首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Circular dichroism and scanning probe microscopy were used to characterize the interaction of DNA with the nonhistone chromatin protein HMGB1 and its recombinant version HMGB1(A+B) devoid of the C-terminal acidic region. The AFM data corroborate the earlier suggestion concerning the action of tandem DNA-binding domains, and support a modulatory role of the C-terminal domain in HMG protein-DNA interactions.  相似文献   

2.
The HMG1 ta(i)le     
We have studied structural changes in DNA/protein complexes using the CD spectroscopy, upon the interaction of HMG1-domains with calf thymus DNA at different ionic strengths. HMG1 protein isolated from calf thymus and recombinant HMG1-(A+B) protein were used. Recombinant protein HMG1-(A+B) represents a rat HMG1 lacking C-terminal acidic tail. At low ionic strength (15 mM NaCl) we observed similar behavior of both proteins upon interaction with DNA. Despite this, at higher ionic strength (150 mM NaCl) their interaction with DNA leads to a completely different structure of the complexes. In the case of HMG1-(A+B)/DNA complexes we observed the appearance of DNA fractions possessing very high optical activity. This could be a result of formation of the highly-ordered DNA structures modulated by the interaction with HMG1-domains. Thus the comparison studies of HMG1 and HMG1-(A+B) interaction with DNA show that negatively charged C-terminal tail of HMG1 modulates interaction of the protein with DNA. The striking difference of the behaviour of these two systems allows us to explain the functional role of multiple HMG1 domains in some regulatory and architectural proteins.  相似文献   

3.
Jung Y  Lippard SJ 《Biochemistry》2003,42(9):2664-2671
HMGB1, a highly conserved non-histone DNA-binding protein, interacts with specific DNA structural motifs such as those encountered at cisplatin damage, four-way junctions, and supercoils. The interaction of full-length HMGB1, containing two tandem HMG box domains and a C-terminal acidic tail, with cisplatin-modified DNA was investigated by hydroxyl radical footprinting and electrophoretic gel mobility shift assays. The full-length HMGB1 protein binds to DNA containing a 1,2-intrastrand d(GpG) cross-link mainly through domain A, as revealed by footprinting, with a dissociation constant K(d) of 120 nM. Site-directed mutagenesis of intercalating residues in both HMG domains A and B in full-length HMGB1 further supports the conclusion that only one HMG box domain is bound to the site of cisplatin damage. Interaction of the C-terminal tail with the rest of the HMGB1 protein was examined by EDC cross-linking experiments. The acidic tail mainly interacts with domain B and linker regions rather than domain A in HMGB1. These results illuminate the respective roles of the tandem HMG boxes and the C-terminal acidic tail of HMGB1 in binding to DNA and to the major DNA adducts formed by the anticancer drug cisplatin.  相似文献   

4.
5.
经RTPCR从人新鲜扁桃体组织中扩增人高迁移率族蛋白B1(HMGB1)中的Bbox(88~162残基)的cDNA,构建于载体pUC19,经测序后与GenBank中报道的已知序列完全一致,再构建于原核表达载体pQE80LDHFR中,表达并鉴定目的蛋白.经Ni2+亲和层析柱、多粘菌素B层析柱纯化获得高纯度的DHFRHMGB1Bbox蛋白,然后将此重组HMGB1Bbox加入到人外周血单核细胞(PBMCs)中,37℃,5%CO2下,刺激PBMCs6h,用ELISA检测PBMCs释放TNFα、IL6的量,经检测后证明纯化后的重组HMGB1Bbox能显著地刺激PBMCs释放致炎因子TNFα、IL6.HMGB1Bbox的表达及其生物活性的初步研究,为进一步研究HMGB1Bbox的作用机制以及新型抗炎制剂的研发奠定基础.  相似文献   

6.
The analysis of absorption and circular dichroism spectra in UV and IR regions showed that Ca2+ ions interact both with the phosphate groups of DNA and with the HMGB1 protein. Not only negatively charged C-terminal part of the protein molecule participates in interaction with metal ions but also its DNA-binding domains. The latter fact leads to the change of the mode of protein-DNA interaction. The presence of Ca2+ ions prevents formation of ordered supramolecular structures, specific for the HMGB1-DNA complexes, though promotes intermolecular aggregation. The structure of the complexes between DNA and the protein HMGB1 lacking C-terminal tail appears to be the most sensitive to the presence of Ca2+ ions. The data obtained allow to conclude that Ca2+ ions do not play a structural role in the HMGB1/DNA complexes and the presence of these ions is not necessary to DNA compaction in such systems.  相似文献   

