共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability of cubane-type [Fe4S4(SR)4]2− clusters in mixed organic/aqueous solvents was examined as an initial step in the development of stable water-soluble cluster compounds possibly suitable for reconstitution of scaffold proteins in protein biosynthesis. The research involves primarily spectrophotometric assessment of stability in 20-80% Me2SO/aqueous media (v/v), from which it was found that conventional clusters tend to be stable for up to 12 h in 60% Me2SO but are much less stable at higher aqueous content. α-Cyclodextrin mono- and dithioesters and thiols were prepared as ligand precursors for cluster binding, which was demonstrated by spectroscopic methods. A potentially bidentate cyclodextrin dithiolate was found to be relatively effective for cluster stabilization in 40% Me2SO, suggesting (together with earlier results) that other exceptionally large thiolate ligands may promote cluster stability in aqueous media. 相似文献
2.
Paola Berto Marilena Di Valentin Laura Cendron Francesca Vallese Marco Albertini Enrico Salvadori Giorgio M. Giacometti Donatella Carbonera Paola Costantini 《BBA》2012,1817(12):2149-2157
[FeFe] hydrogenases are key enzymes for bio(photo)production of molecular hydrogen, and several efforts are underway to understand how their complex active site is assembled. This site contains a [4Fe–4S]-2Fe cluster and three conserved maturation proteins are required for its biosynthesis. Among them, HydF has a double task of scaffold, in which the dinuclear iron precursor is chemically modified by the two other maturases, and carrier to transfer this unit to a hydrogenase containing a preformed [4Fe–4S]-cluster. This dual role is associated with the capability of HydF to bind and dissociate an iron–sulfur center, due to the presence of the conserved FeS-cluster binding sequence CxHx46–53HCxxC. The recently solved three-dimensional structure of HydF from Thermotoga neapolitana described the domain containing the three cysteines which are supposed to bind the FeS cluster, and identified the position of two conserved histidines which could provide the fourth iron ligand. The functional role of two of these cysteines in the activation of [FeFe]-hydrogenases has been confirmed by site-specific mutagenesis. On the other hand, the contribution of the three cysteines to the FeS cluster coordination sphere is still to be demonstrated. Furthermore, the potential role of the two histidines in [FeFe]-hydrogenase maturation has never been addressed, and their involvement as fourth ligand for the cluster coordination is controversial. In this work we combined site-specific mutagenesis with EPR (electron paramagnetic resonance) and HYSCORE (hyperfine sublevel correlation spectroscopy) to assign a role to these conserved residues, in both cluster coordination and hydrogenase maturation/activation, in HydF proteins from different microorganisms. 相似文献
3.
V. M. Bairamov A. V. Mal’tsev Yu. G. Kaminskii V. S. Fediukin N. G. Brindar 《Russian Journal of Bioorganic Chemistry》2006,32(3):219-223
The mechanism of amyloid peptide formation in normally functioning neuron and upon the development of amyloidosis resulting in neuronal death is described. Amyloid peptides are formed by enzymatic processing of a large protein precursor and participate in intermolecular interactions after conformational rearrangements resulting in the formation of pathogenic structures. They enter into the cascade of molecular and cellular events leading to amyloidosis and death of neuronal cells. These molecular events clarify the relation between the conformation and function of neuropathogenic peptides and the role of this relation in the development of pathology of differentiated neurons. 相似文献
4.
The β subunit of human choriogonadotropin (hCGβ) and its asialoderivative were digested with trypsin and then reduced and S-carboxymethylated. A series of peptides were purified which corresponded to residues 1–43, 44–95, 96–114, and 123–145 of the 145 amino acid residue glycoprotein. The two N-linked oligosaccharides were present on the amino terminal peptide, and three of the four O-linked oligosaccharides were present on the carboxy terminal peptide. Circular dichroic spectra between 190–240 nm were obtained on reduced, S-carboxymethylated (RCM) hCGβ and the above peptides, both in aqueous solution and in the helicogenic solvent 80% (vol/vol) trifluoroethanol (TFE). In aqueous solution there was evidence of only limited helicity in the peptides and RCM-hCGβ however, in the presence of TFE, peptides 1–43 and 44–95 exhibited significant helicity, as did the full-length linear chain. The helicity developed in TFE by RCM-hCGβ appears much greater than that which occurs in the native, disulfide-intact form, thus suggesting that the disulfides prevent expression of helicity in regions with α-helix potential. Application of the Chou-Fasman secondary structure predictive algorithm to hCGβ suggested that several regions of helix potential, in particular regions 14–21, 59–69, and perhaps 80–88, may account for much of the helicity observed in peptides 1–43 and 44–95, respectively, in TFE. The region from 96–145 has no significant potential for helicity, consistent with the measured circular dichroic spectra of peptides 96–114 and 123–145. These results demonstrate that helicity can occur in the linear form of hCGβ, and this secondary structure can best be attributed to the amino terminal and the middle portion of the molecule. Several potential regions of β-structure and β-turns were also suggested. 相似文献
5.
