首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel label-free technique for the detection of pathogens based on evanescent wave absorbance (EWA) changes at 280 nm from a U-bent optical fiber sensor is demonstrated. Bending a decladded fiber into a U-shaped structure enhances the penetration depth of evanescent waves and hence sensitivity of the probe. We show that the enhanced EWA response from such U-bent probes, caused by the inherent optical absorbance properties of bacterial cells or biomolecules specifically bound to the sensor surface, can be exploited for the detection of pathogens. A portable optical set-up with a UV light emitting diode, a spectrometer and U-bent fiber optic probe of 200 μm core diameter, 0.75 mm bend radius and effective probe length of 1cm demonstrated an ability to detect less than 1000 cfu/ml.  相似文献   

2.
Novel metal clad leaky waveguide (MCLW) sensor devices have been developed for sensing applications. These chips are designed to confine the light in a low refractive index waveguide that encompasses the chemically-selective layer, maximising the overlap between the optical mode and the chemistry, thus improving the sensitivity. In this work, a thin metal layer was inserted between the substrate and the thick waveguide layer, increasing the reflectivity of the waveguide/metal interface and decreasing the light lost at each of reflection in the leaky mode, which in turn increases the propagation distance. The device has been used for a range of biosensing applications, including the detection of organophosphoros pesticides. The limit of detection for paraoxon, based on absorbance detection, was calculated to be 6 nM. Refractive index detection was demonstrated by monitoring the change in the out-coupled angle resulting from the binding of protein A to anti-protein A immobilized on agarose. The sensor was also used for detecting the quenching of the fluorescence of an acid-base sensitive ruthenium complex immobilized within the sol-gel and with glucose oxidase enzyme. The limit of detection for glucose was 3 microM. The advantage of using the metal layer in the MCLW was that an electrical potential could be applied to accelerate the diffusion of the analyte to the immobilised antibody, which resulted in a shortened analysis time and a reduction in non-specific binding.  相似文献   

3.
We propose a surface plasmon resonance (SPR)-based fiber coupled refractive index sensing probe utilizing single-wall carbon nanotubes (SWCNTs) as the upper most layer. The sensor is designed by considering indium tin oxide (ITO) film on the bare core of a multi-moded step-index fiber, followed by the deposition of silicon, and then by that of the highly doped bundled SWCNTs layers. The film thicknesses of different constituent layers are optimized with respect to the sensitivity and the detection accuracy of the sensor. The theoretical analysis results in high sensitivity of 9.78 μm per refractive index unit (μm/RIU) for the optimized probe in the infra-red (IR) region of the electromagnetic (EM) spectrum.  相似文献   

4.
In the present study, we report the first polyindole-modified metal (Au) as a glucose sensor utilizing surface plasmon resonance (SPR) technique. Polyindole (PIn) was deposited by spin coating to modify the surface of the gold disk. Sensor surface was prepared by immobilizing glucose oxidase on the polyindole-modified gold disk. Different concentrations of glucose were taken to analyze the sensor response. A change in refractive index of the film was observed due to the chemical reactions of glucose with glucose oxidase. The response of the sensor is fast and highly sensitive to low concentrations of glucose and the sensitivity increases in the range of 0.075–0.5 μM. The use of Au/polyindole (PIn/Au) substrates for SPR-based study of bio-molecular sensing has been demonstrated.  相似文献   

5.
In this paper, a surface plasmon resonance (SPR) based fiber optic ammonia gas sensor has been designed and fabricated using bromocresol purple (BCP) as sensing element. The sensor works under wavelength modulation scheme. The detection of ammonia gas has been carried out at room temperature. Three different kinds of film coating configurations, namely silver + BCP, gold + BCP, and silver + silicon + BCP on the unclad portion of the fiber have been used for studying the role of each layer. Further, to optimize the performance of the sensor, the films of varying thicknesses were coated using thermal evaporation technique. Experiments have been performed for the ammonia concentrations ranging from 0 to 150 ppm around the probe. To record the SPR spectrum, light from a polychromatic source is launched in the fiber and the spectrum is recorded at the other end of the fiber. The spectrum has a peak at lower wavelength while a dip at the higher wavelength. The dip corresponds to SPR while the peak appears to be due to fluorescence properties of the dye. It has been observed that as the ammonia gas comes in contact of the BCP layer, it changes the refractive index of the BCP dye which, in turn, changes the resonance wavelength. Further, the change in refractive index increases as the concentration of ammonia gas increases up to certain concentration of ammonia after that it saturates. Silicon layer has been shown as a protection layer for silver and gold from oxidation and acts as a tuner of wavelength. The proposed ammonia sensor has small response as well as recovery time.  相似文献   

6.

