首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Budding yeast Cdc14 phosphatase plays essential roles in mitotic exit. Cdc14 is sequestered in the nucleolus by its inhibitor Net1/Cfi1 and is only released from the nucleolus during anaphase to inactivate mitotic CDK. It is believed that the mitotic exit network (MEN) is required for the release of Cdc14 from the nucleolus because liberation of Cdc14 by net1/cfi1 mutations bypasses the essential role of the MEN. But how the MEN residing at the spindle pole body (SPB) controls the association of Cdc14 with Net1/Cfi1 in the nucleolus is not yet understood. We found that Cdc14-5GFP was released from the nucleolus in the MEN mutants (tem1, cdc15, dbf2, and nud1), but not in the cdc5 cells during early anaphase. The Cdc14 liberation from the nucleolus was inhibited by the Mad2 checkpoint and by the Bub2 checkpoint in a different manner when microtubule organization was disrupted. We observed Cdc14-5GFP at the SPB in addition to the nucleolus. The SPB localization of Cdc14 was significantly affected by the MEN mutations and the bub2 mutation. We conclude that Cdc14 is released from the nucleolus at the onset of anaphase in a CDC5-dependent manner and that MEN factors possibly regulate Cdc14 release from the SPB.  相似文献   

2.
In Saccharomyces cerevisiae exit from mitosis requires the Cdc14 phosphatase to reverse CDK-mediated phosphorylation. Cdc14 is released from the nucleolus by the Cdc14 early anaphase release (FEAR) and mitotic exit network (MEN) pathways. In meiosis, the FEAR pathway is essential for exit from anaphase I. The MEN component Cdc15 is required for the formation of mature spores. To analyze the role of Cdc15 during sporulation, a conditional mutant in which CDC15 expression was controlled by the CLB2 promoter was used. Cdc15-depleted cells proceeded normally through the meiotic divisions but were unable to properly disassemble meiosis II spindles. The morphology of the prospore membrane was aberrant and failed to capture the nuclear lobes. Cdc15 was not required for Cdc14 release from the nucleoli, but it was essential to maintain Cdc14 released and for its nucleo-cytoplasmic transport. However, cells carrying a CDC14 allele with defects in nuclear export (Cdc14-DeltaNES) were able to disassemble the spindle and to complete spore formation, suggesting that the Cdc14 nuclear export defect was not the cause of the phenotypes observed in cdc15 mutants.  相似文献   

3.
4.
Exit from mitosis is regulated by Cdc14, which plays an essential role intriggering cyclin-dependent kinase inactivation. Throughout most of the cell cycle,Cdc14 is sequestered in the nucleolus where it remains inactive. After thecompletion of anaphase, an essential signaling cascade, named the Mitotic ExitNetwork, or MEN, promotes Cdc14 release. Cdc14 is also released from thenucleolus in early anaphase by another, nonessential, pathway called FEAR(CdcFourteen Early Anaphase Release). Separase (Esp1), polo kinase (Cdc5), thekinetochore protein Slk19, and Spo12, whose molecular function remains unknown,have been identified as members of the FEAR pathway. In meiosis, mutations inCDC14 and its FEAR pathway regulators, CDC5, SLK19, and SPO12, all form ascithat contain only two diploid spores because of a defect in the ability to exit meiosisI. Thus although the FEAR pathway is dispensible for mitotic exit it, is essential formeiosis I exit. The way that the genes of the Mitotic Exit Network contribute tocoordinating meiotic progression is less clear. Here, we explore this issue. Ourresults demonstrate that the orderly transition from meiosis I to meiosis II isaccomplished by eliminating MEN function and using the FEAR pathway tomodulate cyclin dependent kinase activity, in part through the actions of SIC1.  相似文献   

