首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using inductively coupled plasma-mass spectrometry after samples microwave-assisted acid digestion, zinc (Zn), copper (Cu), and manganese (Mn) levels were measured in 14 different areas of the human brain of adult individuals (n?=?42; 71?±?12, range 50–101 years old) without a known history of neurodegenerative, neurological, or psychiatric disorder. The main goals of the work were to establish the “normal” (reference) values for those elements in the human brain and to evaluate the age-related changes, a prior and indispensable step in order to enlighten the role of trace element (TE) in human brain physiology and their involvement in aging and neurodegenerative processes. Considering the mean values for the 14 regions, Zn (mean ± sd; range 53?±?5; 43–61 μg/g) was found at higher levels, followed by Cu (22?±?5; 10–37 μg/g) and Mn (1.3?±?0.3; 0.5–2.7 μg/g). The TE distribution across the brain tissue showed to be quite heterogeneous: the highest levels of Zn were found in the hippocampus (70?±?10; 49–95 μg/g) and superior temporal gyrus (68?±?10; 44–88 μg/g) and the lowest in the pons (33?±?8; 19–51 μg/g); the highest levels of Cu and Mn were found in the putamen (36?±?13; 21–76 μg/g and 2.5?±?0.8; 0.7–4.5 μg/g, respectively) and the lowest in the medulla (11?±?6; 2–30 μg/g and 0.8?±?0.3; 0.2–1.8 μg/g, respectively). A tendency for an age-related increase in Zn and Mn levels was observed in most brain regions while Cu levels showed to be negatively correlated with age.  相似文献   

2.
Males (n=34) and females (n=23) of long-tailed duck (Clangula hyemalis) collected on the southern coast of the Baltic Sea in winter were studied to determine brain tissue concentration of iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), and cadmium (Cd). There were no significant differences in the concentration of metals between males and females, except for Cd, the concentration of which in male brains was twice that of the females. In the brains of 20 birds (41% male and 26% female), the lead (Pb) concentration exceeded 1 μg/g wet wt. In all the duck brains examined, Spearman correlation coefficients were significant and positive for Zn−Mn, Cu−Mn, Cu−Fe, and Pb−Fe; a negative correlation was found for Pb−Zn. Additionally, female brains showed a positive correlation between Pb and Fe. The results obtained were compared with literature data for diving and nondiving anseriforms and birds of other taxa. It seems that concentration of heavy metals in the brain tissue of birds reflect natural adaptations (e.g., for diving) as well as effects of environmental pollution.  相似文献   

3.
A particle-induced X-ray emission (PIXE) analysis method is presented, which allows measurement of eight elements (i.e., K, Ca, Mn, Fe, Cu, Zn, Se, and Rb) in human brain samples of only a few mg dry weight. The precision and accuracy of the method were investigated by analyzing animal brain matter with both PIXE and instrumental neutron activation analysis (INAA). The method was applied to measure the 8 elements in 46 different regions of 3 human brains. The sections analyzed originated from either the left or the right cerebral hemisphere, brain stem, and cerebellum. For one of the brains, sections were also analyzed from 26 corresponding regions of both hemispheres. For all elements, similar concentrations were found in the corresponding areas of the left and right sides of the brain. The concentrations (in μg/g dry weight) of the elements K, Fe, Cu, Zn, Se, and Rb were consistently higher in cortical structures than in white matter. Deep nuclei and brain stem, which have a mixed composition, showed intermediate values for K, Zn, Se, and Rb. A hierarchical cluster analysis indicated that the various brain regions clustered into two large groups, one comprising gray and mixed matter regions and the other, white and mixed matter brain areas.  相似文献   

4.
The lelvels of seven heavy metals and their toxicity towardGanoderma lucidum under various cultivation conditions were assessed. The contents of Mn, Cu, Zn, Cd, Hg, Pb and U in the fruitbodies of cultivatedG. lucidum, and sawdust substrates were determined to be at trace levels for U, 0.01–0.1 μg/g for Cd and Hg, and 1–5 μg/g for Pb, 10–120 μg/g for Mn, Cu and Zn. The effects of heavy metals, on the growth of mycelia ofG. lucidium in pure cultures were examined over a wide range of concentrations (10–3,000 μg/ml), and their toxicities were found to decrease in the order: Hg>Cd>Cu>U>Pb>Mn=Zn. The translocation and accumulation of Zn from contaminated substrates (at 10 μg/g) in fruitbodies were investigated by using65Zn tracer, andG. lucidum was found to take up Zn with an efficiency of >60%, leading to accumulation of >100 μ/g, in fruitbodies and >80 μ/g Zn in basidiospores.  相似文献   

