首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional silver metallic nanowires array which can realize negative refraction and image focusing in the visible frequency is presented. Homogeneous effective medium theory is used to investigate the negative refraction properties when the cell size of the array is much smaller than the incident wavelength. The analytical results are confirmed by Finite Difference Time Domain (FDTD) numerical simulations. The imaging properties comparison among the nanowires arrays with triangle, circle, ellipse, hexagon, and square wire cross-sections which have the same filling factor show the structure shapes of the nanowires will not influence the negative refraction but the imaging properties because of the different loss from the metal nanowires.  相似文献   

2.
We report the dynamic control characteristics of electromagnetic wave propagation in a nonlinear metamaterial by an applied electric field, which is constructed by an array of metallic nanowires embedded into a nonlinear dielectric. Numerical results show that the composite structure can appear three kinds of interesting interconversion characteristics among positive refraction, negative refraction, and cut-off states by adjusting the intensity of the applied electric field. Consequently, we can switch all-optically light states between the total reflection state (OFF state) and the total transmission state (ON state), as well as control light propagation route dynamically. Moreover, we also elaborate on the dependency of the refraction angles of energy flow and wave vector, and Brewster angle on the applied electric field and the orientation angle φ. These properties open up an avenue for potential applications of nonlinear metamaterials in nanophotonic devices such as all-optical switches, routers, and wave cut-off devices.  相似文献   

3.
In this paper, the coupling interaction is investigated between a metallic nanowire array and a metal film under the Kretschmann condition. The plasmonic multilayer is composed of a metallic nanowire array embedded in a polymer layer positioned above a metal film, exploiting the classical surface plasmon resonance (SPR) configuration. We analyze the influence of various structural parameters of the metallic nanowire array on the SPR spectrum of thin metal film. The results show that the coupling interactions of nanowires with the metal film can greatly affect SPR resonance wavelength and increase SPR sensitivity. The coupling strength of metallic nanowire array and metal film also impacts resonance wavelength, which can be used to adjust SPR range but have little effect on its sensitivity. The results are confirmed using a dipole coupling resonance model of metallic nanowire. We demonstrated that this nanostructured hybrid structure can be used for high sensitivity SPR monitoring in a large spectral range, which is important for advanced SPR measurement including fiber-optic SPR sensing technology.  相似文献   

4.
Membranes of peripheral endoplasmic reticulum form intricate morphologies consisting of tubules and sheets as basic elements. The physical mechanism of endoplasmic-reticulum shaping has been suggested to originate from the elastic behavior of the sheet edges formed by linear arrays of oligomeric protein scaffolds. The heart of this mechanism, lying in the relationships between the structure of the protein scaffolds and the effective intrinsic shapes and elastic properties of the sheets’ edges, has remained hypothetical. Here we provide a detailed computational analysis of these issues. By minimizing the elastic energy of membrane bending, we determine the effects of a rowlike array of semicircular arclike membrane scaffolds on generation of a membrane fold, which shapes the entire membrane surface into a flat double-membrane sheet. We show, quantitatively, that the sheet’s edge line tends to adopt a positive or negative curvature depending on the scaffold’s geometrical parameters. We compute the effective elastic properties of the sheet edge and analyze the dependence of the equilibrium distance between the scaffolds along the edge line on the scaffold geometry.  相似文献   

5.
Irregularity and self-similarity under scale changes are the main attributes of the morphological complexity of both normal and abnormal cells and tissues. In other words, the shape of a self-similar object does not change when the scale of measurement changes, because each part of it looks similar to the original object. However, the size and geometrical parameters of an irregular object do differ when it is examined at increasing resolution, which reveals more details. Significant progress has been made over the past three decades in understanding how irregular shapes and structures in the physical and biological sciences can be analysed. Dominant influences have been the discovery of a new practical geometry of Nature, now known as fractal geometry, and the continuous improvements in computation capabilities. Unlike conventional Euclidean geometry, which was developed to describe regular and ideal geometrical shapes which are practically unknown in nature, fractal geometry can be used to measure the fractal dimension, contour length, surface area and other dimension parameters of almost all irregular and complex biological tissues. We have used selected examples to illustrate the application of the fractal principle to measuring irregular and complex membrane ultrastructures of cells at specific functional and pathological stage.  相似文献   