5.
Stegmeier F  Visintin R  Amon A 《Cell》2002,108(2):207-220
In budding yeast, the phosphatase Cdc14, a key regulator of exit from mitosis, is released from its inhibitor Cfi1/Net1 in the nucleolus during anaphase. A signaling cascade, known as the mitotic exit network (MEN), controls this release. We have identified a regulatory network, the FEAR (Cdc fourteen early anaphase release) network that promotes Cdc14 release from the nucleolus during early anaphase. The FEAR network is comprised of the polo kinase Cdc5, the separase Esp1, the kinetochore-associated protein Slk19, and Spo12. We also show that the FEAR network initiates Cdc14 release from Cfi1/Net1 during early anaphase, and MEN maintains Cdc14 in the released state during late anaphase. We propose that one function of Cdc14 released by the FEAR network is to stimulate MEN activity.  相似文献   

6.
The budding yeast mitotic exit network (MEN) is a GTPase-driven signal transduction cascade that controls the release of the phosphatase Cdc14p from the nucleolus in anaphase and thereby drives mitotic exit. We show that Cdc14p is partially released from the nucleolus in early anaphase independent of the action of the MEN components Cdc15p, Dbf2p, and Tem1p. Upon release, Cdc14p binds to the spindle pole body (SPB) via association with the Bfa1p-Bub2p GTPase activating protein complex, which is known to regulate the activity of the G protein Tem1p. Cdc14p also interacts with this GTPase. The association of the MEN component Mob1p with the SPB acts as a marker of MEN activation. The simultaneous binding of Cdc14p and Mob1p to the SPB in early anaphase suggests that Cdc14p initially activates the MEN. In a second, later step, which coincides with mitotic exit, Cdc14p reactivates the Bfa1p-Bub2p complex by dephosphorylating Bfa1p. This inactivates the MEN and displaces Mob1p from SPBs. These data indicate that Cdc14p activates the MEN in early anaphase but later inactivates it through Bfa1p dephosphorylation and so restricts MEN activity to a short period in anaphase.  相似文献   

7.
In budding yeast, the protein phosphatase Cdc14 controls exit from mitosis. Its activity is regulated by a competitive inhibitor Cfi1/Net1, which binds to and sequesters Cdc14 in the nucleolus. During anaphase, Cdc14 is released from its inhibitor by the action of two regulatory networks. The Cdc Fourteen Early Anaphase Release (FEAR) network initiates Cdc14 release from Cfi1/Net1 during early anaphase, and the Mitotic Exit Network (MEN) promotes Cdc14 release during late anaphase. Here, we investigate the relationship among FEAR network components and propose an order in which they function to promote Cdc14 release from the nucleolus. Furthermore, we examine the role of the protein kinase Cdc5, which is a component of both the FEAR network and the MEN, in Cdc14 release from the nucleolus. We find that overexpression of CDC5 led to Cdc14 release from the nucleolus in S phase-arrested cells, which correlated with the appearance of phosphorylated forms of Cdc14 and Cfi1/Net1. Cdc5 promotes Cdc14 phosphorylation and, by stimulating the MEN, Cfi1/Net1 phosphorylation. Furthermore, we suggest that Cdc14 release from the nucleolus only occurs when Cdc14 and Cfi1/Net1 are both phosphorylated.  相似文献   

8.
In budding yeast, the release of the protein phosphatase Cdc14 from its inhibitor Cfi1/Net1 in the nucleolus during anaphase triggers the inactivation of Clb CDKs that leads to exit from mitosis. The mitotic exit pathway controls the association between Cdc14 and Cfi1/Net1. It is comprised of the RAS-like GTP binding protein Tem1, the exchange factor Lte1, the GTPase activating protein complex Bub2-Bfa1/Byr4, and several protein kinases including Cdc15 and Dbf2. Here we investigate the regulation of the protein kinases Dbf2 and Cdc15. We find that Cdc15 is recruited to both spindle pole bodies (SPBs) during anaphase. This recruitment depends on TEM1 but not DBF2 or CDC14 and is inhibited by BUB2. Dbf2 also localizes to SPBs during anaphase, which coincides with activation of Dbf2 kinase activity. Both events depend on the mitotic exit pathway components TEM1 and CDC15. In cells lacking BUB2, Dbf2 localized to SPBs in cell cycle stages other than anaphase and telophase and Dbf2 kinase was prematurely active during metaphase. Our results suggest an order of function of mitotic exit pathway components with respect to SPB localization of Cdc15 and Dbf2 and activation of Dbf2 kinase. BUB2 negatively regulates all 3 events. Loading of Cdc15 on SPBs depends on TEM1, whereas loading of Dbf2 on SPBs and activation of Dbf2 kinase depend on TEM1 and CDC15.  相似文献   

