首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Using peptide affinity purification, we identified an interaction between somatostatin receptors SSTR4 and SSTR1 and PDZ domains 1 and 2 of the postsynaptic proteins postsynaptic density protein of 95kDa (PSD-95) and PSD-93. The existence of the SSTR4/PSD-95 complex was verified by coimmunoprecipitation from transfected cells and solubilized brain membranes. In neurons, dendritically localized SSTR4 partially colocalizes with postsynaptic PSD-95. As functional parameters of the receptor, such as coupling to potassium channels, are not affected by the interaction with PSD-95, the association may serve to localize the receptor to postsynaptic sites.  相似文献   

3.
Inward rectifier potassium (Kir) channels play important roles in the maintenance and control of cell excitability. Both intracellular trafficking and modulation of Kir channel activity are regulated by protein-protein interactions. We adopted a proteomics approach to identify proteins associated with Kir2 channels via the channel C-terminal PDZ binding motif. Detergent-solubilized rat brain and heart extracts were subjected to affinity chromatography using a Kir2.2 C-terminal matrix to purify channel-interacting proteins. Proteins were identified with multidimensional high pressure liquid chromatography coupled with electrospray ionization tandem mass spectrometry, N-terminal microsequencing, and immunoblotting with specific antibodies. We identified eight members of the MAGUK family of proteins (SAP97, PSD-95, Chapsyn-110, SAP102, CASK, Dlg2, Dlg3, and Pals2), two isoforms of Veli (Veli-1 and Veli-3), Mint1, and actin-binding LIM protein (abLIM) as Kir2.2-associated brain proteins. From heart extract purifications, SAP97, CASK, Veli-3, and Mint1 also were found to associate with Kir2 channels. Furthermore, we demonstrate for the first time that components of the dystrophin-associated protein complex, including alpha1-, beta1-, and beta2-syntrophin, dystrophin, and dystrobrevin, interact with Kir2 channels, as demonstrated by immunoaffinity purification and affinity chromatography from skeletal and cardiac muscle and brain. Affinity pull-down experiments revealed that Kir2.1, Kir2.2, Kir2.3, and Kir4.1 all bind to scaffolding proteins but with different affinities for the dystrophin-associated protein complex and SAP97, CASK, and Veli. Immunofluorescent localization studies demonstrated that Kir2.2 co-localizes with syntrophin, dystrophin, and dystrobrevin at skeletal muscle neuromuscular junctions. These results suggest that Kir2 channels associate with protein complexes that may be important to target and traffic channels to specific subcellular locations, as well as anchor and stabilize channels in the plasma membrane.  相似文献   

4.
Pegan S  Tan J  Huang A  Slesinger PA  Riek R  Choe S 《Biochemistry》2007,46(18):5315-5322
Control of surface expression of inwardly rectifying potassium (Kir) channels is important for regulating membrane excitability. Kir2 channels have been shown to interact directly with PDZ-containing proteins in the postsynaptic density (PSD). These scaffold proteins, such as PSD95, bind to Kir2.1 channels via a PDZ-binding motif (T/S-x-Phi) in the C-terminal tail (SEI428). By utilizing a multidimensional solution NMR approach, we show that the previously unresolved structure of Kir2.1 tail (residues 372-428) is highly flexible. Using in vitro binding assays, we determined that shortening the flexible tail of Kir2.1 preceding the C-terminal region (residues 414-428) does not significantly disrupt PDZ binding. We also investigated which amino acids in the Kir2.1 tail associated with PSD95 PDZ1,2 by NMR spectroscopy, revealing that a stretch of 12 C-terminal amino acids is involved in interaction with both PDZ domains (residues 417-428). Deletion of the 11 amino acids preceding the C-terminal tail, Delta414-424, completely disrupts binding to PSD95 PDZ1,2. Therefore, the molecular interfaces formed between PDZ domains and Kir2.1 tail involve regions outside the previously identified binding motif (SEI428) and may be important for additional channel-specific interactions with associating PDZ-containing proteins.  相似文献   

