首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mesophilic, facultative, anaerobic, xylanolytic-cellulolytic bacterium, TW1(T), was isolated from sludge in an anaerobic digester fed with pineapple waste. Cells stained Gram-positive, were spore-forming, and had the morphology of straight to slightly curved rods. Growth was observed in the temperature range of 30 to 50°C (optimum 37°C) and the pH range of 6.0 to 7.5 (optimum pH 7.0) under aerobic and anaerobic conditions. The strain contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The predominant isoprenoid quinone was menaquinone with seven isoprene units (MK-7). Anteiso-C(15:0), iso-C(16:0), anteiso-C(17:0), and C(16:0) were the predominant cellular fatty acids. The G+C content of the DNA was 49.5 mol%. A phylogenetic analysis based on 16S rRNA showed that strain TW1(T) belonged within the genus Paenibacillus and was closely related to Paenibacillus cellulosilyticus LMG 22232(T), P. curdlanolyticus KCTC 3759(T), and P. kobensis KCTC 3761(T) with 97.7, 97.5, and 97.3% sequence similarity, respectively. The DNA-DNA hybridization values between the isolate and type strains of P. cellulosilyticus LMG 22232(T), P. curdlanolyticus KCTC 3759(T), and P. kobensis KCTC 3761(T) were found to be 18.6, 18.3, and 18.0%, respectively. The protein and xylanase patterns of strain TW1(T) were quite different from those of the type strains of closely related Paenibacillus species. On the basis of DNA-DNA relatedness and phenotypic analyses, phylogenetic data and the enzymatic pattern presented in this study, strain TW1(T) should be classified as a novel species of the genus Paenibacillus, for which the name Paenibacillus xylaniclasticus sp. nov. is proposed. The type strain is TW1(T) (=NBRC 106381(T) =KCTC 13719(T) =TISTR 1914(T)).  相似文献   

2.
Paenibacillus peoriae is a potentially plant-beneficial soil bacterium and is a close relative to Paenibacillus polymyxa, the type species of the genus Paenibacillus. Herein, we present the 5.77-Mb draft genome sequence of the P. peoriae type strain with the aim of providing insight into the genomic basis of plant growth-promoting Paenibacillus species.  相似文献   

3.
胶质类芽孢杆菌功能及基因组学研究进展   总被引:2,自引:0,他引:2  
马鸣超  姜昕  李力  李俊 《生命科学》2014,(10):1038-1045
胶质类芽孢杆菌(Paenibacillus mucilaginosus)因其具有多功能、强抗逆等特点而成为微生物肥料的首选菌种,它在农业生产中表现出提高土壤速效钾与速效磷含量、促进作物生长、提高作物产量和品质等多方面的效应,一直是研究的重点和热点。首次从P.mucilaginosus的系统发育地位及快速检测技术、生物学功能、基因组学研究进展等方面进行综述,以期进一步拓宽对该细菌生物学特征及其功能的认识,推动其在生态农业中的应用。  相似文献   

4.
A Gram-positive and endospore-forming strain, JH8T, was isolated from deep-sea sediment and identified as a member of the genus Paenibacillus on the basis of 16S rRNA gene sequence and phenotypic analyses. According to a phylogenetic analysis, the most closely related species was Paenibacillus wynnii LMG 22176T (96.9%). Strain JH8T was also facultatively anaerobic and grew optimally at 20-25degreesC. The major cellular fatty acid was anteiso-C15:0, and the DNA G+C content was 53.1 mol%. The DNA-DNA relatedness between the isolate and Paenibacillus wynnii LMG 22176T was 7.6%, indicating that strain JH8T and P. wynnii belong to different species. Based on the phylogenetic, phenotypic, and chemotaxonomic characteristics, strain JH8T would appear to belong to a novel species, for which the name Paenibacillus donghaensis sp. nov. is proposed (type strain =KCTC 13049T=LMG 23780T).  相似文献   

5.
Ma M  Wang Z  Li L  Jiang X  Guan D  Cao F  Chen H  Wang X  Shen D  Du B  Li J 《Journal of bacteriology》2012,194(10):2777-2778
Paenibacillus mucilaginosus is a ubiquitous functional bacterium in microbial fertilizer. Here we report the complete sequence of P. mucilaginosus 3016. Multiple sets of functional genes have been found in the genome. To the best of our knowledge, this is the first announcement about the complete genome sequence of a P. mucilaginosus strain.  相似文献   

