首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nisin is a natural additive for conservation of food, and can also be used as a therapeutic agent. Nisin inhibits the outgrowth of spores, the growth of a variety of Gram-positive and Gram-negative bacteria. In this paper we present a potentially scalable and cost-effective way to purify commercial and biosynthesized in bioreactor nisin, including simultaneously removal of impurities and contaminants, increasing nisin activity. Aqueous two-phase micellar systems (ATPMS) are considered promising for bioseparation and purification purposes. Triton X-114 was chosen as the as phase-forming surfactant because it is relatively mild to proteins and it also forms two coexisting phases within a convenient temperature range. Nisin activity was determined by the agar diffusion assay utilizing Lactobacillus sake as a sensitive indicator microorganism. Results indicated that nisin partitions preferentially to the micelle rich-phase, despite the surfactant concentration tested, and its antimicrobial activity increases. The successful implementation of this peptide partitioning, from a suspension containing other compounds, represents an important step towards developing a separation method for nisin, and more generally, for other biomolecules of interest.  相似文献   

2.
Nisin is a 3.4-kDa antimicrobial peptide that, as a result of posttranslational modifications, contains unsaturated amino acids and lanthionine residues. It is applied as a preservative in various food products. The solubility and stability of nisin and nisin mutants have been studied. It is demonstrated that nisin mutants can be produced with improved functional properties. The solubility of nisin A is highest at low pH values and gradually decreases by almost 2 orders of magnitude when the pH of the solution exceeds a value of 7. At low pH, nisin Z exhibits a decreased solubility relative to that of nisin A; at neutral and higher pH values, the solubilities of both variants are comparable. Two mutants of nisin Z, which contain lysyl residues at positions 27 and 31, respectively, instead of Asn-27 and His-31, were produced with the aim of reaching higher solubility at neutral pH. Both mutants were purified to homogeneity, and their structures were confirmed by one- and two-dimensional 1H nuclear magnetic resonance. Their antimicrobial activities were found to be similar to that of nisin Z, whereas their solubilities at pH 7 increased by factors of 4 and 7, respectively. The chemical stability of nisin A was studied in the pH range of 2 to 8 and at a 20, 37, and 75 degrees C. Optimal stability was observed at pH 3.0. Nisin Z showed a behavior similar to that of nisin A. A mutant containing dehydrobutyrine at position 5 instead of dehydroalanine had lower activity but was significantly more resistant to acid-catalyzed chemical degradation than wild-type nisin Z.  相似文献   

3.
Turpin ER  Bonev BB  Hirst JD 《Biochemistry》2010,49(44):9594-9603
Nisin is a polymacrocyclic peptide antimicrobial with high activity against Gram-positive bacteria. Lanthionine and methyllanthionine bridges, closing the macrocycles, are stabilized by thioether bonds, formed between cysteines and dehydrated serine or threonine. The role of polypeptide backbone conformation in the formation of macrocycles A and B within cysteine mutants of nisin residues 1?12 is investigated here by molecular dynamics simulations. Enantiomeric combinational space of Cys3 and Cys7 and of Cys8 and Cys11 is examined for the preference of disulfide bond formation over helical turn formation within this region. A clear preference for spontaneous disulfide formation and closure of rings 3,7 and 8,11 is demonstrated for the D-Cys3, D-Cys7, L-Cys8, L-Cys11 nisin homologue, while interlinked rings A and B are obtained through disulfide bridges between L-Cys3 and D-Cys8 and between D-Cys7 and D-Cys11. This study offers a simple designer approach to solid phase synthesis of macrocyclic peptides and lantibiotic analogues.  相似文献   