5.
The Cu and Zn levels of both 607 men (1–85 y old) and 649 women (1–92 y old) were determined by atomic absorption spectrometry. Sex does not influence Cu (14.89±0.89 μg/g and 15.26±0.79 μg/g hair for males and females, respectively) and Zn contents (200.97±9.68 μg/g for men and 209.81±9.49 μg/g hair for women). Age influences Cu and Zn concentrations, but only significantly in females: Cu levels decrease over 60 y of age; whereas Zn levels increase significantly from age groups 2–5 to 20–40 years. Hair color influences Cu concentrations in both males and females. In males, white hair containes less Cu than black hair; in females, white hair's Cu levels are significantly lower than those of dark blond, red, light brown, and brown hair. There are no significant differences in Zn concentrations with respect to different hair colors, in either males or females.  相似文献   

6.
Postpartum scalp hair samples from 82 term-pregnancy mother/neonate pairs were analyzed for their concentration of zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb), using inductively coupled plasma-mass spectrometry. Maternal and neonatal Zn concentrations had geometric means (and 99% confidence intervals) of 122.5 μg/g (117.9–131.5 μg/g) and 146.9 μg (141.5–156.7 μg/g) respectively. Corresponding Cu values were 18.4 μg/g (17.6–23.8 μg/g) and 6.7 μg/g (6.3–7.6 μg/g). Those of Cd were 0.49 μg/g (0.47–0.69 μg/g) in the mothers and 0.57 μg/g (0.55–0.86 μg/g) in the neonates. For Pb, they were 7.95 μg/g (7.60–9.32 μg/g) and 4.56 μg/g (4.39–5.56 μg/g). Cigaret smoking, despite its relatively low prevalence (19.5%), was associated with lower Zn and higher Cd and Pb concentrations and in lower Zn/Cd and Zn/Pb molar concentration ratios. Smoking also altered interelemental relationships, particularly those of Zn with Cd and Pb and those between Cd and Pb. Smoking frequency appeared to show negative dose-response effects on maternal and neonatal Zn concentrations, Zn/Pb molar concentration ratios, and birth weight. Mothers with a history of oral contraceptive (OC) usage had significantly higher Cu concentrations and lower Zn/Cu molar concentration ratios than nonusers, with the highest Cu concentrations and lowest Zn/Cu values being associated with third-generation OCs. No similar effects were elicited in the respective neonatal Cu concentrations. Neither alcohol consumption nor prenatal supplementation with iron and/or folic acid had discernible effects on the maternal or neonatal elemental concentrations. The data from this study suggest that in a given population of term-pregnancy mothers and neonates, significant interindividual variations in hair trace element concentrations can occur, irrespective of commonality of general environment, and that lifestyle factors, including cigaret smoking and OC usage history, can be significant contributory factors to such variations. The data are discussed in relation to the effects of smoking-associated exposure to Cd and Pb exposure on Zn availability for placental transfer, as well as on the quantitative maternal Zn supply levels to the fetus resulting from the known tendency of smokers to have lower dietary intakes of Zn. The higher Cu concentrations in OC users are discussed in relation to altered Cu metabolism, characterized by increased synthesis of the Cu-binding protein, ceruloplasmin, as an acute-phase antioxidant response to altered lipid profile and increased lipid oxidation.  相似文献   