5.
Tanemoto M  Fujita A  Higashi K  Kurachi Y 《Neuron》2002,34(3):387-397
Homomeric assembly of Kir5.1, an inward-rectifying K+ channel subunit, is believed to be nonfunctional, although the subunit exists abundantly in the brain. We show that HEK293T cells cotransfected with Kir5.1 and PSD-95 exhibit a Ba(2+)-sensitive inward-rectifying K+ current. Kir5.1 coexpressed with PSD-95 located on the plasma membrane in a clustered manner, while the Kir5.1 subunit expressed alone distributed mostly in cytoplasm, probably due to rapid internalization. The binding of Kir5.1 with PSD-95 was prevented by protein kinase A (PKA)-mediated phosphorylation of its carboxyl terminus. The currents flowing through Kir5.1/PSD-95 were suppressed promptly and reversibly by PKA activation. Because the Kir5.1/PSD-95 complex was detected in the brain, this functional brain K+ channel is potentially a novel physiological target of PKA-mediated signaling.  相似文献   

6.
Ma D  Taneja TK  Hagen BM  Kim BY  Ortega B  Lederer WJ  Welling PA 《Cell》2011,145(7):1102-1115
Mechanisms that are responsible for sorting newly synthesized proteins for traffic to the cell surface from the Golgi are poorly understood. Here, we show that the potassium channel Kir2.1, mutations in which are associated with Andersen-Tawil syndrome, is selected as cargo into Golgi export carriers in an unusual signal-dependent manner. Unlike conventional trafficking signals, which are typically comprised of short linear peptide sequences, Golgi exit of Kir2.1 is dictated by residues that are embedded within the confluence of two separate domains. This signal patch forms a recognition site for interaction with the AP1 adaptor complex, thereby marking Kir2.1 for incorporation into clathrin-coated vesicles at the trans-Golgi. The identification of a trafficking signal in the tertiary structure of Kir2.1 reveals a quality control step that couples protein conformation to Golgi export and provides molecular insight into how mutations in Kir2.1 arrest the channels at the Golgi.  相似文献   

7.
Traffic of integral membrane proteins along the secretory pathway is not simply a default process but can be selective. Such selectivity is achieved by sequence information within the cargo protein that recruits coat protein complexes to drive the formation of transport vesicles. A number of sequence motifs have been identified in the cytoplasmic domains of ion channels that regulate early trafficking events between the endoplasmic reticulum and the Golgi complex. Here, we demonstrate that the following trafficking step from the Golgi compartment to the plasma membrane can also be selective. The N-terminal domain of the inward rectifier potassium channel Kir2.1 contains specific sequence information that is necessary for its efficient export from the Golgi complex. Lack of this information results in accumulation of the protein within the Golgi and a significant decrease in cell surface expression. As similar results were obtained for the N terminus of another Kir channel subfamily member, Kir4.1, which could functionally substitute for the Kir2.1 N terminus, we propose a more general role of the identified N-terminal domains for post-Golgi trafficking of Kir channels.  相似文献   

8.
The amino-terminal and carboxyl-terminal domains of inwardly rectifying potassium (Kir) channel subunits are both intracellular. There is increasing evidence that both of these domains are required for the regulation of Kir channels by agents such as G-proteins and nucleotides. Kir6.2 is the pore-forming subunit of the ATP-sensitive K(+) (K(ATP)) channel. Using an in vitro protein-protein interaction assay, we demonstrate that the two intracellular domains of Kir6.2 physically interact with each other, and we map a region within the N terminus that is responsible for this interaction. "Cross-talk" through this interaction may explain how mutations in either the N or C terminus can influence the intrinsic ATP-sensitivity of Kir6.2. Interestingly, the "interaction domain" is highly conserved throughout the superfamily of Kir channels. The N-terminal interaction domain of Kir6.2 can also interact with the C terminus of both Kir6.1 and Kir2.1. Furthermore, a mutation within the conserved region of the N-terminal interaction domain, which disrupts its interaction with the C terminus, severely compromised the ability of both Kir6.2 and Kir2.1 to form functional channels, suggesting that this interaction may be a feature common to all members of the Kir family of potassium channels.  相似文献   

