首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resveratrol (Resv), a natural occurring phytolexin present in grapes and other foods, possesses chemopreventive effects revealed by its striking modulation of diverse cellular events associated with tumor initiation, promotion, and progression. Catechol estrogens generated in the metabolism of estrogens are oxidized to catechol quinones that react with DNA to form predominantly depurinating estrogen-DNA adducts. This event can generate the mutations responsible for cancer initiation. In this regard, Resv acts as both an antioxidant and an inducer of the phase II enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1). In this report, we present the effects of Resv on the metabolism of estrogens in normal breast epithelial cells (MCF-10F) treated with 4-hydroxyestradiol (4-OHE(2)) or estradiol-3,4-quinone (E(2)-3,4-Q). Resv induced NQO1 in a dose- and time-dependent manner, but did not affect the expression of catechol-O-methyltransferase. Ultraperformance liquid chromatography/tandem mass spectrometry was used to determine the effects of Resv on estrogen metabolism. Preincubation of the cells with Resv for 48 h decreased the formation of depurinating estrogen-DNA adducts from 4-OHE(2) or E(2)-3,4-Q and increased formation of methoxycatechol estrogens. When Resv was also present with the 4-OHE(2) or E(2)-3,4-Q, even greater increases in methoxycatechol estrogens were observed, and the DNA adducts were undetectable. We conclude that Resv can protect breast cells from carcinogenic estrogen metabolites, suggesting that it could be used in breast cancer prevention.  相似文献   

2.
MCF-10F is a spontaneously immortalized nontransformed human breast epithelial cell line which does not grow in soft agar or form tumors in nude mice. Though the presence of estrogen receptors has not been found in these cells, they can metabolize estradiol very efficiently. The present study describes the endocrine characteristics of this cell line with respect to growth response to estradiol and its metabolites, estradiol metabolism and aromatase activity. MCF-10F cells were growth stimulated by 16alpha-hydroxyestrone and estriol, whereas, estradiol and other estradiol metabolites did not affect cell proliferation. The constitutive level of 16alpha-hydroxyestrone, a metabolite of estradiol biotransformation that has been associated with enhanced carcinogenesis in several animal, cell and tissue culture models, was a hundredfold higher in the non-transformed MCF-10F cells than in the transformed MCF-7 cells. Treatment with the carcinogen, dimethylbenz(a)anthracene (DMBA), however, did not upregulate 16alpha-hydroxylation as was observed in transformed MCF-7 cells. MCF-10F cells also had no detectable aromatase activity though the level of 17-oxidation was unusually high as compared with MCF-7 cells. Our results using the non-transformed MCF-10F cells as a model system suggests that the presence of high level of 16alpha-hydroxyestrone, a metabolite previously shown to be associated with malignant phenotype, may not be sufficient for breast cancer transformation.  相似文献   

3.
Summary The immortalized human breast epithelial cell line MCF-10F is an important tool for studies on experimental tumorigenesis induced by drugs, transfected Ha-ras oncogene, and hormones. Considering that many relevant data have thus far been established only for MCF-10F cells cultivated on glass, and that there are data showing different cell death ratios for tumorigenic cells obtained from benzo[a]pyrene (BP)-transformed MCF-10F cells cultivated on plastic compared with glass, nuclear parameters estimated by image analysis and cell death ratios were compared for cells grown on plastic and glass substrates differing in chamber surface sizes and working culture medium volumes. It was concluded that for slides with a growth size equal to 9.4 cm2, plastic substrate was more advantageous than glass for growing MCF-10F cells because although the apoptotic ratios (AR) for the cells grown on plastic are low as it would be expected for nontransformed cells, they are bigger than those reported for the BP-transformed MCF-10F cells cultivated on the same substrate but closer to those of the BP-transformed MCF-10F cells receiving a normal chromosome 17. In addition, the plastic substrate did not induce variable nuclear image results as those found in the latter. The 0.5-cm2-sized chambers on plastic slides proved to be inadequate for cell nuclear image analysis and cell death studies on account of the variable geometric, densitometric, and textural results and ARs produced and the unpublished consideration of a very slow growth rate generated under this growth condition.  相似文献   