7.
Five brands of antidiabetic herbal formulations as tablets, Diabetex, Divya Madhu Nashini, Jambrushila, Diabeticin, and Madhumeh Nashini, from different pharmacies were analyzed for six minor (Na, K, Ca, Cl, Mg, and P) and 20 trace (As, Ba, Br, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mn, Rb, Sb, Sc, Se, Sm, Th, V, and Zn) elements by thermal neutron irradiation followed by high-resolution gamma ray spectrometry. Further Ni, Cd, and Pb were determined by atomic absorption spectrophotometry. Most elements vary in a narrow range by a factor of 2–4 while a few others vary in a wide range, e.g., Na (0.05–0.67 mg/g), Mn (26.7–250 μg/g), and V (0.26–2.50 μg/g). All the five brands contain K, Cl, Mg, P, and Ca as minor constituents along with mean trace amounts of Cr (2.11 ± 0.67 μg/g), Cu (15.7 ± 7.11 μg/g), Fe (459 ± 171 μg/g), Mn (143 ± 23 μg/g), Se (238 ± 112 ng/g), and V (0.99 ± 0.93 μg/g). Jambrushila is enriched in Na, Ca, Mg, Cl, Fe, Cu, Se, and Zn, essential nutrients responsible for curing diabetes. Dietary intake of Mn, Fe, and Cu are greater than 10% of the recommended dietary allowance, whereas that for Zn and Se is less than 2%. Mean contents of toxic elements (As, Cd, Hg, and Pb) were found below permissible limits except in Jambrushila. Cr and Zn were inversely correlated with r = −0.81, whereas Rb and Cs exhibit linear correlation (r = 0.93) in five brands. C, H, N analysis showed C ∼ 55%, H ∼ 12%, and N ∼ 2% with a total of ∼70% organic matter. However, thermal decomposition studies at 700°C suggest less than 5% nonvolatile metal oxides. Herbal formulations contain minor and trace elements in bioavailable forms that favorably influence glucose tolerance and possibly increase the body’s ability to ameliorate development of diabetes.  相似文献   

8.
Trace elements including Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Sr, and Zn were analyzed in the scalp hair samples of women with malignant breast lesions, women with benign breast lesions, and healthy donors using atomic absorption spectrophotometric method. In the scalp hair of malignant-tumor patients, the highest average concentration was shown by Ca (1,187 μg/g), followed by Na (655 μg/g), Mg (478 μg/g), Zn (391 μg/g), Sr (152 μg/g), Fe (114 μg/g), and K (89.8), while in the case of benign-tumor patients, the average estimated element levels were 1,522, 1,093, 572, 457, 217, 80.4, and 74.7 μg/g, respectively. Most of the elements exhibited non-normal distribution evidenced by large spread, standard error, and skewness values. Mean concentrations of Ca (634 μg/g), Zn (206 μg/g), Mg (162 μg/g), Fe (129 μg/g), and Na (82.1 μg/g) were noteworthy in the scalp hair of healthy women. Average levels of Na, Sr, K, Cd, Co, Pb, Mg, Ca, Zn, Ni, Sb, and Mn were revealed to be significantly higher in the hair of malignant and benign patients compared to the healthy women; however, Fe, Cu, Al, and Cr were not significantly different in the scalp hair of the three groups. The quartile distributions of Ca, Cd, Co, Cr, K, Mg, Mn, Na, Ni, Pb, Sb, and Sr revealed maximum spread in the scalp hair of malignant and benign groups; nevertheless, Al, Cu, Fe, and Zn exhibited almost comparable quartile levels in the three groups. Strong correlation coefficients were found between Fe and Cd, Al and Na, Mn and Sr, Co and Cr, Cd and Cr, Pb and K, Pb and Mn, Cu and Na, and Al and Fe in the scalp hair of malignant-tumor patients, while Fe and K, Cd and Co, Na and Co, and Cr and Pb showed strong correlations in the scalp hair of benign-tumor patients, both of which were significantly different compared with the healthy subjects. Multivariate cluster analysis also revealed divergent clustering of the elements in the scalp hair of malignant and benign patients in comparison with the healthy women.  相似文献   

9.
Significant (P < 0.005) differences in Mn, Fe, Cu and Zn concentrations were found in different parts of eelgrass plants; i.e., roots and rhizomes, live blades, attached dead blades, and detritus. Imported vs. exported suspended particles of eelgrass blades did not differ in Mn, Fe, Cu or Zn content. Significant location effects, which varied with the type of plant tissue, were noted for Mn, Fe, Cu and Zn for three grass beds in the vicinity of Beaufort, NC. In simplified Mn, Fe, Cu and Zn budgets, eelgrass biomass is the largest biological reservoir, while eelgrass growth, senescence, and decomposition constitute the largest biological flux of these elements in this ecosystem.  相似文献   

10.
The relationships between concentrations (g/g of tissue) and content (g/organ) of the metals Fe, Zn, Cu, Mn, and Cd with seasonal changes in the weight of the hepatopancreas in the Japanese scallop Mizuhopecten yessoensis are studied. It is shown that, during a year, the weight of the hepatopancreas in the mollusk shows significant (more than twofold) changes. A positive correlation is revealed between the seasonal changes in the concentrations of the physiologically important metals Fe, Zn, Cu, and Mn and the weight of this organ, although no general consistent pattern of seasonal variability in the metal concentrations is found. For toxic Cd, a negative correlation is found between its concentration and the weight of the hepatopancreas.  相似文献   