We theoretically propose a surface plasmon resonance (SPR)-based fiber optic refractive index (RI) sensor. A surface plasmon exciting metallic grating formed with the alternation of indium tin oxide (ITO) and silver (Ag) stripes is considered on the core of the fiber. A thin film of silicon is used as an overlay. Silicon film not only protects the metallic grating from oxidation but also enhances the field to improve the device sensitivity. The sensor is characterized in terms of sensitivity, detection accuracy (DA), figure of merit (FoM), and quality factor (QF). The maximum sensitivity in the RI range 1.33 to 1.38 refractive index unit (RIU) is reported to be?~25 µm/RIU in infra-red region of investigation.

  相似文献   

7.
In this paper, we report a novel wavelength interrogation-based surface plasmon resonance (SPR) system, in which a film of three Ag layers and three Au layers are alternately deposited on a Kretschmann configuration as sensing element. This multilayer film shows higher sensitivity for refractive index (RI) measurement by comparing with single Au layer structure, which is consistent with its theoretical calculation. A sensitivity range of 2056–5893 nm/RIU can be achieved, which is comparable to RI sensitivities of other wavelength-modulated SPR sensors. Compared with Ag film, this Ag/Au multilayer arrangement offers anti-oxidant protection. This SPR biosensor based on a cost-effective Ag/Au multilayer structure is applicable to the real-time detection of specific interactions and dissociation of low protein concentrations. To extend the application of this highly-sensitive metal film device, we integrated this concept on an optical fiber. The range of RI sensitivities with Ag/Au multilayer was 1847–3309 nm/RIU. This miniaturized Ag/Au multilayer-based fiber optic sensor has a broad application in chemical and biological sensing.  相似文献   

8.
The localized surface plasmon resonance (LSPR) spectrum of noble metal nanoparticles is studied by quasi-static approximation. Taking the sensitivity of LSPR shape to the size and shape of nanoparticle along with surrounding refractive index, parameters like refractive index sensitivity and sensing figure of merit have been determined. In the present analysis from the sensing relevant parameters, it is concluded that Ag represents a better sensing behavior than Au and Cu over the entire visible to infrared regime of EM spectrum.  相似文献   

9.
A surface plasmon resonance (SPR) sensor based on D-shaped photonic crystal fiber (PCF) coated with indium tin oxide (ITO) film is proposed and numerically investigated. Thanks to the adjustable complex refractive index of ITO, the sensor can be operated in the near-infrared (NIR) region. The wavelength sensitivity, amplitude sensitivity, and phase sensitivity are investigated with different fiber structure parameters. Simulation results show that ~6000 nm/refractive index unit (RIU), ~148/RIU, and ~1.2?×?106 deg/RIU/cm sensitivity can be achieved for wavelength interrogation, amplitude interrogation, and phase interrogation, respectively, when the environment refractive index varies between 1.30 and 1.31. It is noted that the wavelength sensitivity and phase sensitivity are more pronounced with larger refractive index. The proposed SPR sensor can be used in various applications, including medicine, environment, and large-scale targets detection.  相似文献   

10.
In this article, a D-shaped photonic crystal fiber based surface plasmon resonance sensor is proposed for refractive index sensing. Surface plasmon resonance effect between surface plasmon polariton modes and fiber core modes of the designed D-shaped photonic crystal fiber is used to measure the refractive index of the analyte. By using finite element method, the sensing properties of the proposed sensor are investigated, and a very high average sensitivity of 7700 nm/RIU with the resolution of 1.30 × 10?5 RIU is obtained for the analyte of different refractive indices varies from 1.43 to 1.46. In the proposed sensor, the analyte and coating of gold are placed on the plane surface of the photonic crystal fiber, hence there is no necessity of the filling of voids, thus it is gentle to apply and easy to use.  相似文献   