4.
Nisin is a cationic antimicrobial peptide that belongs to the group of lantibiotics. It is thought to form oligomeric pores in the target membrane by a mechanism that requires the transmembrane electrical potential delta psi and that involves local pertubation of the lipid bilayer structure. Here we show that nisin does not form exclusively voltage-dependent pores: even in the absence of a delta psi, nisin is able to dissipate the transmembrane pH gradient (delta pH) in sensitive Lactococcus lactis cells and proteoliposomes. The rate of dissipation increases with the magnitude of the delta pH. Nisin forms pores only when the delta pH is inside alkaline. The efficiency of delta psi-induced pore formation is strongly affected by the external pH, whereas delta pH-induced pore formation is rather insensitive to the external pH. Nisin(1-12), an amino-terminal fragment of nisin, and (des-deltaAla5)-(nisin(1-32) amide have a strongly reduced capacity to dissipate the delta psi and delta pH in cytochrome c oxidase proteoliposomes and L. lactis cells. Both variants bind with reduced efficiency to liposomes containing negatively charged phospholipids, suggesting that both ring A and rings C to E play a role in membrane binding. Nisin(1-12) competes with nisin for membrane binding and antagonizes pore formation. These findings are consistent with the wedge model of nisin-induced pore formation.  相似文献   

5.
It is becoming increasingly apparent that innovations from the “golden age” of antibiotics are becoming ineffective, resulting in a pressing need for novel therapeutics. The bacteriocin family of antimicrobial peptides has attracted much attention in recent years as a source of potential alternatives. The most intensively studied bacteriocin is nisin, a broad spectrum lantibiotic that inhibits Gram-positive bacteria including important food pathogens and clinically relevant antibiotic resistant bacteria. Nisin is gene-encoded and, as such, is amenable to peptide bioengineering, facilitating the generation of novel derivatives that can be screened for desirable properties. It was to this end that we used a site-saturation mutagenesis approach to create a bank of producers of nisin A derivatives that differ with respect to the identity of residue 12 (normally lysine; K12). A number of these producers exhibited enhanced bioactivity and the nisin A K12A producer was deemed of greatest interest. Subsequent investigations with the purified antimicrobial highlighted the enhanced specific activity of this modified nisin against representative target strains from the genera Streptococcus, Bacillus, Lactococcus, Enterococcus and Staphylococcus.  相似文献   

6.
The lantibiotic nisin, a special case or not?   总被引:13,自引:0,他引:13  
Nisin is a 34-residue-long peptide belonging to the group A lantibiotics with antimicrobial activity against Gram-positive bacteria. The presence of dehydrated residues and lanthionine rings (thioether bonds) in nisin, imposing structural restrains on the peptide, make it an interesting case for studying the mode of action. In addition, the relatively high activity (nM range) of nisin against Gram-positive bacteria indicates that nisin may be a special case in the large family of pore-forming peptides antibiotics. In this review, we attempted to dissect the mode of action of nisin concentrating on studies that used model membranes or biological membranes. The picture that emerges suggests that in model membrane systems, composed of only phospholipids, nisin behaves similar to the antimicrobial peptide magainin, albeit with an activity that is much lower as compared to its activity towards biological membranes. This difference can be contributed to a missing factor which nisin needs for its high activity. Novel results have identified the factor as Lipid II, a precursor in the bacterial cell wall synthesis. The special high affinity interaction of nisin with Lipid II resulting in high activity and the active role of Lipid II in the pore-formation process make nisin a special case.  相似文献   