11.
The accumulation and biocycle of Cu, Pb, Zn and Mn elements were studied in Kandelia candel (L.) Druce mangrove community of Jiulong River Estuary of Fujian. The pool amounts of Cu, Pb, Zn and Mn elements in the forest soil (0~30 cm in depth) were 6.86, 4.23, 25.64 and 134. 67 g · m-2, respectively. The respective element contents ranged from in different parts of the plant, 1.85~6.97, 0.37~3.74, 16.0~25.2 and 140~1405 μg· g-1 of Cu, Pb, Zn and Mn. The pool amounts of elements in standing crop of the community were 87.98, 40. 34, 335.34 and 8006.99 mg · m-2 for Cu, Pb, Zn and Mn respectively. The pool amounts of Cu, Pb, Zn and Mn elements in residues were: 593.06, 49.27, 2450.79 and 43486.70 μg · m-2 respectively. The biocycle of the elements in the community were described as follows: Annual uptake of Cu was 10. 17, Pb 4.32, Zn 49. 14 and Mn 2268. 16 mg · m-2; Annual return of Cu was 2.21, Pb 0.70, Zn 18.63 and Mn 1574.98 mg· m-2; Annual retention of Cu was 7.96, Pb 3.62, Zn 30. 51 and Mn 693.18 mg · m-2. The turnover periods of Cu, Pb, Zn and Mn were 40, 58, 18 and 5 year, respectively. The absorption, utilatizion and cycle coefficients were in the order of Mn〉Zn〉Cu〉Pb.  相似文献   

12.
 本文研究了羊草(Aneurolepidium chinense)草地割草场3种植物必需的微量元素锰、铜、锌的含量特征。结果表明,在生长季各时期,优势种羊草各器官元素含量有很大变化,总的趋势是:根>根茎>茎>叶>穗(Zn:叶>茎),各器官之间元素含量差异显著(P<0.05)。其它种类植物根中锰、铜、锌含量也显著高于地上各器官。羊草地上部锰、铜、锌积累量在生长季中的变化近似于“S”型曲线,但各元素曲线最高点出现的时间不同。寸草苔(Carex duriuscula)和针蔺(Heleocharis acicularis)地上部锰、铜、锌积累量变化与生物量变化相似,基本为双峰型曲线。三种元素在群落中的分布规律是:根>茎>叶>穗,与生物量分布规律相同。但锰、铜在地上各器宫中积累量占植物总积累量的比率低于相应的生物量比率,而锌这两者的比率则与生物量比率相近。群落中锰、铜、锌积累量与根层土壤中锰、铜、锌总量之比分别为0.10%,0.33%和0.09%。  相似文献   

13.
Flatiron (ffe) mice display features of “ferroportin disease” or Type IV hereditary hemochromatosis. While it is known that both Fe and Mn metabolism are impaired in flatiron mice, the effects of ferroportin (Fpn) deficiency on physiological distribution of these and other biometals is unknown. We hypothesized that Fe, Mn, Zn and/or Cu distribution would be altered in ffe/+ compared to wild-type (+/+) mice. ICP-MS analysis showed that Mn, Zn and Cu levels were significantly reduced in femurs from ffe/+ mice. Bone deposits reflect metal accumulation, therefore these data indicate that Mn, Zn and Cu metabolism are affected by Fpn deficiency. The observations that muscle Cu, lung Mn, and kidney Cu and Zn levels were reduced in ffe/+ mice support the idea that metal metabolism is impaired. While all four biometals appeared to accumulate in brains of flatiron mice, significant gender effects were observed for Mn and Zn levels in male ffe/+ mice. Metals were higher in olfactory bulbs of ffe/+ mice regardless of gender. To further study brain metal distribution, 54MnCl2 was administered by intravenous injection and total brain 54Mn was measured over time. At 72 h, 54Mn was significantly greater in brains of ffe/+ mice compared to +/+ mice while blood 54Mn was cleared to the same levels by 24 h. Taken together, these results indicate that Fpn deficiency decreases Mn trafficking out of the brain, alters body Fe, Mn, Zn and Cu levels, and promotes metal accumulation in olfactory bulbs.  相似文献   