11.
The refractive index (RI) sensitivity of a localized surface plasmon resonance (LSPR)-based fiber-optic probes is dependent on surface coverage of gold nanoparticles (GNP), fiber core diameter, and probe geometry. For U-bent LSPR fiber-optic probes, which demonstrated an order higher absorption sensitivity over straight probes, bend diameter and probe length may also have a significant influence on the sensitivity. This study on U-bent fiber-optic LSPR probes is aimed at optimizing these parameters to obtain highest possible RI sensitivity. RI sensitivity increases linearly as a function of surface coverage of GNP in the range of 2–22 %. U-bent fiber-optic probes made of 200-, 400-, and 600-μm fiber core diameter show optimum bend diameter value as ~1.4 mm. In addition, RI sensitivity is almost the same irrespective of fiber core diameter demonstrating flexibility in choice of the fiber and ease in optical coupling. The length of the probe preceding and succeeding the bend region has significantly less influence on RI sensitivity allowing miniaturization of these probes. In addition to these experimental studies, we present a theoretical analysis to understand the relative contribution of evanescent wave absorbance of GNP and refractive losses in the fiber due to GNP, towards the RI sensitivity.  相似文献   

12.

Facile synthesis of L-tyrosine-capped silver nanoparticles (Tyr-AgNPs) was carried out, and its linear and nonlinear optical properties were investigated. Further, the sensing properties of Tyr-AgNPs toward dopamine were explored. Tyr-AgNPs exhibit a decrease in fluorescence intensity while a linear increase in absorption spectrum against increase in dopamine (DA) concentration (0–50 μM) at room temperature. Tyr-AgNPs are used as the sensing material for the fabrication of fiber optic dopamine sensor. Sensitivity, selectivity, and limit of detection of the sensor are evaluated. This proposed fiber optic sensor may offer sensitive and low-cost strategy for DA detection.

  相似文献   

13.
Gu  Sanfeng  Sun  Wei  Li  Meng  Zhang  Tianheng  Deng  Ming 《Plasmonics (Norwell, Mass.)》2022,17(3):1129-1137

A dual-core and dual D-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor with silver and aluminum nitride (AlN) films is designed. The distribution characteristics of the electromagnetic fields of core and plasmon modes, as well as the sensing properties, are numerically studied by finite element method (FEM). The structure parameters of the designed sensor are optimized by the optical loss spectrum. The results show the resonance wavelength variation of 489 nm for the refractive index (RI) range of 1.36?~?1.42. In addition, a maximum wavelength sensitivity of 13,400 nm/RIU with the corresponding RI resolution of 7.46?×?10?6 RIU is obtained in the RI range of 1.41?~?1.42. The proposed sensor with the merits of high sensitivity, low cost, and simple structure has a wide application in the fields of RI sensing, such as hazardous gas detection, environmental monitoring, and biochemical analysis.

  相似文献   

14.
A photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) probe with gold nanowires as the plasmonic material is proposed in this work. The coupling characteristics and sensing properties of the probe are numerically investigated by the finite element method. The probe is designed to detect low refractive indices between 1.27 and 1.36. The maximum spectral sensitivity and amplitude sensitivity are 6 × 103 nm/RIU and 600 RIU?1, respectively, corresponding to a resolution of 2.8 × 10?5 RIU for the overall refractive index range. Our analysis shows that the PCF-SPR probe can be used for lower refractive index detection.  相似文献   

15.
We propose a highly sensitive novel diamond ring fiber (DRF)-based surface plasmon resonance (SPR) sensor for refractive index sensing. Chemically active plasmonic material (gold) layer is coated inside the large cavity of DRF, and the analyte is infiltrated directly through the fiber instead of selective infiltration. The light guiding properties and sensing performances are numerically investigated using the finite element method (FEM). The proposed sensor shows a maximum wavelength and amplitude interrogation sensitivity of 6000 nm/RIU and 508 RIU?1, respectively, over the refractive index range of 1.33–1.39. Additionally, it also shows a sensor resolution of 1.67 × 10?5 and 1.97 × 10?5 RIU by following the wavelength and amplitude interrogation methods, respectively. The proposed diamond ring fiber has been fabricated following the standard stack-and-draw method to show the feasibility of the proposed sensor. Due to fabrication feasibility and promising results, the proposed DRF SPR sensor can be an effective tool in biochemical and biological analyte detection.  相似文献   