6.
Paenibacillus spp. are Gram-positive, facultatively aerobic, bacilli-shaped endospore-forming bacteria. They have been detected in a variety of environments, such as soil, water, forage, insect larvae, and even clinical samples. The strain 139SI (GenBank accession No.: JF825470.1) from three strains of Paenibacillus isolates investigated here was chosen as the type strain of the proposed novel species. The other two similar strain isolates investigated were 140SI (JF825471.1) and 141SI (JQ734548.1). These strains were identified as members of the genus Paenibacillus on the basis of phenotypic characteristics, phylogenetic analysis and 16S rRNA G+C content. Surprisingly, these strains exhibited a strong hemolytic activity on 5% sheep blood agar. Their crude extracts also showed positive growth-promoting activities in colon cancer and Vero cell lines. To our knowledge, this is the first Paenibacillus with hemolytic and growth-promoting activities reported, and the name Paenibacillus hemolyticus for this novel species is proposed. The capability of this novel species in hemolytic and cell growth activities suggests its potential in both clinical and pharmacological implications.  相似文献   

7.
A 44-kDa 1,3-beta-glucanase was purified from the culture medium of a Paenibacillus strain with a 28-fold increase in specific activity with 31% recovery. The purified enzyme preferentially catalyzes the hydrolysis of glucans with 1,3-beta-linkage and has an endolytic mode of action. The enzyme also showed binding activity to various insoluble polysaccharides including unhydrolyzable substrates such as xylan and cellulose. The antifungal activity of this Paenibacillus enzyme and a previously purified 1,3-beta-glucanase from Streptomyces sioyaensis were examined in this study. Both enzymes had the ability to damage the cell-wall structures of the growing mycelia of phytopathogenic fungi Pythium aphanidermatum and Rhizoctonic solani AG-4. Nonetheless, the Paenibacillus enzyme had a much stronger effect on inhibiting the growth of fungi tested.  相似文献   

8.
Aims:  The aims of this study were to identify and characterize the novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39.
Methods and Results:  Strain B39 was closely related to Paenibacillus cookii in 16S rRNA gene sequence. Nonetheless, this isolate can be identified as a novel Paenibacillus sp. with respect to its physiological characteristics, biochemical reactions, and profiles of fatty acid compositions. A cellulase with both CMCase and avicelase activities was secreted from strain B39 and purified by ion-exchange chromatography. By sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis, the molecular weight of B39 cellulase was determined as 148 kDa, which was much higher than other cellulases currently reported from Paenibacillus species. The enzyme showed a maximum CMCase activity at 60°C and pH 6·5. Addition of 1 mmol l−1 of Ca2+ markedly enhanced both CMCase and avicelase activities of the enzyme.
Conclusions:  We have identified and characterized a novel thermophilic Paenibacillus sp. strain B39 which produced a high-molecular weight cellulase with both CMCase and avicelase activities.
Significance and Impact of the Study:  Based on the ability to hydrolyse CMC and avicel, the cellulase produced by Paenibacillus sp. strain B39 would have potential applications in cellulose biodegradation.  相似文献   

9.
解木聚糖类芽孢杆菌(Paenibacillus xylanilyticus)发酵液经硫酸铵分级沉淀、HiPrep26/10 Desalting柱脱盐、HiPrepDEAE FF16/10阴离子交换柱、HiPrep 16/60 Sephacryl S-100凝胶柱、HiPrep 16/10 Source 30S阳离子交换柱等,最终纯化出单一组分的木葡聚糖酶,经过SDS-PAGE电泳分析,此木葡聚糖酶相对分子量约为39 kD。该菌所产木葡聚糖酶的最适反应温度是50℃,在60℃以下较稳定;最适反应pH是7.0,在pH5.0-10.0范围内酶活力较为稳定。酶的动力学研究显示Km为65 g/L,Vmax为6.49μmol/min,kcat=10.86 s-1。底物特异性研究表明对木葡聚糖具有较高比活力。酶蛋白经质谱分析,比对结果显示与来源于Paenibacillus pabuli的木葡聚糖酶有较高同源性。本研究为首次报道解木聚糖类芽孢杆菌(P.xylanilyticus)产木葡聚糖酶。  相似文献   

10.
Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of β-1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.  相似文献   

11.