Insiya Fidai Christine Wachnowsky J. A. Cowan 《Journal of biological inorganic chemistry》2016,21(7):887-901
Glutathione-coordinated [2Fe-2S] complex is a non-protein-bound [2Fe-2S] cluster that is capable of reconstituting the human iron-sulfur cluster scaffold protein IscU. This complex demonstrates physiologically relevant solution chemistry and is a viable substrate for iron-sulfur cluster transport by Atm1p exporter protein. Herein, we report on some of the possible functional and physiological roles for this novel [2Fe-2S](GS4) complex in iron-sulfur cluster biosynthesis and quantitatively characterize its role in the broader network of Fe–S cluster transfer reactions. UV–vis and circular dichroism spectroscopy have been used in kinetic studies to determine second-order rate constants for [2Fe-2S] cluster transfer from [2Fe-2S](GS4) complex to acceptor proteins, such as human IscU, Schizosaccharomyces pombe Isa1, human and yeast glutaredoxins (human Grx2 and Saccharomyces cerevisiae Grx3), and human ferredoxins. Second-order rate constants for cluster extraction from these holo proteins were also determined by varying the concentration of glutathione, and a likely common mechanism for cluster uptake was determined by kinetic analysis. The results indicate that the [2Fe-2S](GS4) complex is stable under physiological conditions, and demonstrates reversible cluster exchange with a wide range of Fe–S cluster proteins, thereby supporting a possible physiological role for such centers. 相似文献
6.
7.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2019,1866(11):118458
The discoidin domain receptors, DDR1 and DDR2, are a subfamily of receptor tyrosine kinases that are activated upon binding to collagen. DDR–collagen interactions play an important role in cell proliferation and migration. Over the past few decades, synthetic peptides and recombinant collagen have been developed as tools to study the biophysical characteristics of collagen and various protein–collagen interactions. Herein we review how these techniques have been used to understand DDR–collagen interactions. Using synthetic collagen-like peptides, the GVM-GFO motif has been found to be the major binding site on collagens II and III for DDR1 and DDR2. An X-ray co-crystal structure of the DDR2 DS domain bound to a synthetic collagen-like peptide containing the GVM-GFO motif further provides molecular details of the DDR–collagen interactions. Recombinant collagen has also been used to provide further validation of the GVM-GFO binding motif. Although GVM-GFO has been defined as the minimal binding site, in synthetic peptide studies at least two triplets N-terminal to the essential GVM-GFO binding motif in collagen III sequence are needed for DDR2 activation at high peptide concentrations. 相似文献
8.
Rinaldo-Matthis A Ahmad S Wetterholm A Lachmann P Morgenstern R Haeggström JZ 《Biochemistry》2012,51(4):848-856
Human leukotriene C? synthase (hLTC4S) is an integral membrane protein that catalyzes the committed step in the biosynthesis of cysteinyl-leukotrienes, i.e., formation of leukotriene C? (LTC?). This molecule, together with its metabolites LTD? and LTE?, induces inflammatory responses, particularly in asthma, and thus, the enzyme is an attractive drug target. During the catalytic cycle, glutathione (GSH) is activated by hLTC4S that forms a nucleophilic thiolate anion that will attack LTA?, presumably according to an S(N)2 reaction to form LTC?. We observed that GSH thiolate anion formation is rapid and occurs at all three monomers of the homotrimer and is concomitant with stoichiometric release of protons to the medium. The pK(a) (5.9) for enzyme-bound GSH thiol and the rate of thiolate formation were determined (k(obs) = 200 s?1). Taking advantage of a strong competitive inhibitor, glutathionesulfonic acid, shown here by crystallography to bind in the same location as GSH, we determined the overall dissociation constant (K(d((GS) = 14.3 μM). The release of the thiolate was assessed using a GSH release experiment (1.3 s?1). Taken together, these data establish that thiolate anion formation in hLTC4S is not the rate-limiting step for the overall reaction of LTC? production (k(cat) = 26 s?1), and compared to the related microsomal glutathione transferase 1, which displays very slow GSH thiolate anion formation and one-third of the sites reactivity, hLTC4S has evolved a different catalytic mechanism. 相似文献
9.