14.
Eight elements (i.e. K, Ca, Mn, Fe, Cu, Zn, Se, and Rb) were measured in 50 different regions of 12 normal human brains by particle-induced X-ray emission (PIXE) analysis. The dry weight concentrations of K, Fe, Cu, Zn, Se, and Rb were consistently higher for gray than for white matter areas. The K, Zn and Se concentrations for the regions of mixed composition and, to some extent, also the Rb concentrations, were intermediate between the gray and white matter values, and they tended to decrease with decreasing neuron density. The mean dry weight concentrations of K, Ca, Zn, Se, and Rb in the various brain regions were highly correlated with the mean wet-to-dry weight ratios of these regions. For Mn, Fe, and Cu, however, such a correlation was not observed, and these elements exhibited elevated levels in several structures of the basal ganglia. For K, Fe, and Se the concentrations seemed to change with age. A hierarchical cluster analysis indicated that the structures clustered into two large groups, one comprising gray and mixed matter regions, the other white and mixed matter areas. Brain structures involved in the same physiological function or morphologically similar regions often conglomerated in a single subcluster.  相似文献   

15.
Deficiencies in Cu, Se, and Zn impair one or more biochemical functions, and excess are associated with toxicity. Baseline studies on the Ghanaian population are scanty. The study was undertaken to determine whether significant rural/urban differences in the serum levels of Cu, Se, and Zn did exist. Forty males/60 females from rural and 50 males/50 females from urban Ghanaian communities were sampled. Serum Cu, Se, and Zn were determined using flame atomic absorption spectrometry. Cu level for rural and urban subjects was 997 ± 333 and 979 ± 290 μg/L, respectively (p = 0.68). However, Cu levels were significantly higher in the rural females (1,063 ± 367 μg/L) than the rural males (898 ± 249 μg/L; p = 0.0085). Se levels for rural/urban subjects were 97 ± 36 and 87 ± 31 μg/L, respectively (p = 0.03). Zn levels in the rural/urban subjects were 312 ± 218 and 150 ± 102 μg/L, respectively (p = 0.002). Additionally, Zn was significantly higher in rural females (428 ± 204 μg/L) than the urban females (166 ± 103 μg/L; p = 0.0002). Finally, Zn was significantly higher in rural females (428 ± 204 μg/L) than males (172 ± 116 μg/L; p = 0.0028). In conclusion, Cu, Se, and Zn were higher in the rural group compared to the urban group, and the generally low Zn levels were confirmed in another cohort follow-up study.  相似文献   

16.
The purpose of the study was to determine the concentration of trace elements present in scalp hair sample of schizophrenic patients and to find out the relationship between trace elements level and nutritional status or socioeconomic factors. The study was conducted among 30 schizophrenic male patients and 30 healthy male volunteers. Patients were recruited from Bangabandhu Sheikh Mujib Medical University by random sampling. Hair trace element concentrations were determined by flame atomic absorption spectroscopy and analyzed by independent t test, Pearson’s correlation analysis, regression analysis, and analysis of variance (ANOVA). Mn, Zn, Ca, Cu, and Cd concentrations of schizophrenic patients were 3.8 ± 2.31 μg/gm, 171.6 ± 59.04 μg/gm, 396.23 ± 157.83 μg/gm, 15.40 ± 5.68 μg/gm, and 1.14 ± 0.89 μg/gm of hair sample, while those of control subjects were 4.4 ± 2.32 μg/gm, 199.16 ± 27.85 μg/gm, 620.9 ± 181.55 μg/gm, 12.23 ± 4.56 μg/gm, and 0.47 ± 0.32 μg/gm of hair sample, respectively. The hair concentration of Zn and Ca decreased significantly (p = 0.024; p = 0.000, respectively) and the concentration of Cu and Cd increased significantly (p = 0.021; p = 0.000, respectively) in schizophrenic patients while the concentration of Mn (p = 0.321) remain unchanged. Socioeconomic data reveals that most of the patients were poor, middle-aged and divorced. Mean body mass indices (BMIs) of the control group (22.26 ± 1.91 kg/m2) and the patient group (20.42 ± 3.16 kg/m2) were within the normal range (18.5−25.0 kg/m2). Pearson’s correlation analysis suggested that only Ca concentration of patients had a significant positive correlation with the BMI (r = 0.597; p = 0.000) which was further justified from the regression analysis (R 2 = 44%; t = 3.59; p = 0.002) and one-way ANOVA test (F = 3.62; p = 0.015). A significant decrease in the hair concentration of Zn and Ca as well as a significant increase in the hair concentration of Cu and Cd in schizophrenic patients than that of its control group was observed which may provide prognostic tool for the diagnosis and treatment of this disease. However, further work with larger population is suggested to examine the exact correlation between trace element level and the degree of disorder.  相似文献   