A Gram-positive, nitrogen-fixing and endospore-forming strain, designated P121T, was isolated from the gut of the armored catfish (Parotocinclus maculicauda) and identified as a member of the genus Paenibacillus based on the sequences of the 16S rRNA encoding gene, rpoB, gyrB and nifH genes and phenotypic analyses. The most closely related species to strain P121T were Paenibacillus rhizoplanae DSM 103993T, Paenibacillus silagei DSM 101953T and Paenibacillus borealis DSM 13188T, with similarity values of 98.9, 98.3 and 97.6%, respectively, based on 16S rRNA gene sequences. Genome sequencing revealed a genome size of 7,513,698 bp, DNA G?+?C content of 53.9 mol% and the presence of the structural nitrogenase encoding genes (nifK, nifD and nifH) and of other nif genes necessary for nitrogen fixation. Digital DNA-DNA hybridization (dDDH) experiments and average nucleotide identity (ANI) analyses between strain P121T and the type strains of the closest species demonstrated that the highest values were below the thresholds of 70% dDDH (42.3% with P. borealis) and 95% ANI (84.28% with P. silagei) for bacterial species delineation, indicating that strain P121T represents a distinct species. Its major cellular fatty acid was anteiso-C15:0 (42.4%), and the major isoprenoid quinone was MK-7. Based on physiological, genomic, biochemical and chemotaxonomic characteristics, we propose that strain P121T represents a novel species for which the name Paenibacillus piscarius sp. nov. is proposed (type strain?=?DSM 25072?=?LFB-Fiocruz 1636).

  相似文献   

12.
Strain DCT-19T, representing a Gram-stain-positive, rodshaped, aerobic bacterium, was isolated from a native plant belonging to the genus Campanula on Dokdo, the Republic of Korea. Comparative analysis of the 16S rRNA gene sequence showed that this strain was closely related to Paenibacillus amylolyticus NRRL NRS-290T (98.6%, 16S rRNA gene sequence similarity), Paenibacillus tundrae A10bT (98.1%), and Paenibacillus xylanexedens NRRL B-51090T (97.6%). DNADNA hybridization indicated that this strain had relatively low levels of DNA-DNA relatedness with P. amylolyticus NRRL NRS-290T (30.0%), P. xylanexedens NRRL B-51090T (29.0%), and P. tundrae A10bT (24.5%). Additionally, the genomic DNA G + C content of DCT-19T was 44.8%. The isolated strain grew at pH 6.0–8.0 (optimum, pH 7.0), 0–4% (w/v) NaCl (optimum, 0%), and a temperature of 15–45°C (optimum 25–30°C). The sole respiratory quinone in the strain was menaquinone-7, and the predominant fatty acids were C15:0 anteiso, C16:0 iso, and C16:0. In addition, the major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. Based on its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain DCT-19T is proposed as a novel species in the genus Paenibacillus, for which the name Paenibacillus seodonensis sp. nov. is proposed (=KCTC 43009T =LMG 30888T). The type strain of Paenibacillus seodonensis is DCT-19T.  相似文献   

13.
Inoculation of wheat roots with Paenibacillus (formerly Bacillus ) polymyxa CF43 increases the mass of root-adhering soil. We tested the role of levan, a fructosyl polymer produced by strain CF43, in the aggregation of soil adhering to wheat roots. The P. polymyxa gene homologous to the Bacillus subtilis sacB gene encoding levansucrase was cloned and sequenced. The corresponding gene product synthesises high molecular weight levan. A P. polymyxa mutant strain, SB03, whose sacB gene is disrupted, was constructed using heterogramic conjugation. Effects of wheat inoculation with the wild type and the mutant strain were compared using two different cultivated silt loam soils in four independent pot experiments. Roots of wheat plantlets inoculated with CF43 or SB03 were colonized after 7–14 days at the same level, and root and shoot masses were not significantly different from those of the non-inoculated control plants. The ratio of root-adhering soil dry mass to root tissue dry mass was significantly higher for plants inoculated with strain CF43 than for those inoculated with mutant strain SB03: + 30% in Orgeval soil and + 100% in Dieulouard soil. Thus the levan produced by P. polymyxa is implicated in the aggregation of root-adhering soil on wheat.  相似文献   

14.
Paenibacillus polymyxa invades plant roots and forms biofilms   总被引:3,自引:0,他引:3  
Paenibacillus polymyxa is a plant growth-promoting rhizobacterium with a broad host range, but so far the use of this organism as a biocontrol agent has not been very efficient. In previous work we showed that this bacterium protects Arabidopsis thaliana against pathogens and abiotic stress (S. Timmusk and E. G. H. Wagner, Mol. Plant-Microbe Interact. 12:951-959, 1999; S. Timmusk, P. van West, N. A. R. Gow, and E. G. H. Wagner, p. 1-28, in Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa, 2003). Here, we studied colonization of plant roots by a natural isolate of P. polymyxa which had been tagged with a plasmid-borne gfp gene. Fluorescence microscopy and electron scanning microscopy indicated that the bacteria colonized predominantly the root tip, where they formed biofilms. Accumulation of bacteria was observed in the intercellular spaces outside the vascular cylinder. Systemic spreading did not occur, as indicated by the absence of bacteria in aerial tissues. Studies were performed in both a gnotobiotic system and a soil system. The fact that similar observations were made in both systems suggests that colonization by this bacterium can be studied in a more defined system. Problems associated with green fluorescent protein tagging of natural isolates and deleterious effects of the plant growth-promoting bacteria are discussed.  相似文献   