4.
Laser-induced holes are burned in the absorption spectrum of aluminum phthalocyanine tetrasulfonate (APT) in MCF-10F, human breast epithelial cells. The hole burning mechanism is shown to be nonphotochemical. The fluorescence excitation spectra and hole spectra are compared with those of APT in hyperquenched glassy films of water, ethanol, and methanol. The results show that the APT is in an acidic, aqueous environment with a hydrogen-bonded network similar to that of glassy water, but showing the influence of other cellular components. Pressure shifts of holes allow the local compressibility about the APT to be determined.  相似文献   

5.
Oxidatively induced stress and DNA damage have been associated with various human pathophysiological conditions, including cancer and aging. Complex DNA damage such as double-strand breaks (DSBs) and non-DSB bistranded oxidatively induced clustered DNA lesions (OCDL) (two or more DNA lesions within a short DNA fragment of 1-10 bp on opposing DNA strands) are hypothesized to be repair-resistant lesions challenging the repair mechanisms of the cell. To evaluate the induction and processing of complex DNA damage in breast cancer cells exposed to radiotherapy-relevant gamma-ray doses, we measured single-strand breaks (SSBs), DSBs, and OCDL in MCF-7 and HCC1937 malignant cells as well as MCF-10A nonmalignant human breast cells. For the detection and measurement of SSBs, DSBs, and OCDL, we used the alkaline single-cell gel electrophoresis, gamma-H2AX assay, and an adaptation of pulsed-field gel electrophoresis with E. coli repair enzymes as DNA damage probes. Increased levels for most types of DNA damage were detected in MCF-7 cells while the processing of DSBs and OCDL was deficient in these cells compared to MCF-10A cells. Furthermore, the total antioxidant capacity of MCF-7 cells was lower compared to their nonmalignant counterparts. These findings point to the important role of complex DNA damage in breast cancer and its potential association with breast cancer development especially in the case of deficient BRCA1 expression.  相似文献   

6.
Cancers that develop after middle age usually exhibit genomic instability and multiple mutations. This is in direct contrast to pediatric tumors that usually develop as a result of specific chromosomal translocations andepigenetic aberrations. The development of genomic instability is associated with mutations that contribute to cellular immortalization and transformation. Cancer occurs when cancer-initiating cells(CICs), also called cancer stem cells, develop as a result of these mutations. In this paper, we explore how CICs develop as a result of genomic instability, including looking at which cancer suppression mechanisms are abrogated. A recent in vitro study revealed the existence of a CIC induction pathway in differentiating stem cells. Under aberrant differentiation conditions, cells become senescent and develop genomic instabilities that lead to the development of CICs. The resulting CICs contain a mutation in the alternative reading frame of CDKN2A(ARF)/p53 module, i.e., in either ARF or p53. We summarize recently established knowledge of CIC development and cellular immortality, explore the role of the ARF/p53 module in protecting cells from transformation, and describe a risk factor for genomic destabilization that increases during the process of normal cell growth and differentiation and is associated with the downregulation of histone H2 AX to levels representative of growth arrest in normal cells.  相似文献   

7.
A coculture system was developed to investigate the interactions between MCF-10A breast epithelial cells and MCF-7 breast cancer cells stably expressing the green fluorescent protein (MCF-7-GFP). Studies with this MCF-10A/MCF-7-GFP coculture system on microtiter plates and on reconstituted basement membrane (Matrigel), revealed paracrine inhibition of MCF-7-GFP cell proliferation. Epidermal growth factor, which in monocultures modestly enhanced MCF-7-GFP and markedly increased MCF-10A cell proliferation, greatly inhibited MCF-7-GFP cell proliferation in MCF-10A/MCF-7-GFP cocultures. 17beta-Estradiol, which stimulated MCF-7-GFP but not MCF-10A cell proliferation in monoculture, inhibited MCF-7-GFP cell proliferation in MCF-10A/MCF-7-GFP cocultures, an effect that was blocked by the antiestrogen, ICI 182,780. On Matrigel, complex MCF-10A/MCF-7-GFP cellular interactions were observed in real time that resulted in the formation of acinus-like structures. These results indicate a role of normal epithelial cells in inhibiting tumor-cell proliferation and demonstrate the utility of this coculture system as a model of early paracrine control of breast cancer.  相似文献   

