leaf 1 being the first leaf produced abovethe cotyledons). The first inflorescence of these plants wasbetween the ‘buds visible’ and the ‘firstanthesis’ stages of development. The predominant sink organs in these plants were the root system,the stem, the developing first inflorescence and the shoot ‘apex’(all tissues above node 10). The contribution made by individualsource leaves to the assimilate reaching these organs dependedupon the vertical position of the leaf on the main-stem axisand upon its position with respect to the phyllotactic arrangementof the leaves about this axis. The root system received assimilateprincipally from leaf 5 and higher leaves, and the stem apexfrom the four lowest leaves. The developing first inflorescencereceived assimilates mainly from leaves in the two orthostichiesadjacent to the radial position of the inflorescence on thevertical axis of the plant; these included leaves which weremajor contributors of 14C to the root system (leaves 6 and 8)and to the shoot apex (leaves 1 and 3). This pattern of distributionof assimilate may explain why root-restriction treatments andremoval of young leaves at the shoot apex can reduce the extentof flower bud abortion in the first inflorescence under conditionsof reduced photoassimilate availability. Lycopersicon esculentum Mill, tomato, assimilate distribution, source-sink relationships  相似文献   

8.
KHAN  A. A.; SAGAR  G. R. 《Annals of botany》1969,33(4):763-779
Two series of experiments were conducted with tomato plantsgrown in a glasshouse. In the first series the second leaf ofa young plant was exposed to 14CO2 for periods up to a maximumof 4 h and the distribution of the 14C-products was determinedeither at intervals of 10 and 30 min, 1, 2, 3, 4, 5, 6, 12,and 24 h, or 1, 2, 3, 5, 7, 11, and 15 days after the 14CO2was initially supplied. Seventeen per cent of the containedradioactive carbon was exported during the first day and a further23 per cent during the following week. At the death of the leaf44 per cent of the carbon originally fixed was present in thedead structure. There is evidence that the roots re-export alarge proportion of the carbon products originally imported. In the second series the tenth leaf of a plant was suppliedwith 14CO2, and 24 h later the relative amounts of radioactivitywere determined for every leaf, internode, and fruit truss andfor the roots and shoot apex. The plants were selected so thatleaf 10 was always immediately below truss 1. The experimentwas performed seven times, each time at a different stage bothin the life-cycle of the leaf and the development of the plant.There were differences in the total amounts of radioactivityfound at the end of each experiment but these differences werenot random. The pattern of distribution of the 14C exportedby leaf 10 changed as the plant developed. The percentage ofthe 14C initially fixed which was exported by leaf 10 rose toa peak early in its life and then fell sharply but the distributionof 14C exported followed a different pattern. For a long periodthere was a heavy accumulation of 14C in the internode immediatelybelow leaf 10 but later in development this was less evidentand the proportions reaching the roots increased. The internodeabove leaf 10 never showed the same degree of accumulation.Truss I dominated the distribution patterns during the phaseof its active growth. These results are discussed and a hypothesisto account for the changing patterns of distribution is presented.  相似文献   

9.
Plants of the biennial Arctium tomentosum were grown from seedto seed-set in an open field under three different treatments:control plants receiving full light intensity, plants with aleaf area reduced by 45 per cent, and shaded plants receivingonly 20 per cent of natural illumination. At various stagesof development the youngest fully expanded leaf of one plantin each treatment was exposed to 14CO2 for half an hour. Subsequentdistribution of labelled assimilates in various plant partswas determined after eight hours. In the first year, the mostdominant sink was the tap root irrespective of variation inassimilate supply. During the production of new vegetative growthin the second season, a larger amount of radioactive photosynthatewas recovered from above ground parts, especially during formationof lateral branches. Seed filling consumed 80–90 per centof labelled carbon exported from the exposed leaf. In the secondyear, the most pronounced difference between treatments wasin the degree of apical dominance, being highest in shaded plantsand lowest in the plants with cut leaves. Results from 14C experimentsagreed fairly well with a ‘partitioning coefficient’derived from a growth analysis of plants grown independentlyunder the same experimental conditions. Reasons for discrepanciesbetween the 14C results and the partitioning coefficient arediscussed. Arctium tomentosum, burdock, variation in assimilate supply, assimilate distribution, 14CO2, labelling, growth analysis  相似文献   