The stability of the S(3) and S(2) states of the oxygen evolving complex in photosystem II (PSII) was directly probed by EPR spectroscopy in PSII membrane preparations from spinach in the presence of the exogenous electron acceptor PpBQ at 1, 10, and 20 °C. The decay of the S(3) state was followed in samples exposed to two flashes by measuring the split S(3) EPR signal induced by near-infrared illumination at 5 K. The decay of the S(2) state was followed in samples exposed to one flash by measuring the S(2) state multiline EPR signal. During the decay of the S(3) state, the S(2) state multiline EPR signal first increased and then decreased in amplitude. This shows that the decay of the S(3) state to the S(1) state occurs via the S(2) state. The decay of the S(3) state was biexponential with a fast kinetic phase with a few seconds decay half-time. This occurred in 10-20% of the PSII centers. The slow kinetic phase ranged from a decay half-time of 700 s (at 1 °C) to ~100 s (at 20 °C) in the remaining 80-90% of the centers. The decay of the S(2) state was also biphasic and showed quite similar kinetics to the decay of the S(3) state. Our experiments show that the auxiliary electron donor Y(D) was oxidized during the entire experiment. Thus, the reduced form of Y(D) does not participate to the fast decay of the S(2) and S(3) states we describe here. Instead, we suggest that the decay of the S(3) and S(2) states reflects electron transfer from the acceptor side of PSII to the donor side of PSII starting in the corresponding S state. It is proposed that this exists in equilibrium with Y(Z) according to S(3)Y(Z) ? S(2)Y(Z)(?) in the case of the S(3) state decay and S(2)Y(Z) ? S(1)Y(Z)(?) in the case of the S(2) state decay. Two kinetic models are discussed, both developed with the assumption that the slow decay of the S(3) and S(2) states occurs in PSII centers where Y(Z) is also a fast donor to P(680)(+) working in the nanosecond time regime and that the fast decay of the S(3) and S(2) states occurs in centers where Y(Z) reduces P(680)(+) with slower microsecond kinetics. Our measurements also demonstrate that the split S(3) EPR signal can be used as a direct probe to the S(3) state and that it can provide important information about the redox properties of the S(3) state. 相似文献
10.
An electrochemical immunosensing method was developed based on a magnetic nanocomposite. The multiwalled carbon nanotubes (MWCNTs) were treated with nitric acid to produce carboxyl groups at the open ends. Then, Fe3O4 nanoparticles were deposited on COOH–MWCNTs by chemical coprecipitation of Fe2+ and Fe3+ salts in an alkaline solution. Goat anti-human IgG (anti-hIgG) was covalently attached to magnetic nanocomposite through amide bond formation between the carboxylic groups of MWCNTs and the amine groups of anti-hIgG. The prepared bio-nanocomposite was used for electrochemical sensing of human tetanus IgG (hIgG) as a model antigen. The anti-hIgG magnetic nanocomposite was fixed on the surface of a gold plate electrode using a permanent magnet. The hIgG was detected using horseradish peroxidase (HRP)-conjugated anti-hIgG in a sandwich model. Electrochemical detection of hIgG was carried out in the presence of H2O2 and KI as substrates of HRP. Using this method, hIgG was detected in a concentration range from 30 to 1000 ng ml?1 with a correlation coefficient of 0.998 and a detection limit of 25 ng ml?1 (signal/noise = 3). The designed immunosensor was stable for 1 month. 相似文献
11.
12.