9.
In budding yeast, a signaling network known as the mitotic exit network (MEN) triggers exit from mitosis. We find that hypertonic stress allows MEN mutants to exit from mitosis in a manner dependent on the high osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase cascade. The HOG pathway drives exit from mitosis in MEN mutants by promoting the activation of the MEN effector, the protein phosphatase Cdc14. Activation of Cdc14 depends on the Cdc14 early anaphase release network, a group of proteins that functions in parallel to the MEN to promote Cdc14 function. Notably, exit from mitosis is promoted by the signaling branch defined by the Sho1 osmosensing system, but not by the Sln1 osmosensor of the HOG pathway. Our results suggest that the stress MAP kinase pathway mobilizes programs to promote completion of the cell cycle and entry into G1 under unfavorable conditions.  相似文献   

10.
Background: In Saccharomyces cerevisiae the mitotic-exit network (MEN) functions in anaphase to promote the release of the Cdc14p phosphatase from the nucleolus. This release causes mitotic exit via inactivation of the cyclin-dependent kinase (Cdk). Cdc14p-like proteins are highly conserved; however, it is unclear if these proteins regulate mitotic exit as in S. cerevisiae. In Schizosaccharomyces pombe a signaling pathway homologous to the MEN and termed the septation initiation network (SIN) is required not for mitotic exit, but for initiation of cytokinesis and for a cytokinesis checkpoint that inhibits further cell cycle progression until cytokinesis is complete.Results: We have identified the S. pombe Cdc14p homolog, Clp1p, and show that it is not required for mitotic exit but rather functions together with the SIN in coordinating cytokinesis with the nuclear-division cycle. As cells enter mitosis, Clp1p relocalizes from the nucleolus to the spindle and site of cell division. Clp1p exit from the nucleolus does not depend on the SIN, but the SIN is required for keeping Clp1p out of the nucleolus until completion of cytokinesis. Clp1p, in turn, may promote the activation of the SIN by antagonizing Cdk activity until cytokinesis is complete and thus ensuring that cytokinesis is completed prior to the initiation of the next cell cycle. In addition to its roles in anaphase, Clp1p regulates the G2/M transition since cells deleted for clp1 enter mitosis precociously and cells overexpressing Clp1p delay mitotic entry. Unlike Cdc14p, Clp1p appears to antagonize Cdk activity by preventing dephosphorylation of Cdc2p on tyrosine.Conclusions: S. pombe Clp1p affects cell cycle progression in a markedly different manner than its S. cerevisiae homolog, Cdc14p. This finding raises the possibility that related phosphatases in animal cells will prove to have important roles in coordinating the onset of cytokinesis with the events of mitosis.  相似文献   

11.
In order to transmit a full genetic complement cells must ensure that all chromosomes are accurately split and distributed during anaphase. Chromosome XII in S. cerevisiae contains the site of nucleolar assembly, a 1-2Mb array of rDNA genes named RDN1. Cdc14p is a conserved phosphatase, essential for anaphase progression and mitotic exit, which is kept inactive at the nucleolus until mitosis. In early anaphase, the FEAR network (Cdc Fourteen Early Anaphase Release) promotes the transient and partial release of Cdc14p from the nucleolus. The putative role of Cdc14p released by the FEAR network is thought to be the stimulation of full Cdc14p release by activation of the GTPase-driven signaling cascade (the Mitotic Exit Network or MEN) that ensures mitotic exit. Here, we show that nucleolar segregation is spatially separated and temporally delayed from the rest of the genome. Nucleolar segregation occurs during mid-anaphase and coincides with the FEAR release of Cdc14p. Inactivation of FEAR delays nucleolar segregation until late anaphase, demonstrating that one function of the FEAR network is to promote segregation of repetitive nucleolar chromatin during mid-anaphase.  相似文献   

12.