10.
The distribution of 14C-labelled assimilate after infectionof the dwarf bean plant with Pseudomonas phaseolicola was followed.Infection of a single unifoliate leaf did not affect the totalfixation of 14CO2 by unifoliates during the assimilation period.Fixation was maximal in unifoliates in the early stages of growthbut declined as trifoliates expanded. Unifoliates on infectedplants retained a greater proportion of assimilated 14carbonthan leaves on healthy plants.The pattern of distribution ofexported assimilate was not altered in the early stages of infection,the root and apex acting as the major sinks. As the diseasedeveloped, the first trifoliate leaf, unlike similar leaveson healthy plants, continued to import assimilate apparentlyat the expense of the root. Fixation by the first trifoliateand the distribution of assimilate from this leaf were not alteredby infection of a single unifoliate leaf. At no stage duringdevelopment of the disease was there any evidence of translocationof assimilate to either inoculated or non-inoculated unifoliates.  相似文献   

11.
The distribution of 14C-labelled assimilates in dwarf beansinfected on one unifoliate with Xanthomonas phaseoli or systemicallyinfected with the pathogen was compared with the distributionin plants subjected to water stress. Unifoliates on systemically-infectedand water-stressed plants retained a much greater proportionof assimilated 14CO2 than equivalent leaves on healthy plants,but unifoliates directly inoculated with X. phaseoli (localinfection) retained only a slightly larger proportion than controlplants. Local infection had little influence on the distribution ofexported radiocarbon but systemic infection produced markedeffects and there were similar changes in water-stressed plants.These changes seem to be related mainly to changes in growthpatterns, particularly to the reduced development of trifoliateleaves. The main causes of the altered assimilate distributionappear to be modified source-sink relationships, but the natureof the vascular system of dwarf bean and interference with vascularfunction by X. phaseoli seem to be more significant factorsthan in other diseases where assimilate distribution has beenstudied.  相似文献   

12.
After a photoperiod of 8.25 h during which the youngest fullyexpanded leaf of uniculm barley plants was allowed to assimilate14CO2 for 30 min, groups of plants were transfered either tocontinuous light or to continuous dark. Plants were harvestedover a 72 h period to examine the effect of the treatments (comparedwith control plants growing in normal light/dark cycles) onthe transport of 14C from the exposed leaf, the distributionof 14C assimilates to the rest of the plant, and the chemicalfate of assimilated 14C. In continuous light a substantial quantity (22% at 72 h) ofthe 14C assimilated by the leaf remained in that leaf in theform of starch and neutral sugars compared with only 4% in thecontrol fed leaf. Also the total amount of 14C respired fromplants maintained in continuous light was significantly less(c. 18% of the total originally fixed by 24 h) than that respiredfrom control plants (c. 36%). The result was that approximatelyequal amounts of 14C were accumulated in the growing leavesand roots of plants given continuous light or normal light/darkcycles. In continuous dark the fate of 14C was similar to that of controlplants. This is probably because the two treatments shared acommon light/dark environment for the first 22 h, during whichtime almost complete distribution and utilization of 14C occurred.  相似文献   