9.
10.
PDZ domains are modular protein units that play important roles in organizing signal transduction complexes. PDZ domains mediate interactions with both C-terminal peptide ligands and other PDZ domains. Here, we used PDZ domains from neuronal nitric oxide synthase (nNOS) and postsynaptic density protein-95 (PSD-95) to explore the mechanism for PDZ-dimer formation. The nNOS PDZ domain terminates with a approximately 30 residue amino acid beta-finger peptide that is shown to be required for nNOS/PSD-95 PDZ dimer formation. In addition, formation of the PDZ dimer requires this beta-finger peptide to be physically anchored to the main body of the canonical nNOS PDZ domain. A buried salt bridge between the beta-finger and the PDZ domain induces and stabilizes the beta-hairpin structure of the nNOS PDZ domain. In apo-nNOS, the beta-finger peptide is partially flexible and adopts a transient beta-strand like structure that is stabilized upon PDZ dimer formation. The flexibility of the NOS PDZ beta-finger is likely to play a critical role in supporting the formation of nNOS/PSD-95 complex. The experimental data also suggest that nNOS PDZ and the second PDZ domain of PSD-95 form a "head-to-tail" dimer similar to the nNOS/syntrophin complex characterized by X-ray crystallography.  相似文献   

11.
As the K(+) recycling pathway for renal Na(+) reabsorption, renal tubular K(+) channels participate in the fluid and electrolyte homeostasis. Previously, we showed that the Kir5.1/Kir4.1 heteromer, which is a heteromeric assembly of two inwardly rectifying K(+) channels, composes the principal basolateral K(+) channels in distal renal tubules and that two motifs in the carboxyl-terminal portion of the Kir4.1 subunit regulate its functional expression. In this study, by using yeast two-hybrid screening, we identified a new isoform of membrane-associated guanylate kinase with inverted domain structure 1 (MAGI-1a-long) as a scaffolding protein for the basolateral K(+) channels. MAGI-1a-long interacted with the PSD-95/Dlg/ZO-1 (PDZ)-binding motif of Kir4.1 by its fifth PDZ domain, and a high salt diet, which could suppress mineralocorticoid secretion, facilitated the interaction. The phosphorylation of serine 377 in the PDZ-binding motif disrupted the interaction, and the disruption of the interaction altered the intracellular localization of the channels from the basolateral side to perinuclear components. These results demonstrate that the phosphorylation-dependent scaffolding of the basolateral K(+) channels by MAGI-1a-long participates in the renal regulation of the fluid and electrolyte homeostasis.  相似文献   

12.
Mutations in Kir2.1 inwardly rectifying potassium channels are associated with Andersen syndrome, a disease characterized by potentially fatal cardiac arrhythmias. While several Andersen-associated mutations affect membrane expression, the cytoplasmic signals that regulate Kir2.1 trafficking are poorly understood. Here, we investigated whether the Rho-family of small GTPases regulates trafficking of Kir2.1 channels expressed in HEK-293 cells. Treatment with Clostridium difficile toxin B, an inhibitor of Rho-family GTPases, or co-expression of the dominant-negative mutant of Rac1 (Rac1(DN)) increased Kir2.1 channels approximately 2-fold. However, the dominant-negative forms of other Rho-family GTPases, RhoA or Cdc42, did not alter Kir2.1 currents, suggesting a selective effect of Rac1 on Kir2.1 channels. Single-channel properties (gamma, tau(o), tau(c)) and total protein levels of Kir2.1 were unchanged with co-expression of Rac1(DN); however, studies using TIRF microscopy and CFP-tagged Kir2.1 revealed increased channel surface expression. Immunohistochemical detection of extracellularly tagged HA-Kir2.1 channels showed that Rac1(DN) reduced channel internalization when co-expressed. Finally, the dominant-negative mutant of dynamin, which interferes with endocytosis, occluded the Rac1(DN)-induced potentiation of Kir2.1 currents. These data suggest that inhibition of Rac1 increases Kir2.1 surface expression by interfering with endocytosis, likely via a dynamin-dependent pathway. Surprisingly, Rac1(DN) did not alter Kir2.2 current density or internalization, suggesting subunit specific modulation of Kir2.1 channels. Consistent with this, construction of Kir2.1/2.2 chimeras implicated the C-terminal domain of Kir2.1 in mediating the potentiating effect of Rac1(DN). This novel pathway for regulating surface expression of cardiac Kir2.1 channels could have implications for normal and diseased cardiac states.  相似文献   