7.
Maize HMGB1 is a typical member of the family of plant chromosomal HMGB proteins, which have a central high-mobility group (HMG)-box DNA-binding domain that is flanked by a basic N-terminal region and a highly acidic C-terminal domain. The basic N-terminal domain positively influences various DNA interactions of the protein, while the acidic C-terminal domain has the opposite effect. Using DNA-cellulose binding and electrophoretic mobility shift assays, we demonstrate that the N-terminal basic domain binds DNA by itself, consistent with its positive effects on the DNA interactions of HMGB1. To examine whether the negative effect of the acidic C-terminal domain is brought about by interactions with the basic part of HMGB1 (N-terminal region, HMG-box domain), intramolecular cross-linking in combination with formic acid cleavage of the protein was used. These experiments revealed that the acidic C-terminal domain interacts with the basic N-terminal domain. The intramolecular interaction between the two oppositely charged termini of the protein is enhanced when serine residues in the acidic tail of HMGB1 are phosphorylated by protein kinase CK2, which can explain the negative effect of the phosphorylation on certain DNA interactions. In line with that, covalent cross-linking of the two terminal domains resulted in a reduced affinity of HMGB1 for linear DNA. Comparable to the finding with maize HMGB1, the basic N-terminal and the acidic C-terminal domains of the Arabidopsis HMGB1 and HMGB4 proteins interact, indicating that these intramolecular interactions, which can modulate HMGB protein function, generally occur in plant HMGB proteins.  相似文献   

8.
The high mobility group box (HMGB) 1 protein is a very abundant and conserved protein that is implicated in many key cellular events but its functions within the nucleus remain elusive. The role of this protein in replication of closed circular DNA containing a eukaryotic origin of replication has been studied in vitro by using native and recombinant HMGB1 as well as various modified HMGB1 preparations such as truncated protein, lacking its C-terminal tail, in vivo acetylated protein, and recombinant HMGB1 phosphorylated in vitro by protein kinase C (PKC). Native HMGB1 extracted from tumour cells inhibits replication and this effect is reduced upon acetylation and completely abolished upon removal of the acidic C-terminal tail. Recombinant HMGB1, however, fails to inhibit replication but it acquires such a property following in vitro phosphorylation by PKC.  相似文献   

9.
High mobility group box chromosomal protein 1 (HMGB1) is a lethal mediator of systemic inflammation, and its A box domain is isolated as an antagonist of HMGB1. To enhance its expression level and its anti-HMGB1 effect, the A box cDNA was coupled with the sequence encoding lectin-like domain of thrombomodulin (TMD1). The fusion DNA fragment was ligated into the prokaryotic expression vector pQE-80L to construct the recombinant plasmid pQE80L-A/TMD1. The plasmid was then transformed into Escherichia coli DH5α, and the recombinant fusion protein A/TMD1 was expressed at 37°C for 4 h, with induction by IPTG at the final concentration of 0.2 mM. The expression level of the fusion protein was up to 40% of the total cellular protein. The fusion protein was purified by Ni-NTA chromatography and the purity was about 95%. After passing over a polymyxin B column to remove any contaminating lipopolysaccharides, the purified protein was tested for its anti-inflammatory activity. Our data show that A/TMD1 significantly inhibits HMGB1-induced TNF-α release and might be useful in treating HMGB1-elevated sepsis.  相似文献   

10.
The analysis of absorption and circular dichroism spectra in UV and IR regions showed that Ca2+ ions interact with the phosphate groups of DNA and the HMGB1 protein. Not only the negatively charged C-terminal part of the protein molecule, but also its DNA-binding domains participate in the interaction with metal ions. The latter leads to a change in the mode of protein–DNA interaction. The presence of Ca2+ ions prevents the formation of ordered supramolecular structures specific for the HMGB1–DNA complexes but promotes intermolecular aggregation. The structure of DNA complexes with the HMGB1 protein lacking the C-terminal tail appeared to be the most sensitive to the presence of Ca2+ ions. These data indicate that Ca2+ ions play no structural role in the HMGB1–DNA complexes, and their presence is not necessary for DNA compaction in such systems.  相似文献   