7.
The lantibiotic nisin is a potent antimicrobial substance, which contains unusual lanthionine rings and dehydrated amino acid residues and is produced by Lactococcus lactis. Recently, the nisin biosynthetic machinery has been applied to introduce lanthionine rings in peptides other than nisin with potential therapeutic use. Due to difficulties in the isolation of the proposed synthetase complex (NisBTC), mechanistic information concerning the enzymatic biosynthesis of nisin is scarce. Here, we present the molecular characterization of a number of nisin mutants that affect ring formation. We have investigated in a systematic manner how these mutations influence dehydration events, which are performed enzymatically by the dehydratase NisB. Specific mutations that hampered ring formation allowed for the dehydration of serine residues that directly follow the rings and are normally unmodified. The combined information leads to the conclusion that 1) nisin biosynthesis is an organized directional process that starts at the N terminus of the molecule and continues toward the C terminus, and 2) NisB and NisC are alternating enzymes, whose activities follow one after another in a repetitive way. Thus, the dehydration and cyclization processes are not separated in time and space. On the basis of these results and previous knowledge, a working model for the sequence of events in the maturation of nisin is proposed.Nisin is a lantibiotic produced by Lactococcus lactis, which has been known since 1928 (1, 2). This antimicrobial peptide is active against various Gram-positive bacteria and has attained commercial success as a food preservative (3). In addition to the wide industrial applications of nisin, it became also a model system to study various aspects of lantibiotic biosynthesis, regulation, and mode of action (2). Furthermore, recently, other applications of nisin have emerged. Its biosynthetic machinery can be successfully used to install dehydrated amino acids and lanthionine rings in peptides, which are either related or totally unrelated to nisin (411). This offers great opportunities to modulate the stability and activity of peptides that are used as therapeutics (8).The post-translational modified nisin molecule is classified as a member of the Group A lantibiotics (12). Mature nisin contains 34 amino acids, three of which are posttranslationally modified, and five thioether rings that are enzymatically formed upon cyclization of five free cysteines and five dehydroamino acid residues (Fig. 1). These peculiar modifications, which are very rare in nature, give nisin its exceptional stability against proteolysis and contribute greatly to its antimicrobial activity.Open in a separate windowFIGURE 1.Primary structure of prenisin and generated mutants. Dehydrated residues are shaded gray; serine 33 sometimes escapes dehydration and is shaded light gray. Serine at position 29 is never dehydrated in wild type prenisin. The impact of mutations on the dehydration pattern of new prenisin species is schematically depicted. Mutated residues are indicated by filled red circles. Newly formed dehydrated residues are pointed to by a black arrow. Letters A–E correspond to the five consecutive lanthionine rings in nisin.Nisin is synthesized ribosomally as a 57-amino acid residue-long polypeptide. Subsequently, it is directed to a putative synthetase complex that probably consists of three different proteins that include the dehydratase NisB, responsible for dehydration of serines and threonines to dehydroalanines and dehydrobutyrines, respectively; the cyclase NisC, which forms (methyl) lanthionine bridges between cysteines and dehydroamino acids; and the ABC transporter NisT, which performs transport across the lipid bilayer by consuming ATP. Newly synthesized and modified prenisin is still antimicrobially inactive. Only upon cleavage of the leader sequence that encompasses the first 23 amino acids by the dedicated protease NisP, an active molecule is liberated.Although there are data pointing to the existence of a synthetase complex that modifies nisin, such a complex has not been isolated so far. However, both NisB (13, 14) and NisC (13) were shown by specific antibody detection to localize at the cytoplasmic membrane, although some soluble signal was also detected. This localization gives NisBC the opportunity to interact with the transporter NisT, which is an integral membrane protein. Furthermore, co-immunoprecipitation and yeast two-hybrid studies suggested an interaction between members of the nisin modification machinery and nisin itself (13). The function of each member of the putative multimeric synthetase has been investigated in vivo by knock-out studies. It also has been demonstrated that subsequent steps in nisin biosynthesis can be performed separately. Dehydration, cyclization, and transport of the modified product were dissected in vivo, and also the dehydratase has been shown to perform enzymatic reactions without the presence of other members of the complex in vivo (7) although with very low efficiency. The cyclization activity of NisC was demonstrated in vitro (15), and the ABC transporter NisT was shown to be capable of transport of unmodified prenisin in vivo (10). Based on the available data, it is difficult to assess whether multimeric lanthionine complexes are indispensable for efficient nisin production and modification. However, in vivo localization studies and interaction experiments suggest that these proteins work in a concerted manner.Here, we present data that indicates a strong coordination between members of the nisin modification machinery. The analysis of sets of nisin mutants, where key residues that take part in ring formation as well as substitutions of residues that directly follow lanthionine structures, suggests a strong interdependency of dehydratase and cyclase activity. Moreover, the data indicate that these enzymes alternate during catalysis and that they are intertwined in time and space. Our data also suggest that nisin modification is an ordered process that proceeds consecutively from the N terminus of prenisin toward its C terminus. Based on the available literature data and the data presented here, we propose a model wherein nisin is being posttranslationally modified in consecutive steps from its N terminus toward its C terminus.  相似文献   