13.
Our earlier studies have shown that Kir2.x channels are suppressed by an increase in the level of cellular cholesterol, whereas cholesterol depletion enhances the activity of the channels. In this study, we show that Kir2.1 and Kir2.3 channels have double-peak distributions between cholesterol-rich (raft) and cholesterol-poor (non-raft) membrane fractions, indicating that the channels exist in two different types of lipid environment. We also show that whereas methyl--cyclodextrin-induced cholesterol depletion removes cholesterol from both raft and non-raft membrane fractions, cholesterol enrichment results in cholesterol increase exclusively in the raft fractions. Kinetics of both depletion-induced Kir2.1 enhancement and enrichment-induced Kir2.1 suppression correlate with the changes in the level of raft cholesterol. Furthermore, we show not only that cholesterol depletion shifts the distribution of the channels from cholesterol-rich to cholesterol-poor membrane fractions but also that cholesterol enrichment has the opposite effect. These observations suggest that change in the level of raft cholesterol alone is sufficient to suppress Kir2 activity and to facilitate partitioning of the channels to cholesterol-rich domains. Therefore, we suggest that partitioning to membrane rafts plays an important role in the sensitivity of Kir2 channels to cholesterol. ion channels; inward rectifiers; inwardly rectifying potassium channels  相似文献   

14.
D B Arnold  D E Clapham 《Neuron》1999,23(1):149-157
Ion channels and PSD-95 are colocalized in specific neuronal subcellular locations by an unknown mechanism. To investigate mechanisms of localization, we used biolistic techniques to express GFP-tagged PSD-95 (PSD-95:GFP) and the K(+)-selective channel Kv1.4 in slices of rat cortex. In pyramidal cells, PSD-95:GFP required a single PDZ domain and a region including the SH3 domain for localization to postsynaptic sites. When transfected alone, PSD-95:GFP was present in dendrites but absent from axons. When cotransfected with Kv1.4, PSD-95:GFP appeared in both axons and dendrites, while Kv1.4 was restricted to axons. When domains that mediate the interaction of Kv1.4 and PSD-95 were disrupted, Kv1.4 localized nonspecifically. Our results provide evidence that Kv1.4 itself may determine its subcellular location, while an associated MAGUK protein is a necessary but not sufficient cofactor.  相似文献   

15.
Composition of the synaptic PSD-95 complex   总被引:2,自引:0,他引:2  
Postsynaptic density protein 95 (PSD-95), a specialized scaffold protein with multiple protein interaction domains, forms the backbone of an extensive postsynaptic protein complex that organizes receptors and signal transduction molecules at the synaptic contact zone. Large, detergent-insoluble PSD-95-based postsynaptic complexes can be affinity-purified from conventional PSD fractions using magnetic beads coated with a PSD-95 antibody. In the present study purified PSD-95 complexes were analyzed by LC/MS/MS. A semiquantitative measure of the relative abundances of proteins in the purified PSD-95 complexes and the parent PSD fraction was estimated based on the cumulative ion current intensities of corresponding peptides. The affinity-purified preparation was largely depleted of presynaptic proteins, spectrin, intermediate filaments, and other contaminants prominent in the parent PSD fraction. We identified 525 of the proteins previously reported in parent PSD fractions, but only 288 of these were detected after affinity purification. We discuss 26 proteins that are major components in the PSD-95 complex based upon abundance ranking and affinity co-purification with PSD-95. This subset represents a minimal list of constituent proteins of the PSD-95 complex and includes, in addition to the specialized scaffolds and N-methyl-d-aspartate (NMDA) receptors, an abundance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, small G-protein regulators, cell adhesion molecules, and hypothetical proteins. The identification of two Arf regulators, BRAG1 and BRAG2b, as co-purifying components of the complex implies pivotal functions in spine plasticity such as the reorganization of the actin cytoskeleton and insertion and retrieval of proteins to and from the plasma membrane. Another co-purifying protein (Q8BZM2) with two sterile alpha motif domains may represent a novel structural core element of the PSD.  相似文献   