6.
We predict an optical curtain effect, i.e., formation of a spatially invariant light field as light emerges from a set of periodic metallic nano-objects. The underlying physical mechanism of generation of this unique optical curtain can be explained in both the spatial domain and the wave-vector domain. In particular, in each period, we use one metallic nanostrip to equate the amplitudes of lights impinging on the openings of two metallic nanoslits and also shift their phases by π difference. We elaborate the influence on the output effect from some geometrical parameters like the periodicity, the slit height, and so on. By controlling the light illuminated on metallic subwavelength apertures, it is practical to generate optical curtains of arbitrary forms, which may open new routes of plasmonic nanolithography.  相似文献   

7.
Vertical nanowire arrays are increasingly investigated for their applications in steering cell behavior. The geometry of the array is an important parameter, which influences the morphology and adhesion of cells. Here, we investigate the effects of array geometry on the morphology of MCF7 cancer cells and MCF10A normal-like epithelial cells. Different gallium phosphide nanowire array-geometries were produced by varying the nanowire density and diameter. Our results show that the cell size is smaller on nanowires compared to flat gallium phosphide. The cell area decreases with increasing the nanowire density on the substrate. We observed an effect of the nanowire diameter on MCF10A cells, with a decreased cell area on 40 nm diameter nanowires, compared to 60 and 80 nm diameter nanowires in high-density arrays. The focal adhesion morphology depends on the extent to which cells are contacting the substrate. For low nanowire densities and diameters, cells are lying on the substrate and we observed large focal adhesions at the cell edges. In contrast, for high nanowire densities and diameters, cells are lying on top of the nanowires and we observed point-like focal adhesions distributed over the whole cell. Our results constitute a step towards the ability to fine-tune cell behavior on nanowire arrays.  相似文献   

8.
The phenomenon of contact guidance on thin fibers has been known since the beginning of the 20th century when Harrison studied cells growing on fibers from spider's web. Since then many studies have been performed on structured surfaces and fibers. Here we present a new way to induce guidance of cells or cell processes using magnetic nanowires. We have manufactured magnetic Ni-nanowires (200 nm in diameter and 40 μm long) with a template-based electro-deposition method. Drops of a nanowire/ethanol suspension were placed on glass cover slips. The nanowires were aligned in an external magnetic field and adhered to the cover slips after evaporation of the ethanol. When the wires had adhered, the magnetic field was removed. L929 fibroblasts and dissociated dorsal root ganglia (DRG) neurons from mice were cultured on the nanowire-coated cover slips for 24 h and 72 h respectively. The fibroblasts were affected by the aligned nanowires and displayed contact guidance. Regenerated axons also displayed contact guidance on the wires. There were no overt signs of toxicity caused by Ni-wires. Aligned magnetic nanowires can be useful for lab-on-a-chip devices and medical nerve grafts.  相似文献   

9.
Female Osmia repeatedly return to their nest to provision it with food and building material. The present study investigates the bees' nest localization performance by modifying visual cues in the near-vicinity of the nest. Each of several arrays of nesting holes was surrounded by four geometrical shapes. Removing some or all of the shapes reduced the proportion of direct returns but never prevented a bee from finding the appropriate array and, within that array, its own nest. The more the pattern was modified, the higher was the error score and the longer the delay, but no bee failed finally to find its nest. Shifting the pattern as well as the whole array of holes shifted homing orientation accordingly. There was no effect of the positions of the removed shapes, of contrast inversion, or of modifying the holes array. Our data are discussed in the light of the snapshot theory.  相似文献   

10.
Lugo JE  Doti R  Faubert J 《PloS one》2011,6(4):e17188

Background

Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs.

Methodology/Principal Findings

By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell''s law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone.