Germaine Sainz Jean Jakoncic Larry C. Sieker Vivian Stojanoff Nukri Sanishvili Marcel Asso Patrick Bertrand Jean Armengaud Yves Jouanneau 《Journal of biological inorganic chemistry》2006,11(2):235-246
FdVI from Rhodobacter capsulatus is structurally related to a group of [2Fe–2S] ferredoxins involved in iron–sulfur cluster biosynthesis. Comparative genomics suggested that FdVI and orthologs found in α-Proteobacteria are involved in this process. Here, the crystal structure of FdVI has been determined for both the oxidized and the reduced protein. The [2Fe–2S] cluster lies 6 Å below the protein surface in a hydrophobic pocket without access to the solvent. This particular cluster environment might explain why the FdVI midpoint redox potential (?306 mV at pH 8.0) did not show temperature or ionic strength dependence. Besides the four cysteines that bind the cluster, FdVI features an extra cysteine which is located close to the S1 atom of the cluster and is oriented in a position such that its thiol group points towards the solvent. Upon reduction, the general fold of the polypeptide chain was almost unchanged. The [2Fe–2S] cluster underwent a conformational change from a planar to a distorted lozenge. In the vicinity of the cluster, the side chain of Met24 was rotated by 180°, bringing its S atom within hydrogen-bonding distance of the S2 atom of the cluster. The reduced molecule also featured a higher content of bound water molecules, and more extensive hydrogen-bonding networks compared with the oxidized molecule. The unique conformational changes observed in FdVI upon reduction are discussed in the light of structural studies performed on related ferredoxins. 相似文献
13.
Michael G. G. Fuchs Franc Meyer Ulf Ryde 《Journal of biological inorganic chemistry》2010,15(2):203-212
Biotin synthase was the first example of what is now regarded as a distinctive enzyme class within the radical S-adenosylmethionine superfamily, the members of which use Fe/S clusters as the sulphur source in radical sulphur insertion reactions. The crystal structure showed that this enzyme contains a [2Fe–2S] cluster with a highly unusual arginine ligand, besides three normal cysteine ligands. However, the crystal structure is at such a low resolution that neither the exact coordination mode nor the role of this exceptional ligand has been elucidated yet, although it has been shown that it is not essential for enzyme activity. We have used quantum refinement of the crystal structure and combined quantum mechanical and molecular mechanical calculations to explore possible coordination modes and their influences on cluster properties. The investigations show that the protonation state of the arginine ligand has little influence on cluster geometry, so even a positively charged guanidinium moiety would be in close proximity to the iron atom. Nevertheless, the crystallised enzyme most probably contains a deprotonated (neutral) arginine coordinating via the NH group. Furthermore, the Fe···Fe distance seems to be independent of the coordination mode and is in perfect agreement with distances in other structurally characterised [2Fe–2S] clusters. The exceptionally large Fe···Fe distance found in the crystal structure could not be reproduced. 相似文献
14.
As a promising biomaterial with numerous potential applications, various types of synthetic spider silk fibers have been produced and studied in an effort to produce man-made fibers with mechanical and physical properties comparable to those of native spider silk. In this study, two recombinant proteins based on Nephila clavipes Major ampullate Spidroin 1 (MaSp1) consensus repeat sequence were expressed and spun into fibers. Mechanical test results showed that fiber spun from the higher molecular weight protein had better overall mechanical properties (70 KD versus 46 KD), whereas postspin stretch treatment in water helped increase fiber tensile strength significantly. Carbon-13 solid-state NMR studies of those fibers further revealed that the postspin stretch in water promoted protein molecule rearrangement and the formation of β-sheets in the polyalanine region of the silk. The rearrangement correlated with improved fiber mechanical properties and indicated that postspin stretch is key to helping the spider silk proteins in the fiber form correct secondary structures, leading to better quality fibers. 相似文献
15.
16.
《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1995,667(1):49-56
An assay system using reversed-phase high-performance liquid chromatographic (HPLC) resolution of synthetic anti-opioid peptides (AOPs) and opioid peptides (OPs) was developed. Samples were diluted with trifluoroacetic acid, loaded onto Sep-Pak C18 cartridges, eluted, dried, and redissolved in ethanol-acetic acid-water. Retention-time consistency was established, and high levels of synthetic AOP and OP recovery, generally higher than 80%, were achieved. In a single HPLC run synthetic enkephalins, dynorphins, and β-endorphins were separated even when extracted from human plasma using a volatile mobile phase which yielded fractions totally compatible with quantitation by radioimmunoassay. Combining the resolution of HPLC with the sensitivity of radioimmunoassay (RIA) may facilitate simultaneous measurement of numerous neuropeptides in body fluids such as plasma and cerebrospinal fluid. 相似文献
17.
