首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fu  Jiahui  Lv  Bo  Li  Rujiang  Ma  Ruyu  Chen  Wan  Wang  Zhefei 《Plasmonics (Norwell, Mass.)》2017,12(1):209-213
Plasmonics - Highly confined waves of surface plasmon polaritons (SPPs) in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. In this paper, an inhomogeneous...  相似文献   

2.
Xie  Yuan  Chen  Zhenxing  Yan  Jun  Wu  Yiheng  Huang  Tianye  Cheng  Zhuo 《Plasmonics (Norwell, Mass.)》2020,15(1):235-241
Plasmonics - A polarization beam splitter (PBS) based on the plasmonic subwavelength grating (PSWG) is proposed and investigated. The PBS is composed by a directional coupler with a PSWG as the...  相似文献   

3.
A method to sense the excitation of surface plasmon polariton (SPP) on metallic grating device using the transmitted signal will be presented. The grating transmittance signal will be fully characterized varying the light incident angle and azimuthal grating orientation by means of the SPP vector model and rigorous coupled-wave analysis simulation. Simulation results will be compared with experimental measurements obtained with a 635 nm wavelength laser in the transverse magnetic polarization mode. The laser will light grating devices in contact with either air or water through a customized microfluidic chamber. A characterization of the diffracted rays will show the relationship between the grating coupling configuration and the Kretschmann one. In fact, the diffracted ray affected by SPP resonance is transmitted with an output angle which is the same incident angle that should be used to excite SPP in Kretschmann configuration. Lastly, the grating parameters (amplitude and metal thickness) impact on transmittance signal will be analyzed with respect to the order zero reflectance signal.  相似文献   

4.
5.
6.
Plasmonics - We report on an optical mirror for cold rubidium atoms based on a repulsive dipole potential created by means of a modified recordable digital versatile disc. Using the mirror, we have...  相似文献   

7.
Interaction behavior between surface plasmon polaritons (SPPs) and Hankel-distributed diffracted waves (DWs) on a silver concentric circular grating film is studied using a rigorous coupled-wave technique for circular structure. It is shown that the numerical technique reveals the excitation characteristics of SPPs in the circular metal grating as well as provides an accurate calculation of SPP intensities for further optimization designs. Results show that the SPPs can be excited by various DWs through the control of wavelength and angle of the incident light. The most efficient excitation of SPPs from this circular metal grating structure can be obtained from the +1st-order DW under a normal incidence with wavelength close to the grating period, and the optimal thickness and duty cycle of the grating are found to be 370 and 0.5 nm, respectively. It is shown that the optimized intensity of SPPs excited from circular metal grating can be higher than that from strip metal grating by over one order of magnitude.  相似文献   

8.
In this paper, a plasmonic-photonic nanostructure has been introduced for efficient unidirectional coupling of free-space radiation to surface plasmon polariton (SPP) waves under normal illumination on a subwavelength slit. The structure consists of a conventional metallic slit-groove nanostructure integrated with a plasmonic waveguide to support SPP waves along the desired direction with a remarkable lateral confinement. The unidirectional coupling is achieved by using an integrated plasmonic distributed reflector designed under Bragg condition. This reflector basically distributes part of the light coupled through the slit into the SPP modes of the waveguide. Numerical simulations show that up to 26 % of the normally incident light couples to the transversely localized field of the surface plasmon. In addition, the ratio of mode current density of the surface plasmon, launched in the desired direction, to that in the opposite direction can reach about 23 times. This structure shows a 2.5-fold improvement in coupling efficiency relative to a standard slit-groove structure. Also, the transmission distance for the new nanostructure is shown to be more than 8 times greater than that of the standard nanostructure.  相似文献   

9.
In this paper, the supermodes, long-range surface plasmon polaritons (LRSPPs), have been theoretically studied to enhance the optical coupling of AlGaN/GaN quantum well infrared photodetector (QWIP) based on gold–Si3N4 hybrid architecture. The electromagnetic field, energy flow, and current density are analyzed by finite element method (FEM). In time domain, the electric field component E z and current density J z perpendicular to the multi-quantum wells (MQWs) are symmetric and asymmetric distributions over the gold grating, respectively, which precisely prove the existence of LRSPPs. The averaged |E z |2 across the whole quantum well region reaches 1.51?(V/m)2 when the electric field intensity (|E 0|2) of normal incidence is 1?(V/m)2 at 4.65 μm. Extraordinarily low loss of the LRSPPs results in a coupling efficiency enhancement ratio of 2.23 in AlGaN/GaN QWIP compared with that obtained via bare gold grating with different polarized sources, exhibiting great potential for application in the focal plane arrays.  相似文献   

10.
Metasurface lenses which could simultaneously focus both surface plasmon polaritons (SPPs) and transmitted wave are designed. This kind of device is composed of slit antennas and is optimized with the simulated annealing algorithm to realize a single-focus or double-focus lens. Interestingly, the focusing of SPPs is polarization dependent while the focusing of the transmitted wave is immune from the polarization of incident light. The proposed methodology may inspire more designs of device steering both surface wave and transmitted wave.  相似文献   