17.
The 109Cd binding assay of Eaton & Toal was critically evaluated and then used to assess the induction of cytosolic metal-binding ligands in rainbow trout exposed to Zn in the diet and/or in the water for 16 weeks. With purified rabbit Cd-Zn metallothionein (MT), 109Cd binding and total Cd recovery in the assay were linear up to 5 μg of protein; gel chromatography revealed a single peak. With heat-denatured extracts of gill, liver and intestine from control and Cd- and Zn-injected trout, 109Cd binding was generally linear with sample size. Gel chromatography demonstrated that 109Cd was bound by a protein with the same apparent weight as MT (∼ 11000 daltons), but significant binding occurred also at three other regions [molecular weight (mol wt) >70 000, 30000 and <3000]. In the dietary/waterborne Zn exposure, induced 109Cd-binding activity occurred not in the MT peak but in the low mol wt peak (< 3000). Activity in the gill rose in response to both dietary and waterborne Zn, but the liver did not respond. The maximum five-fold elevation in the gill was primarily a waterborne effect. In the intestine, the maximum rise was 25-fold due to both factors. The thresholds for induction were > 39 μg Zn| in water, and > 90 mg kg | in the diet, but only when waterborne Zn was also high. There was no correlation between 109Cd binding and acid soluble thiol levels, which tended to decline at higher Zn exposures.  相似文献   

18.
Abstract: The mottled (Mo) mouse is an animal model of the human congenital copper (Cu) deficiency disorder, Menkes' kinky hair syndrome. Intraperitoneal Cu chloride injections have been shown to produce clinical and morphological improvements in this mutant mouse. Cu injections (10 μg/g) on postnatal days 7 and 10 are shown to increase endogenous activity of the Cu-dependent enzyme dopamine-β-hydroxylase in the brains of Mo mice.  相似文献   

19.
Preference responses of zebrafish to 10−3, 10−4 and 10−5M alanine (Ala) were concentration- dependent. Behavioural responses to copper (Cu) and Cu + Ala mixtures were also assessed. Zebrafish avoided 100 and 10 μg Cu l−1, but not 1 μg l−1. Mixtures of 10−3 m Ala+ 100 μg Cu l−1 and 10 4 M Ala + 10 μg Cu 1−1 were avoided as intensely as was Cu alone. Responses to 10−3 M Ala + 10 or 1 μg Cu l−1 and 10 4 M Ala +1 μg Cu l−1 did not differ statistically from controls (no detectable preference or avoidance). These results demonstrate, firstly, that a concentration of a pollutant avoided by itself (10 μg Cu l−1) may not be avoided when encountered with an attractant chemical stimulus (Ala) and may suppress the preference for an attractant stimulus, and secondly, that a concentration of a pollutant not avoided by itself and not considered deleterious (1 μg Cu l−1) suppresses attraction to Ala (an important constituent of prey odours for many fishes).  相似文献   

20.
The purpose of this study is to evaluate the dietary intakes of calcium (Ca), phosphorus (P), magnesium (Mg), iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) and investigate their correlation with blood pressure and blood lipids. Targeting 258 healthy men and women, blood pressure was measured, and blood samples were collected to analyze serum lipids, and then the intakes of seven minerals were assessed through a food intake survey for 3 days using a 24-h recall method. The average age of the men and women was 49.55 and 49.19, respectively. The daily energy intake of the men was 1,830.57 kcal, which was significantly higher than that of women, 1,476.23 kcal (p?<?0.001). The mineral intake of the subjects was as follows: 450.95 mg/day for Ca, 915.24 mg/day for P, 279.23 mg/day for Mg, 12.60 mg/day for Fe, 8.25 mg/day for Zn, 1.23 mg/day for Cu, and 4.22 mg/day for Mn. These accounted for 63.83, 130.76, 90.74, 129.75, 97.50, 154.49, and 113.50 % of adequate intake or the recommended intake of each mineral, respectively. Subjects who did not satisfy the estimated average requirement were 74.00 % for Ca, 63.18 % for Mg, and 41.86 % for Zn. After adjusting for age, sex, BMI, and energy intake, Mg intake had a negative correlation with systolic blood pressure (SBP), and Cu intake had a significant negative correlation with SBP and diastolic blood pressure (DBP). Also, Mn intake was negatively correlated with DBP, serum total cholesterol, and triglycerides. Thus, it is concluded that the dietary intakes of Mg, Cu, and Mn may play an important role in controlling blood pressure and lipids in Korean adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号