8.
Formation of estrogen metabolites that react with DNA is thought to be a mechanism of cancer initiation by estrogens. The estrogens estrone (E1) and estradiol (E2) can form catechol estrogen (CE) metabolites, catechol estrogen quinones [E1(E2)-3,4-Q], which react with DNA to form predominantly depurinating adducts. This may lead to mutations that initiate cancer. Catechol-O-methyltransferase (COMT) catalyzes an inactivation (protective) pathway for CE. This study investigated the effect of inhibiting COMT activity on the levels of depurinating 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua adducts in human breast epithelial cells. MCF-10F cells were treated with TCDD, a cytochrome P450 inducer, then with E2 and Ro41-0960, a COMT inhibitor. Estrogen metabolites and depurinating DNA adducts in culture medium were analyzed by HPLC with electrochemical detection. Pre-treatment of cells with TCDD increased E2 metabolism to 4-OHE1(E2) and 4-OCH3E1(E2). Inclusion of Ro41-0960 and E2 in the medium blocked formation of methoxy CE, and depurinating adducts were observed. With Ro41-0960, more adducts were detected in MCF-10F cells exposed to 1 μM E2, whereas without the inhibitor, no increases in adducts were detected with E2 ≤ 10 μM. We conclude that low COMT activity and increased formation of depurinating adducts can be critical factors leading to initiation of breast cancer.  相似文献   

9.
王毅铮  臧照辉  牛秀珑  张岭  王越  陈虹 《生物磁学》2011,(12):2254-2257
目的:研究白藜芦醇体外活性,确定它的植物雌激素作用。方法:采用MTT法观察不同浓度白藜芦醇对MCF-7细胞增殖作用的影响。采用DNA ladder法和荧光显微镜观察高浓度白藜芦醇对细胞的影响。免疫组化法观察低浓度白藜芦醇对核增殖抗原PCNA表达的影响。结果:MTT结果显示白藜芦醇高浓度抑制MCF-7细胞增殖,IC50为8.70×10-5mol/L;低浓度(10-7~10-6mol/L)则对细胞有促增殖作用,最高促增殖浓度为1.0×10-7mol/L。DNA ladder和荧光显微镜可观察到高浓度白藜芦醇作用后细胞典型的凋亡形态。免疫组化结果显示低浓度白藜芦醇作用后,细胞核内PCNA表达明显增加(P〈0.05)。结论:高、低浓度的白藜芦醇对MCF-7细胞分别表现为诱导凋亡和促增殖作用,呈现出植物雌激素对MCF-7细胞典型的双向调节作用。  相似文献   

10.
目的:研究白藜芦醇体外活性,确定它的植物雌激素作用。方法:采用MTT法观察不同浓度白藜芦醇对MCF-7细胞增殖作用的影响。采用DNA ladder法和荧光显微镜观察高浓度白藜芦醇对细胞的影响。免疫组化法观察低浓度白藜芦醇对核增殖抗原PCNA表达的影响。结果:MTT结果显示白藜芦醇高浓度抑制MCF-7细胞增殖,IC50为8.70×10-5mol/L;低浓度(10-7~10-6mol/L)则对细胞有促增殖作用,最高促增殖浓度为1.0×10-7mol/L。DNA ladder和荧光显微镜可观察到高浓度白藜芦醇作用后细胞典型的凋亡形态。免疫组化结果显示低浓度白藜芦醇作用后,细胞核内PCNA表达明显增加(P<0.05)。结论:高、低浓度的白藜芦醇对MCF-7细胞分别表现为诱导凋亡和促增殖作用,呈现出植物雌激素对MCF-7细胞典型的双向调节作用。  相似文献   

11.
The mechanism for cellular Zn uptake was investigated by depleting cell cholesterol levels, a treatment that disrupts lipid rafts/caveolae-dependent processes and inhibits coated-pit budding. Incubation of MCF-10A human breast epithelial cells with hydroxypropyl-beta-cyclodextrin significantly lowered cell cholesterol levels and significantly inhibited cellular zinc uptake measured at 10 min, but had no effect on 2-deoxyglucose uptake. Replacing potassium for sodium in the uptake buffer significantly stimulated Zn uptake by 20%. The effects of potassium depletion and chlorpromazine on Zn uptake were investigated to determine the contribution of coated-pit endocytosis. Potassium depletion following hypotonic shock significantly inhibited Zn uptake into MCF-10A cells approximately 15%. Chlorpromazine at 20 microg/ml inhibited uptake approximately 30%. The data support the hypothesis that Zn uptake into MCF-10A cells involves lipid rafts/caveolae. The relatively mild effects of potassium depletion and chlorpromazine suggest that a small portion of Zn uptake may require coated pit endocytosis.  相似文献   