Conclusions/Significance

Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.  相似文献   

11.
We propose a broadband mid-infrared super-resolution imaging system comprising a metallic nanorod-bridged dimer array. The imaging array enables super-resolution imaging of shaped dipole sources in the near field. A charge transfer plasmon (CTP) appears in a metallic nanorod-bridged dimer. By varying the radius of the junction, the plasmon resonance wavelength of CTP mode can be tuned into the mid-infrared region. Here, we investigate the broadband super-resolution imaging of the incoherent and coherent dipole sources at mid-infrared wavelengths. With the array pitch varying, we calculate the cross-sectional field intensity distributions at the source plane and the image plane by using the finite element method. The simulation results indicate that the broadband incoherent and coherent super-resolution imaging can be realized at mid-infrared wavelengths with the imaging array. The image quality is sensitively dependent on the source coherent, the array pitch, and the distance from the image plane to the array. In the same structural parameters, the image quality of coherent source of in-phase is lower than that of incoherent source. Increasing the array pitch improves the image quality but it also increases the size of the array. By reasonably choosing the array pitch of the array, the spatial resolution of ~λ/109 and ~λ/73 is obtained corresponding to the incoherent imaging case and coherent imaging case at the mid-infrared wavelength of 4390 nm. Moreover, the larger image-array distance results in the lower image quality.  相似文献   

12.
We propose a 3D metasurface structure with unsymmetrical metallic slices array. The tunable plasmon-induced transparency (PIT) effects and different electric field mode distributions could be realized by modulating the structure parameters and angle of incidence. The radiative and dark elements of the asymmetric metallic slices unit cell structure are analyzed. The transmission spectra and the electric fields distributions are studied by the finite element method (FEM). We demonstrate that PIT phenomena based on those metasurface array structures may have applications as tunable sensors and filters in nanophotonics and integrated optics.  相似文献   

13.
He S  Zhang Y  Guo Z  Gu N 《Biotechnology progress》2008,24(2):476-480
An environmentally friendly method using a cell-free extract (CFE) of Rhodopseudomonas capsulata is proposed to synthesize gold nanowires with a network structure. This procedure offers control over the shapes of gold nanoparticles with the change of HAuCl4 concentration. The CFE solutions were added with different concentrations of HAuCl4, resulting in the bioreduction of gold ions and biosynthesis of morphologies of gold nanostructures. It is probable that proteins acted as the major biomolecules involved in the bioreduction and synthesis of gold nanoparticles. At a lower concentration of gold ions, exclusively spherical gold nanoparticles with sizes ranging from 10 to 20 nm were produced, whereas gold nanowires with a network structure formed at the higher concentration of gold ions in the aqueous solution. This method is expected to be applicable to the synthesis of other metallic nanowires such as silver and platinum, and even other anisotropic metal nanostructures are expected using the biosynthetic methods.  相似文献   

14.
##正## In this paper,a structural analysis is performed to gain insights on the synergistic mechanical amplification effect thatCampaniform sensilla have when combined in an array configuration.In order to simplify the analysis performed in this preliminaryinvestigation,an array of four holes in a single orthotropic lamina is considered.Firstly,a Finite Element Method(FEM) analysis is performed to discretely assess the influence that different geometrical parameters have on the mechanicalamplification properties of the array.Secondly,an artificial neural network is used to obtain an approximated multi-dimensionalcontinuous function,which models the relationship between the geometrical parameters and the amplification properties of thearray.Thirdly,an optimization is performed to identify the geometrical parameters yielding the maximum mechanical amplification.Finally,results are validated with an additional FEM simulation performed by varying geometrical parameters in theneighborhood of the identified optimal parameters.The method proposed in this paper can be fully automated and used to solvea wide range of optimization problems aimed at identifying optimal configurations of strain sensors inspired by Campaniformsensilla.  相似文献   