11.
Rice HMGB1 protein recognizes DNA structures and bends DNA efficiently   总被引:4,自引:0,他引:4  
We analyzed the DNA-binding and DNA-bending properties of recombinant HMGB1 proteins based on a rice HMGB1 cDNA. Electrophoretic mobility shift assay demonstrated that rice HMGB1 can bind synthetic four-way junction (4H) DNA and DNA minicircles efficiently but the binding to 4H can be completed out by HMGA and histone H1. Conformational changes were detected by circular dichroism analysis with 4H DNA bound to various concentrations of HMGB1 or its truncated forms. T4 ligase-mediated circularization assays with short DNA fragments of 123 bp showed that the protein is capable of increasing DNA flexibility. The 123-bp DNA formed closed circular monomers efficiently in its presence, similar to that in an earlier study on maize HMG. Additionally, our results show for the first time that the basic N-terminal domain enhances the affinity of the plant HMGB1 protein for 4H DNA, while the acidic C-terminal domain has the converse effects.  相似文献   

12.
Thermodynamics of HMGB1 interaction with duplex DNA   总被引:4,自引:0,他引:4  
Müller S  Bianchi ME  Knapp S 《Biochemistry》2001,40(34):10254-10261
The high mobility group protein HMGB1 is a small, highly abundant protein that binds to DNA in a non-sequence-specific manner. HMGB1 consists of 2 DNA binding domains, the HMG boxes A and B, followed by a short basic region and a continuous stretch of 30 glutamate or aspartate residues. Isothermal titration calorimetry was used to characterize the binding of HMGB1 to the double-stranded model DNAs poly(dAdT).(dTdA) and poly(dGdC).(dCdG). To elucidate the contribution of the different structural motifs to DNA binding, calorimetric measurements were performed comparing the single boxes A and B, the two boxes plus or minus the basic sequence stretch (AB(bt) and AB), and the full-length HMGB1 protein. Thermodynamically, binding of HMGB1 and all truncated constructs to duplex DNA was characterized by a positive enthalpy change at 15 degrees C. From the slopes of the temperature dependence of the binding enthalpies, heat capacity changes of -0.129 +/- 0.02 and -0.105 +/- 0.05 kcal mol(-1) K(-1) were determined for box A and full-length HMGB1, respectively. Significant differences in the binding characteristics were observed using full-length HMGB1, suggesting an important role for the acid tail in modulating DNA binding. Moreover, full-length HMGB1 binds differently these two DNA templates: binding to poly(dAdT).(dTdA) was cooperative, had a larger apparent binding site size, and proceeded with a much larger unfavorable binding enthalpy than binding to poly(dGdC).(dCdG).  相似文献   

13.
目的:获取重组人高迁移率族蛋白B1(HMGB1),HMGB1Abox和Bbox的纯化蛋白,制备HMGB1的多克隆抗血清。方法:采用PCR方法扩增人HMGB1,HMGB1的Abox和Bbox目的基因片段,构建原核表达载体,进行原核表达与蛋白纯化,然后用HMGB1免疫新西兰大白兔,制备多克隆抗血清。采用ELISA检测抗血清效价,用免疫组化检测HMGB1在小鼠肝损伤组织中的表达。结果:成功构建了人HMGB1,HMGB1的Abox和Bbox原核表达载体pET28-HMGB1、pET28-Abox、pET28-Bbox,在E.coli BL21中表达,镍亲和层析柱提纯,获取纯净目的蛋白。HMGB1免疫新西兰大白兔后,抗血清效价为1:2,000,000,具有高度特异性。免疫组化显示小鼠坏死肝组织HMGB1表达增加。结论:本研究获得了人HMGB1以及HMGB1的Abox和Bbox的纯化蛋白,制备了人HMGB1的多克隆抗血清,为HMGB1的结构、组织表达谱及其功能的研究奠定了基础。  相似文献   