12.
13.
The distribution pattern and the number of tumor cells arrested in the liver were studied in mouse livers. Mice were perfused intravascularly with a suspension of B16F10 melanoma cells. The animals were sacrificed at 0, 1, 5, and 20 min after tumor cell perfusion. The pattern of tumor cell distribution was studied by morphological methods, and by a combined method of fluorescent-tumor cell labelling and histochemical succinate dehydrogenase activity on frozen sections, in order to define the localization of tumor cells arrested in the liver lobule. The results show that the tumor cells have an exclusive distribution in the periportal regions of the liver lobule (identified as the high succinate dehydrogenase activity areas), and that the cells are not arrested in the pericentral regions (identified as the low succinate dehydrogenase activity areas). In addition, indomethacin treatment (2 mg/kg/day) induced an increase in the number of melanoma cells arrested in the liver, but a different distribution with respect to controls was not observed. These results show that periportal regions of the liver lobule constitute a particular domain in which the B16F10 melanoma cells present a special retention ability that can be modulated by indomethacin treatment.  相似文献   

14.
Resveratrol is a plant-derived polyphenol that extends lifespan and healthspan in model organism. Despite extensive investigation, the biological processes mediating resveratrol's effects have yet to be elucidated. Because repression of translation shares many of resveratrol's beneficial effects, we hypothesized that resveratrol was a modulator of protein synthesis. We studied the effect of the drug on the H4-II-E rat hepatoma cell line. Initial studies showed that resveratrol inhibited global protein synthesis. Given the role of the mammalian Target of Rapamycin (mTOR) in regulating protein synthesis, we examined the effect of resveratrol on mTOR signaling. Resveratrol inhibited mTOR self-phosphorylation and the phosphorylation of mTOR targets S6K1 and eIF4E-BP1. It attenuated the formation of the translation initiation complex eIF4F and increased the phosphorylation of eIF2α. The latter event, also a mechanism for translation inhibition, was not recapitulated by mTOR inhibitors. The effects on mTOR signaling were independent of effects on AMP-activated kinase or AKT. We conclude that resveratrol is an inhibitor of global protein synthesis, and that this effect is mediated through modulation of mTOR-dependent and independent signaling.  相似文献   

15.

Background  

MCF-10A cells are near diploid and normal human mammary epithelial cells. In three-dimensional reconstituted basement membrane culture, they undergo a well-defined program of proliferation, differentiation, and growth arrest, forming acinar structures that recapitulate many aspects of mammary architecture in vivo. The pre-malignant MCF-10AT cells and malignant MCF-10CA1a lines were sequentially derived from the MCF-10A parental cell line first by expression of a constitutively active T24 H-Ras generating the MCF-10AT cell line. This was followed by repeated selection for increasingly aggressive tumor formation from cells recovered from xenograft tumors in immuno-compromised mice, generating the MCF-10CA1a cell line. When inoculated subcutaneously into the flanks of immuno-compromised mice, MCF-10AT cells occasionally form tumors, whereas MCF-10CA1a cells invariably form tumors with a shorter latency than MCF-10AT derived tumors.  相似文献   

16.

Aims

The purpose of this study is to evaluate the anti-metastatic effects of alteronol on melanoma B16F10 and B16F1 cells in vitro and in vivo.

Main methods

Melanoma B16F1 and B16F10 cells were cultured in vitro. Cell proliferation was analyzed via 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The cell migration and invasion were evaluated via wound healing and transwell chamber assays. The activity of matrix metalloproteinase 2 (MMP-2) in culture supernatants was assessed via gelatin zymography. The expression of MMP-2 and TIMP-2 were detected via enzyme-linked immunosorbent assay (ELISA) assay. The anti-metastatic ability in vivo was detected through experimental lung metastasis.

Key findings

The data indicate that alteronol can inhibit the proliferation, invasion, and migration of B16F1 and B16F10 cells in vitro and in vivo, decrease the activity and expression of MMP-2, enhance the expression level of Tissue Inhibitor of Metalloproteinase-2 (TIMP-2), and inhibit the experimental lung metastasis of B16F1 and B16F10 cells.