15.
The features are studied of plasma production in the initial stage of implosion of hollow cylindrical wire arrays at electric-field growth rates of 1012 V/(cm s). The results are presented from the analysis of both UV emission from the wire plasma and the discharge parameters in the initial stage of the formation of a Z-pinch discharge. It is found that, a few nanoseconds after applying voltage to a tungsten wire array, a plasma shell arises on the wire surface and the array becomes a heterogeneous system consisting of metal wire cores and a plasma surrounding each wire (a plasma corona). As a result, the current switches from the wires to the plasma. A further heating and ionization of the wire material are due primarily to heat transfer from the plasma corona. A model describing the primary breakdown along the wires is created with allowance for the presence of low-Z impurities on the wire surface.  相似文献   

16.
We investigate magnetic coupling effect on nonlinear electromagnetic properties in a three-dimensional negative index metamaterial constituted by arrays of conducting wires and split-ring resonators embedded into a Kerr nonlinear dielectric. Numerical results show that the switches of nonlinear electromagnetic properties between right-handed and left-handed properties depend closely on magnetic coupling strength, which can be divided into several different coupling regions according to the angular frequency of incident light and the nonlinear types (focused or defocused) of the dielectric. These properties may be instructive for designing optimizely composite metamaterials with negative refraction and provide various routes to manipulating light.  相似文献   

17.
We numerically investigate a symmetric hybrid waveguide-plasmon system composed of a periodic metallic nanowires pairs array embedded in symmetric dielectric sandwich layers for band-stop filtering in the optical frequency range. The proposed symmetric system shows an omnidirectional broadband absorption enhancement with flat band-stop transmission induced by the coupling and hybridization of photonic and plasmonic modes. The transmission stop band bandwidth ranging from 80 to 585 nm is observed. The bandwidth of the proposed system can be further manipulated by tailoring their geometrics for potential applications in plasmonic-assisted broadband optical filtering.  相似文献   

18.
The orthodontic treatment is aimed to displace and/or rotate the teeth to obtain the functionally correct occlusion and the best aesthetics and consists in applying forces and/or couples to tooth crowns. The applied loads are generated by the elastic recovery of metallic wires linked to the tooth crowns by brackets. These loads generate a stress state into the periodontal ligament and hence, in the alveolar bone, causing the bone remodeling responsible for the tooth movement. The orthodontic appliance is usually designed on the basis of the clinical experience of the orthodontist. In this work, a quantitative approach for the prediction of the tooth movement is presented that has been developed as a first step to build up a computer tool to aid the orthodontist in designing the orthodontic appliance. The model calculates the tooth movement through time with respect to a fixed Cartesian frame located in the middle of the dental arch. The user interface panel has been designed to allow the orthodontist to manage the standard geometrical references and parameters usually adopted to design the treatment. Simulations of specific cases are reported for which the parameters of the model are selected in order to reproduce forecasts of tooth movement matching data published in experimental works.  相似文献   

19.
A simple model of a membrane is used to obtain relations among five measurable quantities: the inward and outward ionic fluxes, the internal and external ionic concentrations, and the difference of electrical potential across the membrane. The Goldman equation is generalized to arbitrary geometrical shapes. Predoctoral Fellow of the National Science Foundation.  相似文献   

20.
Summary An orthorhombic structure -chitin, probably in the form of a chitin-protein complex, was identified in the matrix of the shell of Anodonta cygnea by X-ray diffraction. Aragonite crystals of pseudohexagonal symmetry were also found by a Lauegram on the nacreous layer of the shell. The orthorhombic structure of these two compounds together with the identical reticular spacing d110 corroborate, in Anodonta cygnea, the indirect chitin-aragonite relationships already suggested for molluscan shells.Observations with SEM in the inner surface of the shell showed CaCO3 crystals with irregular geometrical shapes in spring and summer and regular geometrical shapes in autumn and winter. The more elaborate aspect appearing in winter corresponds to an accurate hexagonal shape. This suggests that the observed variability may depend on the balance between calcium and hydrogen ions in the extrapallial fluid.Abbreviations OME outer mantle epithelium - SEM scanning electron microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号