13.
The assimilation of carbon (C) by, and distribution of 14C from,leaves at each end of an unbroken sequence of ten mature leaveson the main stolon of clonal plants of white clover (Trifoliumrepens L.) were measured to identify intra-plant factors determiningthe direction of C movement from leaves. Leaves at two intermediatepositions were also measured. Localized movement of 14C to sinks at the same node as, or atthe one to two nodes immediately behind, the fed leaf accountedfor 40–50% of the total 14C exported by all measured leaves.A further 50–60% of exported 14C was therefore availablefor more-distant sinks, and the direction of translocation ofthis C was determined by the relative total strength or demand(number x size x rate of activity or growth) of sinks forwardof, or behind, the leaf in question. Thus 85% of the 14C exportedfrom the youngest measured leaf moved toward the base of thestolon, while about 60% of the 14C exported from the oldestleaf moved acropetally. Defoliating plants to leave just one mature leaf on the mainstolon (at any one of the same four positions studied in undefoliatedplants), and no leaves on branches, resulted in: (1) increasednet photosynthetic rate in all residual leaves: (2) increased%export of fixed C from one of the four leaves; (3) increasedexport to the main stolon apex from all except the eldest leaf;(4) increased export to branches from three of the four leaves;and (5) decreased export to stolon tissue and roots from allleaves, within 3 d of defoliation. These responses would seemto ensure the fastest possible replacement of lost leaf areaand, thus, restoration of homeostatic growth. The observed patternsof C assimilation and distribution in both undefoliated anddefoliated white clover plants are consistent with the generalrules of source-sink theory; the distance between sources andcompeting sinks, and relative sink strength, emerge as the mostimportant intra-plant factors governing C movement. These resultsemphasize the need to consider plant morphology, and the modularnature of plant growth, when interpreting patterns of resourceallocation in clonal plants, or plant responses to stressessuch as partial defoliation. Trifolium repens L, white clover, photosynthesis, assimilate translocation, defoliation  相似文献   

14.
Field-grown potatoes were subjected to N deficiency (no appliedN) or received high levels of N (240 kg N ha–1) at planting.The effects of these treatments were monitored at five stagesduring growth in terms of the allocation of photosynthate withinthe leaf, and the export and partitioning of carbon to differentsinks. N deficiency significantly raised the starch concentrationin all organs of the plants, particularly in leaves and stems,and as a consequence the total amount of starch in the canopyof the low N plants remained greater than that of the high Nplants until approx. 100 days after planting (DAP). The totalamounts of carbohydrates, protein and amino acids were calculatedfor each treatment and these values were used to derive a balancesheet for major reserves. Net losses of reserves occurred fromthe canopy in both treatments in the period 97–133 DAP,although these were shown to represent < 3 per cent of thetotal gain in tuber dry weight for the season. Partitioning of 14C assimilates was examined in whole plantsand also in single leaves. Reduced partitioning to the tubers,seen in high N plants throughout their growth, was shown tobe due to decreased percentage export by the leaf and accumulationof exported 14C by the stems. Partitioning to the tubers inlow N plants increased prior to senescence when 87 per centof the fixed 14C was exported within 24 h, 80 per cent of thisto the tubers. The equivalent values for the high N plants were77 and 60 per cent respectively. Increased percentage exportcoincided with decreased allocation to starch in the leaf, anda link between these processes is suggested. N also significantlyaltered the allocation of 14C within the leaf and may have influencedthe degradation of starch in the dark to a greater degree thanits synthesis in the light. The enzymes sucrose phosphate synthase (SPS), and starch synthasewere measured concurrently with partitioning. High N plantsshowed higher rates of activities of each of the enzymes althoughboth enzymes showed a similar pattern of development over theseason, irrespective of N treatment. The data are discussed in the light of conflicting reports concerningthe influence of N on translocation and partitioning. 14C assimilates, carbohydrates, nitrogen, potato (Solanum tuberosum L.), protein  相似文献   

15.
The distribution pattern of 14C-sucrose from 14C-sucrose applied to vegetative okra plants and leaves 1–9 on separate plants during the green pod development stage were investigated in relation to duration and leaf position. Results indicated bi-directional transport of assimilates to both apical and basal portions of the stem. Within 48 h 14C moved to all plant parts; stem and leaves appeared to be strong sinks. In plants fed at the vegetative stage, 48 h after feeding, 66% of the fed activity was exported from the fed leaf. At the pod development stage, about 35% of the activity exported from the fed leaf was present in green pods and 65% in vegetative parts. In plants where leaf 1–9 was fed, irrespective of the position of the fed leaf, the subtending fruit was the strongest sink among the reproductive parts. Leaves and stems were the principal sinks.  相似文献   