Significance

Although alteronol and taxol are obtained from the same source, these substances do not destroy the rare resource; the mechanisms of them on tumor growth inhibition are different. Conversely, alteronol treatment had lesser effects on normal cells revealing for a selective property and a strong competitive advantage.  相似文献   

17.
18.
In atherosclerosis, accumulation of cholesterol in macrophages may partially depend on its defective removal by high-density lipoproteins (HDL). We studied the proteolytic effect of cathepsins F, S, and K on HDL(3) and on lipid-free apoA-I, and its consequence on their function as inductors of cholesterol efflux from cholesterol-filled mouse peritoneal macrophages in vitro. Incubation of HDL(3) with cathepsin F or S, but not with cathepsin K, led to rapid loss of prebeta-HDL, and reduced cholesterol efflux by 50% in only 1min. Cathepsins F or K partially degraded lipid-free apoA-I and reduced its ability to induce cholesterol efflux, whereas cathepsin S totally degraded apoA-I, leading to complete loss of apoA-I cholesterol acceptor function. These results suggest that cathepsin-secreting cells induce rapid depletion of lipid-poor (prebeta-HDL) and lipid-free apoA-I and inhibit cellular cholesterol efflux, so tending to promote the formation and maintenance of foam cells in atherosclerotic lesions.  相似文献   

19.
Cheng W  Liu T  Wan X  Gao Y  Wang H 《The FEBS journal》2012,279(11):2047-2059
In ovarian cancer, CD44(+) /CD117(+) stem cells, also known as cancer-initiating cells (CICs), are highly proliferative, have a low degree of differentiation, and are resistant to chemotherapeutics. Therefore, the CD44(+) /CD117(+) subpopulation is thought to be an important target for novel therapeutic strategies. In this study, we investigated the role of microRNA-199a (miR-199a) in ovarian cancer stem cells. Luciferase reporter gene assays confirmed that miR-199a targets CD44 via an miR-199a-binding site in the 3'-UTR. CD44(+) /CD117(+) ovarian CICs were enriched from human primary ovarian tumor tissues and confirmed by flow cytometric sorting. miR-199a was cloned and transfected into ovarian CICs. CD44 mRNA and protein expression was significantly decreased in miR-199a-transfected ovarian CICs as compared with miR-199a mutant-transfected and untransfected cells. Cell cycle analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide proliferation assays, the colony formation assay and the transwell migration assay indicated that miR-199a significantly affected cell cycle regulation and suppressed the proliferation and invasive capacity of ovarian CICs in?vitro. miR-199a significantly increased the chemosensitivity of ovarian CICs to cisplatin, pacitaxel, and adriamycin, and reduced mRNA expression of the multidrug resistance gene ABCG2 as compared with miR-199a mutant-transfected and untransfected cells. The expression of stemness markers was also significantly reduced in miR-199a-transfected CICs as compared with miR-199a mutant-transfected and untransfected ovarian cells. Furthermore, xenograft experiments confirmed that miR-199a suppressed the growth of xenograft tumors formed by ovarian CICs in?vivo. Thus, expression of endogenous mature miR-199a may prevent tumorigenesis in human ovarian cancer by regulating expression of its target gene CD44.  相似文献   

20.
A hydroalcoholic extract of fresh term human placenta was found to be mitogenic as well as melanogenic on B16F10 mouse melanoma in anin vitro culture. The extract, a reservoir of a large number of bioactive molecules, was resolved to get the lipid fraction. Its activity was evaluated on B16F10 mouse melanoma by assessing the change in cellular morphology, growth and melanin induction. The lipid fraction, placental total lipid fraction (PTLF) tested in the study employed doses of 0.01 to 200 μg/ml; optimum growth and melanization accompanied by morphological changes were recorded at 10 and 100 μg/ml respectively. At intermediate doses growth and melanization were found to show a pattern of change over between growth and melanization and finally reached at an inverse relation at the respective optimal dose of response. Compared with defined sphingolipids, C2 ceramide and sphingosine-1-phosphate, the results were mostly corroborative. The duality of biological response of sphingolipids as reported in numerous studies was comparable for the PTLF suggesting that its active component is a sphingolipid and showing its use for pigment recovery in vitiligo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号