16.
Pegan S  Arrabit C  Slesinger PA  Choe S 《Biochemistry》2006,45(28):8599-8606
Kir2.1 channels play a key role in maintaining the correct resting potential in eukaryotic cells. Recently, specific amino acid mutations in the Kir2.1 inwardly rectifying potassium channel have been found to cause Andersen's Syndrome in humans. Here, we have characterized individual Andersen's Syndrome mutants R218Q, G300V, E303K, and delta314-315 and have found multiple effects on the ability of the cytoplasmic domains in Kir2.1 channels to form proper tetrameric assemblies. For the R218Q mutation, we identified a second site mutation (T309K) that restored tetrameric assembly but not function. We successfully crystallized and solved the structure (at 2.0 A) of the N- and C-terminal cytoplasmic domains of Kir2.1-R218Q/T309K(S). This new structure revealed multiple conformations of the G-loop and CD loop, providing an explanation for channels that assemble but do not conduct ions. Interestingly, Glu303 forms both intra- and intersubunit salt bridges, depending on the conformation of the G-loop, suggesting that the E303K mutant stabilizes both closed and open G-loop conformations. In the Kir2.1-R218Q/T309K(S) structure, we discovered that the DE loop forms a hydrophobic pocket that binds 2-methyl-2,4-pentanediol, which is located near the putative G(betagamma)-activation site of Kir3 channels. Finally, we observed a potassium ion bound to the cytoplasmic domain for this class of K+ channels.  相似文献   

17.
Gee SH  Quenneville S  Lombardo CR  Chabot J 《Biochemistry》2000,39(47):14638-14646
PDZ domains are modular protein-protein interaction domains that bind to specific C-terminal sequences of membrane proteins and/or to other PDZ domains. Certain PDZ domains in PSD-95 and syntrophins interact with C-terminal peptide ligands and heterodimerize with the extended nNOS PDZ domain. The capacity to interact with nNOS correlates with the presence of a Lys residue in the carboxylate- binding loop of these PDZ domains. Here, we report that substitution of an Arg for Lys-165 in PSD-95 PDZ2 disrupted its interaction with nNOS, but not with the C terminus of the Shaker-type K(+) channel Kv1.4. The same mutation affected nNOS binding to alpha1- and beta1-syntrophin PDZ domains to a lesser extent, due in part to the stabilizing effect of tertiary interactions with the canonical nNOS PDZ domain. PDZ domains with an Arg in the carboxylate-binding loop do not bind nNOS; however, substitution with Lys or Ala was able to confer nNOS binding. Our results indicate that the carboxylate-binding loop Lys or Arg is a critical determinant of nNOS binding and that the identity of this residue can profoundly alter one mode of PDZ recognition without affecting another. We also analyzed the effects of mutating Asp-143, a residue in the alphaB helix of alpha1-syntrophin that forms a tertiary contact with the nNOS PDZ domain. This residue is important for both nNOS and C-terminal peptide binding and confers a preference for peptides with a positively charged residue at position -4. On this basis, we have identified the C terminus of the Kir2.1 channel as a possible binding partner for syntrophin PDZ domains. Together, our results demonstrate that single-amino acid substitutions alter the specificity and affinity of PDZ domains for their ligands.  相似文献   