Background  

In S. cerevisiae, the mitotic exit network (MEN) proteins, including the Polo-like protein kinase Cdc5 and the protein phosphatase Cdc14, are required for exit from mitosis. In pre-anaphase cells, Cdc14 is sequestered to the nucleolus by Net1 as a part of the RENT complex. When cells are primed to exit mitosis, the RENT complex is disassembled and Cdc14 is released from the nucleolus.  相似文献   

13.
The mitotic exit network (MEN) controls the exit from mitosis in budding yeast. The proline-directed phosphatase, Cdc14p, is a key component of MEN and promotes mitotic exit by activating the degradation of Clb2p and by reversing Cdk-mediated mitotic phosphorylation. Cdc14p is sequestered in the nucleolus during much of the cell cycle and is released in anaphase from the nucleolus to the nucleoplasm and cytoplasm to perform its functions. Release of Cdc14p from the nucleolus during anaphase is well understood. In contrast, less is known about the mechanism by which Cdc14p is released from the nucleus to the cytoplasm. Here we show that Cdc14p contains a leucine-rich nuclear export signal (NES) that interacts with Crm1p physically. Mutations in the NES of Cdc14p allow Clb2p degradation and mitotic exit, but cause abnormal morphology and cytokinesis defects at non-permissive temperatures. Cdc14p localizes to the bud neck, among other cytoplasmic structures, following its release from the nucleolus in late anaphase. This bud neck localization of Cdc14p is disrupted by mutations in its NES and by the leptomycin B-mediated inhibition of Crm1p. Our results suggest a requirement for Crm1p-dependent nuclear export of Cdc14p in coordinating mitotic exit and cytokinesis in budding yeast.  相似文献   

14.
Asakawa K  Yoshida S  Otake F  Toh-e A 《Genetics》2001,157(4):1437-1450
Exit from mitosis requires the inactivation of cyclin-dependent kinase (CDK) activity. In the budding yeast Saccharomyces cerevisiae, a number of gene products have been identified as components of the signal transduction network regulating inactivation of CDK (called the MEN, for the mitotic exit network). Cdc15, one of such components of the MEN, is an essential protein kinase. By the two-hybrid screening, we identified Cdc15 as a binding protein of Tem1 GTPase, another essential regulator of the MEN. Coprecipitation experiments revealed that Tem1 binds to Cdc15 in vivo. By deletion analysis, we found that the Tem1-binding domain resides near the conserved kinase domain of Cdc15. The cdc15-LF mutation, which was introduced into the Tem1-binding domain, reduced the interaction with Cdc15 and Tem1 and caused temperature-sensitive growth.The kinase activity of Cdc15 was not so much affected by the cdc15-LF mutation. However, Cdc15-LF failed to localize to the SPB at the restrictive temperature. Our data show that the interaction with Tem1 is important for the function of Cdc15 and that Cdc15 and Tem1 function in a complex to direct the exit from mitosis.  相似文献   