11.
For many years, the search for efficient surface plasmon polariton (SPP) excitation mechanisms has been a recurring matter in the development of compact plasmonic devices. In this work, we excited SPPs illuminating a subwavelength metallic ridge with a focused spot to characterize the coupling efficiency by varying the incidence angle of the excitation beam from ??50 to 50°. The intensity distribution of the excited SPPs was measured using leakage radiation microscopy to determine the relative coupling efficiency in the wavelength interval from 740 to 840 nm. We modeled the excitation efficiency as a function of the incidence angle using a simple analytical diffraction model. Two ridges of different width (200 and 500 nm) were used to compare results and validate the model. The experimental results show a higher coupling efficiency at oblique incidence, where the coupling was enhanced by factors of 2× for the 500-nm-wide ridge, and 3× for the 200-nm-wide ridge, as well as unidirectional SPP excitation. The experimental results are in good agreement with the proposed model.  相似文献   

12.

The two-dimensional (2D) atomic localization is theoretically investigated via tunable surface plasmon polaritons (SPPs), generated on the metal (Ag) surface coupled to a quantum coherent three-level \(\lambda\)-type medium (\(^{87}\)Rb) embedded as a dielectric host. Such a useful scheme for highly precise atomic localization is reported by using the absorption spectrum of SPPs. Owing to space-dependent light–matter interaction, the sharp localized peaks are observed in a single wavelength domain of 2D space with maximum probability. By properly varying the system parameters, the precision and numbers of the localized peaks are controlled. Consequently, highly efficient and high-resolution atomic localization can be achieved in a region smaller than \(\lambda /20\times \lambda /20\). The spatial resolution of atomic localization is greatly improved as compared to the previously studied cases. These results may have potential useful applications in the fields of quantum nanoplasmonics, nanolithography, and nanophotonics.

  相似文献   

13.
Chen  Yue-Gang  Chen  Lu 《Plasmonics (Norwell, Mass.)》2018,13(6):2221-2228
Plasmonics - Controlling the propagations of surface plasmon polaritons (SPPs) is important for many applications. Now, mainly structures for controlling SPPs are etched directly in the metal...  相似文献   

14.
Wang  Jiajian  Jiang  Jin  Meng  Fengkai  Lin  Feng  Fang  Zheyu  Zhu  Xing 《Plasmonics (Norwell, Mass.)》2019,14(3):785-790

Metasurfaces are made of two-dimensional arrays of subwavelength nanostructures that form a spatially varying optical response, to control the wave fronts of optical waves. As the feature size of its constituent materials is nanoscale, investigation of the light-nanostructure interactions in the near field is critical for understanding the novel properties of metasurfaces. Here, we used a scanning near-field optical microscope (SNOM) to observe the near-field distribution of surface plasmon polaritons (SPPs) from a ring-shaped metasurface under illumination of circularly polarized light. It was found that with an additional degree of freedom of the geometric phase provided by the regularly arranged metamolecules, control over the near-field interference of the SPPs can be achieved, which is governed by the metasurface geometric symmetry that can be tuned by its topological charge. Meanwhile, the planar chiral character of the metamolecules exerts a deep influence on the near-field interference patterns. Our results can pave the way for active control of SPP propagation in near fields and have potential applications in highly integrated optical communication systems.

  相似文献   

15.
16.

The tunability of propagation properties of surface plasmon polariton (SPP) modes in a waveguide formed by two parallel graphene layers separated by a dielectric layer is studied. For this purpose, the dispersion equation of the structure is numerically solved and the effects of applied bias voltage, the role of effective structural parameters, and electron–phonon scattering rate on the propagation of symmetric and antisymmetric SPP waves are investigated. The results of calculations show that considering the electron–phonon scattering rate as a function of Fermi energy and temperature leads to a considerable decrease in the propagation length of SPPs. As the main result of this work, tuning the propagation characteristics of SPPs is possible by varying any of the parameters such as applied voltage, thickness of insulating layer between two graphene layers and permittivities of dielectric layers, and finally the temperature. It is found that antisymmetric mode benefits from a larger propagation length in comparison with that of the symmetric mode.

  相似文献   

17.
Plasmonics - Acoustic metamaterials are introduced as the structures with the alternating elements possessing effective properties that can be tuned seeking for the dramatic control on wave...  相似文献   

18.
A novel broadband refractive index nanosensor based on multi-interference of surface plasmon polaritons is reported. It is composed of a metallic nanoslit flanked by periodical grooves on its two sides. Extraordinary high-throughput, high-resolution, and high-sensitivity detections can be realized by observing the shift of the resonant wavelength. The sensor covers a large range of the refractive index change due to both the narrow linewidth of the single resonant peak in the broadband spectrum and the sensitive shift of the peak position withthe refractive index change. A theoretical model is developed to well predict the optical response of the sensor. An excellent linearity between the resonant wavelength and the refractive index can be achieved. The sensitivity, which is 620 nm/refractive index unit, can be further increased by tuning the period of the grooves and the high throughput; high resolution can be simultaneously achieved by adding the number of grooves.  相似文献   

19.
20.
Plasmonics - 3D metallic structures with symmetrically curved surfaces are proposed for surface plasmon polaritons (SPPs) deflection and concentration. Two-photon polymerization (2PP) and a...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号