8.
The polypeptide nisin (100 U/ml) prevented malolactic fermentation in wines by indigenous or intentionally added lactic acid bacteria. Nisin (100 U/ml)-resistant mutants of Leuconostoc oenos were obtained and used with nisin in wine to carry out a pure-culture malolactic fermentation in the presence or absence of other lactic acid bacteria. Nisin degradation by mutants was not observed, and residual nisin was detectable in wines 4 months after it was added. Results indicated that nisin or nisin with resistant bacterial starter cultures can be used to control malolactic fermentation in wines.  相似文献   

9.
Nisin synthesis by Streptococcus lactis, strain MGU, grown as a combined culture together with Proteus vulgaris and Bacillus mesentericus under stationary conditions or with stirring does not depend on the quantity of inoculated associated cells. Nisin synthesis in the combined culture drops down by 10-20% at the initial pH 7.5 of the growth medium which is unfavourable for S. lactis producing nisin. The level of nisin biosynthesis does not rise when the pH of the medium is adjusted (either naturally or artificially) to 6.6-6.8 in the presence of glucose and yeast autolysate. S. lactis inhibits the growth of B. mesentericus when grown together with it whereas P. vulgaris inhibits the growth of S. lactis in their combined culture.  相似文献   

10.
Nisin A is the most extensively studied lantibiotic and has been used as a preservative by the food industry since 1953. This 34 amino acid peptide contains three dehydrated amino acids and five thioether rings. These rings, resulting from one lanthionine and four methyllanthionine bridges, confer the peptide with its unique structure. Nisin A has two mechanisms of action, with the N-terminal domain of the peptide inhibiting cell wall synthesis through lipid II binding and the C-terminal domain responsible for pore-formation. The focus of this study is the three amino acid ‘hinge’ region (N 20, M 21 and K 22) which separates these two domains and allows for conformational flexibility. As all lantibiotics are gene encoded, novel variants can be generated through manipulation of the corresponding gene. A number of derivatives in which the hinge region was altered have previously been shown to possess enhanced antimicrobial activity. Here we take this approach further by employing simultaneous, indiscriminate site-saturation mutagenesis of all three hinge residues to create a novel bank of nisin derivative producers. Screening of this bank revealed that producers of peptides with hinge regions consisting of AAK, NAI and SLS displayed enhanced bioactivity against a variety of targets. These and other results suggested a preference for small, chiral amino acids within the hinge region, leading to the design and creation of producers of peptides with hinges consisting of AAA and SAA. These producers, and the corresponding peptides, exhibited enhanced bioactivity against Lactococcus lactis HP, Streptococcus agalactiae ATCC 13813, Mycobacterium smegmatis MC2155 and Staphylococcus aureus RF122 and thus represent the first example of nisin derivatives that possess enhanced activity as a consequence of rational design.  相似文献   

11.
Aims: To characterize the genetic and biochemical features of nisin Q. Methods and Results: The nisin Q gene cluster was sequenced, and 11 putative orfs having 82% homology with the nisin A biosynthesis gene cluster were identified. Nisin Q production was confirmed from the nisQ‐introduced nisin Z producer. In the reporter assay, nisin Q exhibited an induction level that was threefold lower than that of nisin A. Nisin Q demonstrated an antimicrobial spectrum similar to those of the other nisins. Under oxidizing conditions, nisin Q retained a higher level of activity than nisin A. This higher oxidative tolerance could be attributed to the presence of only one methionine residue in nisin Q, in contrast to other nisins that contain two. Conclusions: The 11 orfs of the nisin producers were identical with regard to their functions. The antimicrobial spectra of the three natural nisins were similar. Nisin Q demonstrated higher oxidative tolerance than nisin A. Significance and Impact of the Study:  Genetic and biochemical features of nisin Q are similar to those of other variants. Moreover, owing to its higher oxidative tolerance, nisin Q is a potential alternative for nisin A.  相似文献   