15.
Cyclin-dependent kinase (CDK) governs cell cycle progression, and its kinase activity fluctuates during the cell cycle. Mitotic exit pathways are responsible for the inactivation of CDK after chromosome segregation by promoting the release of a nucleolus-sequestered phosphatase, Cdc14, which antagonizes CDK. In the budding yeast Saccharomyces cerevisiae, mitotic exit is controlled by the FEAR (for "Cdc-fourteen early anaphase release") and mitotic exit network (MEN) pathways. In response to DNA damage, two branches of the DNA damage checkpoint, Chk1 and Rad53, are activated in budding yeast to prevent anaphase entry and mitotic exit, allowing cells more time to repair damaged DNA. Here we present evidence indicating that yeast cells negatively regulate mitotic exit through two distinct pathways in response to DNA damage. Rad53 prevents mitotic exit by inhibiting the MEN pathway, whereas the Chk1 pathway prevents FEAR pathway-dependent Cdc14 release in the presence of DNA damage. In contrast to previous data, the Rad53 pathway negatively regulates MEN independently of Cdc5, a Polo-like kinase essential for mitotic exit. Instead, a defective Rad53 pathway alleviates the inhibition of MEN by Bfa1.  相似文献   

16.
BACKGROUND: The putative guanine nucleotide exchange factor Lte1 plays an essential role in promoting exit from mitosis at low temperatures. Lte1 is thought to activate a Ras-like signaling cascade, the mitotic exit network (MEN). MEN promotes the release of the protein phosphatase Cdc14 from the nucleolus during anaphase, and this release is a prerequisite for exit from mitosis. Lte1 is present throughout the cell during G1 but is sequestered in the bud during S phase and mitosis by an unknown mechanism. RESULTS: We show that anchorage of Lte1 in the bud requires septins, the cell polarity determinants Cdc42 and Cla4, and Kel1. Lte1 physically associates with Kel1 and requires Kel1 for its localization in the bud, suggesting a role for Kel1 in anchoring Lte1 at the bud cortex. Our data further implicate the PAK-like protein kinase Cla4 in controlling Lte1 phosphorylation and localization. CLA4 is required for Lte1 phosphorylation and bud localization. Furthermore, when overexpressed, CLA4 induces Lte1 phosphorylation and localization to regions of polarized growth. Finally, we show that Cdc14, directly or indirectly, controls Lte1 dephosphorylation and delocalization from the bud during exit from mitosis. CONCLUSION: Restriction of Lte1 to the bud cortex depends on the cortical proteins Cdc42 and Kel1 and the septin ring. Cla4 and Cdc14 promote and demote Lte1 localization at and from the bud cortex, respectively, suggesting not only that the phosphorylation status of Lte1 controls its localization but also indicating that Cla4 and Cdc14 are key regulators of the spatial asymmetry of Lte1.  相似文献   

17.
Cdc14 phosphatase is a key regulator of exit from mitosis, acting primarily through antagonism of cyclin-dependent kinase, and is also thought to be important for meiosis. Cdc14 is released from its sequestration site in the nucleolus in two stages, first by the non-essential Cdc Fourteen Early Anaphase Release (FEAR) pathway and later by the essential Mitotic Exit Network (MEN), which drives efficient export of Cdc14 to the cytoplasm. We find that Cdc14 is confined to the nucleus during early mitotic anaphase release, and during its meiosis I release. Proteins whose degradation is directed by Cdc14 as a requirement for mitotic exit (e.g. the B-type cyclin, Clb2), remain stable during mitotic FEAR, a result consistent with Cdc14 being restricted to the nucleus and not participating directly in mitotic exit. Cdc14 released by the FEAR pathway has been proposed to have a wide variety of activities, all of which are thought to promote passage through anaphase. Proposed functions of FEAR include stabilization of anaphase spindles, resolution of the rDNA to allow its segregation, and priming of the MEN so that mitotic exit can occur promptly and efficiently. We tested the model for FEAR functions using the FEAR-deficient mutation net1-6cdk. Our cytological observations indicate that, contrary to the current model, FEAR is fully dispensable for timely progression through a series of anaphase landmarks and mitotic exit, although it is required for timely rDNA segregation. The net1-6cdk mutation suppresses temperature-sensitive mutations in MEN genes, suggesting that rather than activating mitotic exit, FEAR either inhibits the MEN or has no direct effect upon it. One interpretation of this result is that FEAR delays MEN activation to ensure that rDNA segregation occurs before mitotic exit. Our findings clarify the distinction between FEAR and MEN-dependent Cdc14 activities and will help guide emerging quantitative models of this cell cycle transition.  相似文献   