15.
Paenibacillus dendritiformis is a Gram-positive, soil-dwelling, spore-forming social microorganism. An intriguing collective faculty of this strain is manifested by its ability to switch between different morphotypes, such as the branching (T) and the chiral (C) morphotypes. Here we report the 6.3-Mb draft genome sequence of the P. dendritiformis C454 chiral morphotype.  相似文献   

16.
17.
Jin HJ  Tu R  Xu F  Chen SF 《Mikrobiologiia》2011,80(1):121-128
A total of 534 isolates were selectively obtained from different plant rhizospheres based on their growth on nitrogen-free medium and their resistance to 80 degrees C for 15 min. Of the 534 isolates, 23 isolates had nifH gene and exhibited nitrogenase activities. Based on 16S rDNA sequence, G + C content assay and DNA-DNA hybridization, by the 23 isolates, which were divided into four monophyletic clusters, all belonged to the Paenibacillus genus. NifH gene deduced amino acid alignment analysis revealed that cluster I, including 15 isolates, showed the highest NifH identity with Paenibacillus genus; while cluster II identified as P stellifer by DNA-DNA hybridization was consistent with four uncultured bacterial clones. This study suggested that the nitrogen-fixing Paenibacillus were distributed in various ecosystems and prevalent in different plant rhizospheres. It was the first demonstration that nitrogen fixation existed in P. jamilae and P. stellifer. In eight isolates identified as P. stellfer species, a novel nifH gene was detected in Paenibacillus.  相似文献   

18.
Paenibacillus sp. strain A11-2, which had been primarily isolated as a bacterial strain capable of desulfurizing dibenzothiophene to produce 2-hydroxybiphenyl at high temperatures, was found to desulfurize benzothiophene more efficiently than dibenzothiophene. The desulfurized product was identified as o-hydroxystyrene by GC-MS and 1H-NMR analysis. Benzothiophene was assumed to be degraded in a way analogous to the 4S pathway, which has been well-known as a mode of dibenzothiophene degradation. These results suggest that benzothiophene desulfurization may share at least partially the reaction mechanism with dibenzothiophene desulfurization.  相似文献   

19.
A nitrogen-fixing bacterium, designated strain gs65T, was isolated from a rhizosphere soil sample of Caragana kansuensis Pojark. Phylogenetic analysis based on a fragment of the nifH gene and the full-length 16S rRNA gene sequence revealed that strain gs65T is a member of the genus Paenibacillus. High levels of 16S rRNA gene similarity were found between strain gs65T and Paenibacillus borealis DSM 13188T (97.5 %), Paenibacillus odorifer ATCC BAA-93T (97.3 %), Paenibacillus durus DSM 1735T (97.0 %) and Paenibacillus sophorae DSM23020T (96.9 %). Levels of 16S rRNA gene sequence similarity between strain gs65T and the type strains of other recognized members of the genus Paenibacillus were below 97.0 %. Levels of DNA–DNA relatedness between strain gs65T and P. borealis DSM 13188T, P. odorifer ATCC BAA-93T (97.3 %), P. durus DSM 1735T and P. sophorae DSM23020T were 35.9, 38.0, 34.2 and 35.5 % respectively. The DNA G+C content of strain gs65T was determined to be 51.6 mol%. The major fatty acids were found to be iso-C14:0, anteiso-C15:0 and iso-C16:0. On the basis of its phenotypic characteristics and levels of DNA–DNA hybridization, strain gs65T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus taohuashanense sp. nov. is proposed. The type strain is gs65T (=CGMCC 1.12175T = DSM 25809T).  相似文献   

20.
Strain DY6T, a Gram-positive endospore-forming motile rod-shaped bacterium, was isolated from soil in South Korea and characterized to determine its taxonomic position. Phylogenetic analyses based on the 16S rRNA gene sequence of strain DY6T revealed that strain DY6T belongs to the genus Paenibacillus in the family Paenibacillaceae in the class Bacilli. The highest degree of sequence similarities of strain DY6T were found with Paenibacillus gansuensis B518T (97.9%), P. chitinolyticus IFO 15660T (95.3%), P. chinjuensis WN9T (94.7%), and P. rigui WPCB173T (94.7%). Chemotaxonomic data revealed that the predominant fatty acids were anteiso-C15:0 (38.7%) and C16:0 (18.0%). A complex polar lipid profile consisted of major amounts of diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. The predominant respiratory quinone was MK-7. Based on these phylogenetic, chemotaxonomic, and phenotypic data, strain DY6T (=KCTC 33026T =JCM 18491T) should be classified as a type strain of a novel species, for which the name Paenibacillus swuensis sp. nov. is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号