12.
While nisin (lantibiotic), lacticin 3147 (lantibiotic) and vancomycin (glycopeptides) are among the best studied lipid II-binding antimicrobials, their relative activities have never been compared. Nisin and lacticin 3147 have been employed/investigated primarily as food preservatives, although they do have potential in terms of veterinary and clinical applications. Vancomycin is used exclusively in clinical therapy. We reveal a higher potency for lacticin 3147 (MIC 0.95?C3.8???g/ml) and vancomycin (MIC 0.78?C1.56???g/ml) relative to that of nisin (MIC 6.28?C25.14???g/ml) against the food-borne pathogen Listeria monocytogenes. A comparison of the activity of the three antimicrobials against nisin resistance mutants of L. monocytogenes also reveals that their susceptibility to vancomycin and lacticin 3147 changed only slightly or not at all. A further assessment of relative activity against a selection of Bacillus cereus, Enterococcus and Staphylococcus aureus targets revealed that vancomycin MICs consistently ranged between 0.78 and 1.56???g/ml against all but one strain. Lacticin 3147 was found to be more effective than nisin against B. cereus (lacticin 3147 MIC 1.9?C3.8???g/ml; nisin MIC 4.1?C16.7???g/ml) and E. faecium and E. faecalis targets (lacticin 3147 MIC from 1.9 to 3.8???g/ml; nisin MIC ??8.3???g/ml). The greater effectiveness of lacticin 3147 is even more impressive when expressed as molar values. However, in agreement with the previous reports, nisin was the more effective of the two lantibiotics against S. aureus strains. This study highlights that in many instances the antimicrobial activity of these leading lantibiotics are comparable with that of vancomycin and emphasizes their particular value with respect to use in situations including foods and veterinary medicine, where the use of vancomycin is not permitted.  相似文献   

13.
Nisin, a 3.4 kDa antimicrobial peptide produced by some Lactococcus lactis strains is the most prominent member of the lantibiotic family. Nisin can inhibit cell growth and penetrates the target Gram-positive bacterial membrane by binding to Lipid II, an essential cell wall synthesis precursor. The assembled nisin-Lipid II complex forms pores in the target membrane. To gain immunity against its own-produced nisin, Lactococcus lactis is expressing two immunity protein systems, NisI and NisFEG. Here, we show that the NisI expressing strain displays an IC50 of 73±10 nM, an 8–10-fold increase when compared to the non-expressing sensitive strain. When the nisin concentration is raised above 70 nM, the cells expressing full-length NisI stop growing rather than being killed. NisI is inhibiting nisin mediated pore formation, even at nisin concentrations up to 1 µM. This effect is induced by the C-terminus of NisI that protects Lipid II. Its deletion showed pore formation again. The expression of NisI in combination with externally added nisin mediates an elongation of the chain length of the Lactococcus lactis cocci. While the sensitive strain cell-chains consist mainly of two cells, the NisI expressing cells display a length of up to 20 cells. Both results shed light on the immunity of lantibiotic producer strains, and their survival in high levels of their own lantibiotic in the habitat.  相似文献   

14.
Nisin is a lanthionine antimicrobial effective against diverse Gram-positive bacteria and is used as a food preservative worldwide. Its action is mediated by pyrophosphate recognition of the bacterial cell wall receptors lipid II and undecaprenyl pyrophosphate. Nisin/receptor complexes disrupt cytoplasmic membranes, inhibit cell wall synthesis and dysregulate bacterial cell division. Gram-negative bacteria are much more tolerant to antimicrobials including nisin. In contrast to Gram-positives, Gram-negative bacteria possess an outer membrane, the major constituent of which is lipopolysaccharide (LPS). This contains surface exposed phosphate and pyrophosphate groups and hence can be targeted by nisin. Here we describe the impact of LPS on membrane stability in response to nisin and the molecular interactions occurring between nisin and membrane-embedded LPS from different Gram-negative bacteria. Dye release from liposomes shows enhanced susceptibility to nisin in the presence of LPS, particularly rough LPS chemotypes that lack an O-antigen whereas LPS from microorganisms sharing similar ecological niches with antimicrobial producers provides only modest enhancement. Increased susceptibility was observed with LPS from pathogenic Klebsiella pneumoniae compared to LPS from enteropathogenic Salmonella enterica and gut commensal Escherichia coli. LPS from Brucella melitensis, an intra-cellular pathogen which is adapted to invade professional and non-professional phagocytes, appears to be refractory to nisin. Molecular complex formation between nisin and LPS was studied by solid state MAS NMR and revealed complex formation between nisin and LPS from most organisms investigated except B. melitensis. LPS/nisin complex formation was confirmed in outer membrane extracts from E. coli.  相似文献   