18.
The mitotic exit network (MEN) is a spindle pole body (SPB)–associated, GTPase-driven signaling cascade that controls mitotic exit. The inhibitory Bfa1–Bub2 GTPase-activating protein (GAP) only associates with the daughter SPB (dSPB), raising the question as to how the MEN is regulated on the mother SPB (mSPB). Here, we show mutual regulation of cyclin-dependent kinase 1 (Cdk1) and the MEN. In early anaphase Cdk1 becomes recruited to the mSPB depending on the activity of the MEN kinase Cdc15. Conversely, Cdk1 negatively regulates binding of Cdc15 to the mSPB. In addition, Cdk1 phosphorylates the Mob1 protein to inhibit the activity of Dbf2–Mob1 kinase that regulates Cdc14 phosphatase. Our data revise the understanding of the spatial regulation of the MEN. Although MEN activity in the daughter cells is controlled by Bfa1–Bub2, Cdk1 inhibits MEN activity at the mSPB. Consistent with this model, only triple mutants that lack BUB2 and the Cdk1 phosphorylation sites in Mob1 and Cdc15 show mitotic exit defects.  相似文献   

19.
Cdc14-family phosphatases play a conserved role in promoting mitotic exit and cytokinesis by dephosphorylating substrates of cyclin-dependent kinase (Cdk). Cdc14-family phosphatases have been best studied in yeast (for review, see [1, 2]), where budding yeast Cdc14 and its fission yeast homolog Clp1 are regulated partly by their localization; both proteins are thought to be sequestered in the nucleolus in interphase. Cdc14 and Clp1 are released from the nucleolus in mitosis, and in late mitosis conserved signaling pathways termed the mitotic exit network (MEN) and the septation initiation network (SIN) keeps Cdc14 and Clp1, respectively, out of the nucleolus through an unknown mechanism [3-6]. Here we show that the most downstream SIN component, the Ndr-family kinase Sid2, maintains Clp1 in the cytoplasm in late mitosis by phosphorylating Clp1 directly and thereby creating binding sites for the 14-3-3 protein Rad24. Mutation of the Sid2 phosphorylation sites on Clp1 disrupts the Clp1-Rad24 interaction and causes Clp1 to return prematurely to the nucleolus during cytokinesis. Loss of Clp1 from the cytoplasm in telophase renders cells sensitive to perturbation of the actomyosin ring but does not affect other Clp1 functions. Because all components of this pathway are conserved, this might be a broadly conserved mechanism for regulation of Cdc14-family phosphatases.  相似文献   

20.
A role for cell polarity proteins in mitotic exit   总被引:4,自引:0,他引:4  
Höfken T  Schiebel E 《The EMBO journal》2002,21(18):4851-4862
The budding yeast mitotic exit network (MEN) is a signal transduction cascade that controls exit from mitosis by facilitating the release of the cell cycle phosphatase Cdc14 from the nucleolus. The G protein Tem1 regulates MEN activity. The Tem1 guanine nucleotide exchange factor (GEF) Lte1 associates with the cortex of the bud and activates the MEN upon the formation of an anaphase spindle. Thus, the cell cortex has an important but ill-defined role in MEN regulation. Here, we describe a network of conserved cortical cell polarity proteins that have key roles in mitotic exit. The Rho-like GTPase Cdc42, its GEF Cdc24 and its effector Cla4 [a member of the p21-activated kinases (PAKs)] control the initial binding and activation of Lte1 to the bud cortex. Moreover, Cdc24, Cdc42 and Ste20, another PAK, probably function parallel to Lte1 in facilitating mitotic exit. Finally, the cell polarity proteins Kel1 and Kel2 are present in complexes with both Lte1 and Tem1, and negatively regulate mitotic exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号