14.
Protein HMGB1 has long been known as one of the most abundant non-histone proteins in the nucleus of mammalian cells, and has regained interest recently for its function as an extracellular cytokine. As a DNA-binding protein, HMGB1 facilitates DNA-protein interactions by increasing the flexibility of the double helix, and binds specifically to distorted DNA structures. We have previously observed that HMGB1 binds with extremely high affinity to a novel DNA structure, hemicatenated DNA loops (hcDNA), in which double-stranded DNA fragments containing a tract of poly(CA).poly(TG) form a loop maintained at its base by a hemicatenane. Here, we show that the single HMGB1 domains A and B, the HMG-box domain of sex determination factor SRY, as well as the prokaryotic HMGB1-like protein HU, specifically interact with hcDNA (Kd approximately 0.5 nM). However, the affinity of full-length HMGB1 for hcDNA is three orders of magnitude higher (Kd<0.5 pM) and requires the simultaneous presence of both HMG-box domains A and B plus the acidic C-terminal tail on the molecule. Interestingly, the high affinity of the full-length protein for hcDNA does not decrease in the presence of magnesium. Experiments including a comparison of HMGB1 binding to hcDNA and to minicircles containing the CA/TG sequence, binding studies with HMGB1 mutated at intercalating amino acid residues (involved in recognition of distorted DNA structures), and exonuclease III footprinting, strongly suggest that the hemicatenane, not the DNA loop, is the main determinant of the affinity of HMGB1 for hcDNA. Experiments with supercoiled CA/TG-minicircles did not reveal any involvement of left-handed Z-DNA in HMGB1 binding. Our results point to a tight structural fit between HMGB1 and DNA hemicatenanes under physiological conditions, and suggest that one of the nuclear functions of HMGB1 could be linked to the possible presence of hemicatenanes in the cell.  相似文献   

15.
The structure-specific DNA-binding protein HMGB1 (high-mobility group protein B1) which comprises two tandem HMG boxes (A and B) and an acidic C-terminal tail, is acetylated in vivo at Lys(2) and Lys(11) in the A box. Mutation to alanine of both residues in the isolated A domain, which has a strong preference for pre-bent DNA, abolishes binding to four-way junctions and 88 bp DNA minicircles. The same mutations in full-length HMGB1 also abolish its binding to four-way junctions, and binding to minicircles is substantially impaired. In contrast, when the acidic tail is absent (AB di-domain) there is little effect of the double mutation on four-way junction binding, although binding to minicircles is reduced approximately 15-fold. Therefore it appears that in AB the B domain is able to substitute for the non-functional A domain, whereas in full-length HMGB1 the B domain is masked by the acidic tail. In no case does single substitution of Lys(2) or Lys(11) abolish DNA binding. The double mutation does not significantly perturb the structure of the A domain. We conclude that Lys(2) and Lys(11) are critical for binding of the isolated A domain and HMGB1 to distorted DNA substrates.  相似文献   

16.
周红颜  任向荣  苏绍波 《生物磁学》2011,(21):4005-4009
目的:获取重组人高迁移率族蛋白B1(HMGB1),HMGB1Abox和Bbox的纯化蛋白,制备HMGB1的多克隆抗血清。方法:采用PCR方法扩增人HMGB1,HMGB1的Abox和Bbox目的基因片段,构建原核表达载体,进行原核表达与蛋白纯化,然后用HMGB1免疫新西兰大白兔,制备多克隆抗血清。采用ELISA检测抗血清效价,用免疫组化检测HMGB1在小鼠肝损伤组织中的表达。结果:成功构建了人HMGB1,HMGB1的Abox和Bbox原核表达载体pET28-HMGB1、pET28一Abox、pET28-Bbox,在E.co1iBL21中表达,镍亲和层析柱提纯,获取纯净目的蛋白。HMGB1免疫新西兰大白兔后,抗血清效价为1:2,000,000,具有高度特异性。免疫组化显示小鼠坏死肝组织HMGB1表达增加。结论:本研究获得了人HMGB1以及HMGB1的Abox和Bbox的纯化蛋白,制备了人HMGB1的多克隆抗血清,为HMGB1的结构、组织表达谱及其功能的研究奠定了基础。  相似文献   