Jean-Claude Talbot Eric Thiaudière Michel Vincent Jacques Gallay Odile Siffert Jean Dufourcq 《European biophysics journal : EBJ》2001,30(2):147-161
The environment of both the hydrophilic and hydrophobic sides of alpha-helical delta-toxin are probed by tryptophanyl (Trp) fluorescence, when self-association occurs in solution and on binding to membranes. The fluorescence parameters of staphylococcal delta-toxin (Trp15 on the polar side of the amphipathic helix) and synthetic analogues with single Trp at position 5 or 16 (on the apolar side) were studied. The time-resolved fluorescence decays of the peptides in solution show that the local environment of their single Trp is always heterogeneous. Although the self-association degree increases with concentration, as shown by fluorescence anisotropy decays, the lifetimes (and their statistical weight) of Trp16 do not change, contrary to what is observed for Trp15. The first step of self-association is then driven by hydrophobic interactions between apolar sides of alpha-helices, whilst further oligomerization involves their polar side (Trp15) via electrostatic interactions. This is supported by dissociation induced by salt. For all self-associated peptides, the polarity of the Trp microenvironment was not significantly modified upon binding to phospholipid vesicles, as indicated by the small shifts of the fluorescence emission spectra and lifetime values. However, the relative populations of the lifetime classes vary with bound-peptide density similar to the rates of their global motions in bilayers or smaller particles. Quenching experiments by water or lipid-soluble compounds show changes of the orientation of membrane-inserted peptides, from probably dimers lying flat at the interface at low peptide density, to oligomers spanning the membrane and inducing membrane fragmentation at high peptide density. 相似文献
18.
Photosynthetic pathway characteristics were studied in nine species of Heliotropium (sensu lato, including Euploca), using assessments of leaf anatomy and ultrastructure, activities of PEP carboxylase and C4 acid decarboxylases, and immunolocalization of ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) and the P‐subunit of glycine decarboxylase (GDC). Heliotropium europaeum, Heliotropium calcicola and Heliotropium tenellum are C3 plants, while Heliotropium texanum and Heliotropium polyphyllum are C4 species. Heliotropium procumbens and Heliotropium karwinskyi are functionally C3, but exhibit ‘proto‐Kranz’ anatomy where bundle sheath (BS) cells are enlarged and mitochondria primarily occur along the centripetal (inner) wall of the BS cells; GDC is present throughout the leaf. Heliotropium convolvulaceum and Heliotropium greggii are C3–C4 intermediates, with Kranz‐like enlargement of the BS cells, localization of mitochondria along the inner BS wall and a loss of GDC in the mesophyll (M) tissue. These C3–C4 species of Heliotropium probably shuttle photorespiratory glycine from the M to the BS tissue for decarboxylation. Heliotropium represents an important new model for studying C4 evolution. Where existing models such as Flaveria emphasize diversification of C3–C4 intermediates, Heliotropium has numerous C3 species expressing proto‐Kranz traits that could represent a critical initial phase in the evolutionary origin of C4 photosynthesis. 相似文献
19.
Axioms and axes in leaf formation? 总被引:1,自引:0,他引:1
Hudson A 《Current opinion in plant biology》1999,2(1):56-60
Formation of leaves and floral organs involves down-regulation of meristem-specific homeobox genes, and de novo expression of genes for organ identity, growth and patterning. Genes required for all these aspects of organ formation have been identified. The challenge now is to establish how they interact to direct organogenesis. 相似文献
20.
Amino acids have been investigated in seeds and fresh parts of members of the Fagaceae. Seeds from the genus Fagus contain willardiine, 5-hydroxy-6-methylpipecolic acids, N-[N-(3-amino-3-carboxypropyl)-3-amino-3-carboxypropyl]azetidine-2-carboxylic acid and γ-glutamyl peptides, mainly γ-glutamylphenylalanine. These compounds are nearly or totally absent from leaves of F. silvatica and from seedlings and immature seeds of F. silvatica var. purpurea; instead, the seedlings contain large amounts of γ-l-glutamyl-l-isoleucine and γ-l-glutamyl-l-leucine. γ-l-Glutamyl-l-tryptophan and γ-l-glutamyl-γ-l-glutamyl-l-phenylalanine, not previously known from nature, have been isolated from seeds of F. silvatica var. purpurea. The structures have been confirmed by syntheses. 4-Hydroxypipecolic acid (with trans-configuration) has been identified in seeds of F. japonica Maxim. and F. sieboldii Endl. None of the above compounds was found in Quercus or Castanea species whereas argininosuccinic acid was identified in Castanea sativa. 相似文献