16.
A surface plasmon resonance sensor based on a U-shaped photonic crystal fiber with a rectangular lattice has been designed through finite element method. The U-shaped fiber exhibits not only stronger mechanical strength but also better sensor performance than our previous scheme. The upper detection limit extends to higher analyze refractive index, 1.384, for phase interrogation. We introduce a ratio to evaluate the impact of higher order plasmonic mode. For wavelength modulation scheme, the parameter to describe the performance of a sensor is chosen to be the figure of merit, which can be up to 533.8[RIU?1] around complete coupling condition.  相似文献   

17.
The localized surface plasmon resonance dependence on surrounding medium refractive index of Ag, Al, Au, and Cu nanoparticles is examined by electrodynamic approach. The refractive index sensitivity and sensing figure of merit (FOM) dependence of selected metal nanoparticles with similar geometry shows that although, sensing relevant parameters are shape (i.e., aspect ratio), and material dependent below the width 20 nm, but above this size these parameters are material independent under similar geometrical conditions. We have concluded that at optimum size, however, Al shows much higher refractive index sensitivity (RIS) in comparison to Au, Cu, and Ag, but FOM is higher for Ag in comparison to other metals. The observed sensing behavior is expected due to parameters like surface scattering, dynamic depolarization, radiation damping, and interband transitions, which may influence the nanorod plasmons.  相似文献   

18.
Owing to its large surface-to-volume ratio and good biocompatibility, graphene has been identified as a highly promising candidate as the sensing layer for fiber optic sensors. In this paper, a graphene/Au-enhanced plastic clad silica (PCS) fiber optic surface plasmon resonance (SPR) sensor is presented. A sheet of graphene is employed as a sensing layer coated around the Au film on the PCS fiber surface. The PCS fiber is chosen to overcome the shortcomings of the structured microfibers and construct a more stable and reliable device. It is demonstrated that the introduction of graphene can enhance the intensity of the confined electric field surrounding the sensing layer, which results in a stronger light-matter interaction and thereby the improved sensitivity. The sensitivity of graphene-based fiber optic SPR sensor exhibits more than two times larger than that of the conventional gold film SPR fiber optic sensor. Furthermore, the dynamic response analyses reveal that the graphene/Au fiber optic SPR sensor exhibits a fast response (5 s response time) and excellent reusability (3.5% fluctuation) to the protein biomolecules. Such a graphene/Au fiber optic SPR sensor with high sensitivity and fast response shows a great promise for the future biochemical application.  相似文献   

19.
We investigate the optical spectrum of a multilayer metallic slab using multiple-scattering formalism. A thin silver film is attached to a periodic array of heterodimers consisting of two vertically spaced silver nanoparticles of different radii. Depending on the radius of nanoparticles, heterodimer array presents a simple nanoscale geometry which gives rise to remarkable plasmonic properties of multipolar resonances. Due to the coherent interference of the localized nanoparticle plasmons (discrete mode) and surface plasmon polaritons of metallic film (continuous mode), the reflection spectrum represents a sharp asymmetric Fano resonance dip, which is strongly sensitive to the refractive index of the surrounding embedded dielectric host. The physical features contribute to a highly efficient plasmonic sensor for refractive index sensing with sensitivity of ~1.5?×?10?3 RIU/nm.  相似文献   

20.
A fiber optic surface plasmon resonance (SPR) biosensor for detection of Staphylococcal enterotoxin B (SEB) is reported. The sensor is based on spectral interrogation of surface plasmons in a miniature sensing element based on a side-polished single-mode optical fiber with a thin metal overlayer. For specific detection of SEB, the SPR sensor is functionalized with a covalently crosslinked double-layer of antibodies against SEB. The SPR biosensor is demonstrated to be able to detect ng/ml concentrations of SEB in less than 10 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号