18.
Long chain fatty acid esters of coenzyme A (LC-CoA) are potent activators of ATP-sensitive (K(ATP)) channels, and elevated levels have been implicated in the pathophysiology of type 2 diabetes. This stimulatory effect is thought to involve a mechanism similar to phosphatidylinositol 4,5-bisphosphate (PIP2), which activates all known inwardly rectifying potassium (Kir) channels. However, the effect of LC-CoA on other Kir channels has not been well characterized. In this study, we show that in contrast to their stimulatory effect on K(ATP) channels, LC-CoA (e.g. oleoyl-CoA) potently and reversibly inhibits all other Kir channels tested (Kir1.1, Kir2.1, Kir3.4, Kir7.1). We also demonstrate that the inhibitory potency of the LC-CoA increases with the chain length of the fatty acid chain, while both its activatory and inhibitory effects critically depend on the presence of the 3'-ribose phosphate on the CoA group. Biochemical studies also demonstrate that PIP2 and LC-CoA bind with similar affinity to the C-terminal domains of Kir2.1 and Kir6.2 and that PIP2 binding can be competitively antagonized by LC-CoA, suggesting that the mechanism of LC-CoA inhibition involves displacement of PIP2. Furthermore, we demonstrate that in contrast to its stimulatory effect on K(ATP) channels, phosphatidylinositol 3,4-bisphosphate has an inhibitory effect on Kir1.1 and Kir2.1. These results demonstrate a bi-directional modulation of Kir channel activity by LC-CoA and phosphoinositides and suggest that changes in fatty acid metabolism (e.g. LC-CoA production) could have profound and widespread effects on cellular electrical activity.  相似文献   

19.
PSD-95(突触后密度蛋白-95)在突触后密度区含量丰富,具有复杂的结构域,与膜受体、离子通道、细胞粘附因子和信号分子 等相互作用聚集成大分子复合物,在突触的可塑性、学习记忆、大脑的病理生理紊乱等起重要作用。PSD-95 与脑缺血神经元损伤 和凋亡的分子机制有密切联系。脑缺血再灌注后PSD-95 在缺血侧皮层的变化表现为PSD-95 阳性细胞数的减少和细胞形态的受 损改变。抑制NMDA 受体活性的治疗策略包括破坏受体本身、钙离子通道阻滞剂、破坏PSD-95/NMDAR 相互作用、破坏 PSD-95/nNOS相互作用、nNOS抑制剂药物干预。已有研究发现在大鼠大脑中动脉栓塞模型中抑制PSD-95 复合体之间的相互作 用可以改善脑缺血。实验性的PSD-95 抑制剂减少了短时间和长时间局部脑缺血大鼠的梗死面积、并恢复相应的运动功能治疗脑 缺血。本文重点研究PSD-95 与脑缺血的关系及其调控机制。  相似文献   

20.
Voltage-dependent potassium channels regulate membrane excitability and cell-cell communication in the mammalian nervous system, and are found highly localized at distinct neuronal subcellular sites. Kv1 (mammalian Shaker family) potassium channels and the neurexin Caspr2, both of which contain COOH-terminal PDZ domain binding peptide motifs, are found colocalized at high density at juxtaparanodes flanking nodes of Ranvier of myelinated axons. The PDZ domain-containing protein PSD-95, which clusters Kv1 potassium channels in heterologous cells, has been proposed to play a major role in potassium channel clustering in mammalian neurons. Here, we show that PSD-95 colocalizes precisely with Kv1 potassium channels and Caspr2 at juxtaparanodes, and that a macromolecular complex of Kv1 channels and PSD-95 can be immunopurified from mammalian brain and spinal cord. Surprisingly, we find that the high density clustering of Kv1 channels and Caspr2 at juxtaparanodes is normal in a mutant mouse lacking juxtaparanodal PSD-95, and that the indirect interaction between Kv1 channels and Caspr2 is maintained in these mutant mice. These data suggest that the primary function of PSD-95 at juxtaparanodes lies outside of its accepted role in mediating the high density clustering of Kv1 potassium channels at these sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号