16.
Treatment with DC (6 µA plant-1) increased uptake andtranslocation of 36C1- ions, both to the leaves and to the stemsof 15-d-old Chenopodium rubrum plants. In leaves the distributionof these ions remained unchanged in comparison with untreatedcontrols, however, in stems a decreasing gradient from the shootapex to the base of both ions was formed as a consequence ofDC treatment. Neither uptake nor distribution of l4C-sucroseand 14C-labelled assimilates were affected by DC treatment. (Received April 10, 1995; Accepted September 18, 1995)  相似文献   

17.
The uptake of 14C and movement of 14C-labelled assimilates in wheat plants inoculated with Ophiobolus graminis was examined following exposure of the second youngest leaf to 14CO2. Autoradiographs of plants with infected seminal roots showed that assimilates were not translocated past the sites of root infection but accumulated in the undamaged portions of infected root systems, in particular the developing crown roots. There was no evidence that assimilates accumulated in the vicinity of O. graminis lesions. The net assimilation of 14CO2 by wheat plants over a 5 h feeding period was not significantly affected by O. graminis infection. However, infection reduced the amount of 14C lost through respiration. Infection delayed the transfer of labelled assimilates from the fed leaf to the remainder of the plant but increased the proportion translocated to the roots. The latter effect was not apparent when infected plants were continuously irrigated during, and for 20 h following, the feeding period.  相似文献   

18.
TROUGHTON  A. 《Annals of botany》1977,41(3):553-565
A model describing the increase in weight with time of younggrass plants is formulated. The parameters are the relativegrowth rates of the root and shoot systems; k, the ratio ofthe relative growth rate of the root system relative to thatof the shoot system; b, the weight of the root system when thatof the shoot system is unity, and u the rate of increase inweight of the whole plant per unit of shoot system per unitof time, k and b are the constants in the allometric formula,r = bsk where r and are the weights of the root and shoot systems.The model enables the effect of changes in the distributionof assimilates between the root and shoot systems upon the rateof growth of the plant to be assessed. Data from a number ofexperiments are analysed in this manner and the significanceof the results discussed.  相似文献   

19.
Single leaves, ears, or shoots of timothy (Phleum pratense L.)were exposed in light to 14CO2, then left overnight, after whichthe plants were autoradiographed. The following conclusionswere drawn. Actively growing leaves retain all their assimilatesand import from older ones. Fully expanded leaves export butdo not import assimilates. Export begins before leaf expansionis complete, so import and export may for a time be simultaneous.Exports go at first to younger leaves and to roots, accumulatingat meristems. At later stages, exports move downwards ratherthan upwards. Buds and small tillers import from older shoots,but large tillers do not import from other shoots or exportto other large ones. Ears assimilate while still green, andimport assimilates from their associated flag leaves. Exportsfrom other leaves on flowering stems move downwards. These findings agree in general with those from other plants:they are discussed in relation to the vascular system of thegrass plant, and the need for further studies, particularlyquantitative ones, is emphasized.  相似文献   

20.
Assimilate Distribution in Poa annua L.   总被引:1,自引:0,他引:1  
The carbon economy of a flowering tiller of Poa annua L. hasbeen examined over the period from inflorescence emergence tograin shedding. The total import of 14C by the inflorescencereached a maximum at late grain filling but the relative importof assimilate was greatest 14 days after its appearance andrepresented 20–25 per cent of that assimilated by theinflorescence itself. The inflorescence continued to be an importantassimilatory organ after grain ripening when it exported morethan 50 per cent of its assimilate to the stem, roots and othertillers. The patterns of distribution of assimilates from the youngestuppermost and the oldest green leaf of the reproductive tillerwere largely determined by the stage of development of the inflorescence.The youngest leaf mainly supported the inflorescence up to theend of the grain-filling stage but then supplied assimilatesbasally to the roots and adjacent tillers. The oldest greenleaf supported the growth of the stem and the inflorescenceup to anthesis but after this supplied assimilates mainly tothe roots and tillers. Removal of grains or the entire inflorescence only 1 h beforesupplying 14CO2 greatly reduced the rate of fixation of 14CO2and the export of radiocarbon, as well as changing the patternof distribution of assimilates within the plant. The significanceof these results is discussed and comparisons made with cerealsand perennial grasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号