17.
Mechanisms of interaction of DNA with nonhistone chromosomal protein HMGB1 and linker histone H1 have been studied by means of circular dichroism and absorption spectroscopy. Both proteins are located in the internucleosomal regions of chromatin. It is demonstrated that the properties of DNA-protein complexes depend on the protein content and cannot be considered as a mere summing up of the effects of individual protein components. Interaction of the HMGB1 and H1 proteins is shown with DNA to be cooperative rather than competitive. Lysine-rich histone H1 facilitates the binding of HMGB1 to DNA by screening the negatively charged groups of the sugar-phosphate backbone of DNA and dicarboxylic amino acid residues in the C-terminal domain of HMGB1. The observed joint action of HMGB1 and H1 stimulates DNA condensation with the formation of anisotropic DNA-protein complexes with typical ψ-type CD spectra. Structural organization of the complexes depends not only on DNA-protein interactions but also on interaction between the HMGB1 and H1 protein molecules bound to DNA. Manganese ions significantly modify the mode of interactions between components in the triple DNA-HMGB1-H1 complex. The binding of Mn2+ ions weakens DNA-protein interactions and strengthens protein-protein interactions, which promote DNA condensation and formation of large DNA-protein particles in solution.  相似文献   

18.
The complexes of DNA - HMGB1 protein - manganese ions have been studied using circular dichroism (CD) technique. It was shown that in such three-component system the interactions of both the protein and metal ions with DNA differ from those in two-component complexes. The manganese ions do not affect the CD spectrum of free HMGB1 protein. However, Mn2+ ions induce considerable changes in the CD spectrum of free DNA in the spectral range of 260-290 nm. The presence of Mn2+ ions prevents formation of the ordered supramolecular structures specific for the HMGB1-DNA complexes. The interaction of manganese ions with DNA has a marked influence on the local DNA structure changing the properties of protein-binding sites. This results in the serious decrease in cooperativity of the DNA-protein binding. Such changes in the mode of the DNA-protein interactions occur at concentrations as small as 0.01 mM Mn2+. Moreover, the changes in local DNA structure induced by manganese ions promote the appearance of new HMGB1 binding sites on the DNA double helix. At the same time interactions with HMGB1 protein induce alterations in the structure of the DNA double helix which increase with a growth of the protein/DNA ratio. These alterations make the DNA/protein complex especially sensitive to manganese ions. Under these conditions the Mn2+ ions strongly affect the DNA structure that reflects in abrupt changes of the CD spectra of DNA in the complex in the range of 260-290 nm. Thus, structural changes of the DNA double helix in the three-component DNA-HMGB1-Mn2+ complexes come as a result of the combined and interdependent interactions of DNA with Mn2+ ions and the molecules of HMGB1.  相似文献   

19.
The mechanisms of interaction of the non-histone chromosomal protein HMGB1 and linker histone H1 with DNA have been studied using circular dichroism and absorption spectroscopy. Both of the proteins are located in the inter-nucleosomal regions of chromatin. It was demonstrated that properties of the DNA-protein complexes depend on the protein content and can not be considered as a simple summing up of the effects of individual protein components. Interaction of HMGB1 and H1 proteins is shown to be co-operative rather than competitive. Lysine-rich histone H1 facilitates the binding of the HMGB1 with DNA by screening the negatively charged groups of the sugar-phosphate backbone of DNA and dicarboxylic amino-acid residues in the C-terminal domain of the HMGB1 protein. The observed joint action of the and H1 proteins stimulates DNA condensation with formation of the anisotropic DNA-protein complexes with typical psi-type CD spectra. Structural organization of the complexes depends not only on the DNA-protein interactions, but also on the interaction between HMGB1 and H1 protein molecules bound to DNA. Manganese ions significantly modify the character of interactions between the components in the triple DNA-HMGB1-H1 complex. Binding of Mn2+ ions causes the weakening of the DNA-protein interactions and strengthening the protein-protein interactions, which promote DNA condensation and formation of large DNA-protein particles in solution.  相似文献   

20.
The method of circular dichroism (CD) was used to compare DNA behavior during its interaction with linker histone H1 and with non-histone chromosomal protein HMG1 at different ionic strength and at different protein content in the system. The role of negatively charged C-terminal fragment of HMG1 was analyzed using recombinant protein HMG1-(A + B), which lacks the C terminal amino acid sequence. The psi-type CD spectra were common for DNA interaction with histone H1, but no spectra of this type were observed in HMG1-DNA systems even at high ionic strength. The CD spectrum of the truncated recombinant protein at high salt concentration somewhat resembled the psi-type spectrum. Two very intense positive bands were located near 215 nm and near 273 nm, and the whole CD spectrum was positive. The role of C-terminal tail of HMG1 in formation of the ordered DNA-protein complexes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号