15.
The antimicrobial activity of nisin against outer membrane lipopolysaccharide mutants of Salmonella typhimurium LT2 was investigated. Nisin sensitivity was associated with the extent of saccharide deletions from the outer membrane core oligosaccharide. The results indicated that the core oligosaccharide in lipopolysaccharide plays a role in nisin sensitivity.  相似文献   

16.
The antimicrobial activity of nisin against outer membrane lipopolysaccharide mutants of Salmonella typhimurium LT2 was investigated. Nisin sensitivity was associated with the extent of saccharide deletions from the outer membrane core oligosaccharide. The results indicated that the core oligosaccharide in lipopolysaccharide plays a role in nisin sensitivity.  相似文献   

17.
Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria.  相似文献   

18.
The emerging antibiotics-resistance problem has underlined the urgent need for novel antimicrobial agents. Lantibiotics (lanthionine-containing antibiotics) are promising candidates to alleviate this problem. Nisin, a member of this family, has a unique pore-forming activity against bacteria. It binds to lipid II, the essential precursor of cell wall synthesis. As a result, the membrane permeabilization activity of nisin is increased by three orders of magnitude. Here we report the solution structure of the complex of nisin and lipid II. The structure shows a novel lipid II-binding motif in which the pyrophosphate moiety of lipid II is primarily coordinated by the N-terminal backbone amides of nisin via intermolecular hydrogen bonds. This cage structure provides a rationale for the conservation of the lanthionine rings among several lipid II-binding lantibiotics. The structure of the pyrophosphate cage offers a template for structure-based design of novel antibiotics.  相似文献   

19.
Accumulating evidence suggests that bacteriocin production represents a probiotic trait for intestinal strains to promote dominance, fight infection, and even signal the immune system. In this respect, in a previous study, we isolated from the porcine intestine a strain of Streptococcus hyointestinalis DPC6484 that displays antimicrobial activity against a wide range of Gram-positive bacteria and produces a bacteriocin with a mass of 3,453 Da. Interestingly, the strain was also found to be immune to a nisin-producing strain. Genome sequencing revealed the genetic determinants responsible for a novel version of nisin, designated nisin H, consisting of the nshABTCPRKGEF genes, with transposases encoded between nshP and nshR and between nshK and nshG. A similar gene cluster is also found in S. hyointestinalis LMG14581. Notably, the cluster lacks an equivalent of the nisin immunity gene, nisI. Nisin H is proposed to have the same structure as the prototypical nisin A but differs at 5 amino acid positions—Ile1Phe (i.e., at position 1, nisin A has Ile while nisin H has Phe), Leu6Met, Gly18Dhb (threonine dehydrated to dehydrobutyrine), Met21Tyr, and His31Lys—-and appears to represent an intermediate between the lactococcal nisin A and the streptococcal nisin U variant of nisin. Purified nisin H inhibits a wide range of Gram-positive bacteria, including staphylococci, streptococci, Listeria spp., bacilli, and enterococci. It represents the first example of a natural nisin variant produced by an intestinal isolate of streptococcal origin.  相似文献   

20.
Nisin A is the most widely characterized lantibiotic investigated to date. It represents one of the many antimicrobial peptides which have been the focus of much interest as potential therapeutic agents. This has resulted in the search for novel lantibiotics and more commonly, the engineering of novel variants from existing peptides with a view to increasing their activity, stability and solubility.The aim of this study was to compare the activities of nisin A and novel bioengineered hinge derivatives, nisin S, nisin T and nisin V. The microtitre alamar blue assay (MABA) was employed to identify the enhanced activity of these novel variants against M. tuberculosis (H37Ra), M. kansasii (CIT11/06), M. avium subsp. hominissuis (CIT05/03) and M. avium subsp. paratuberculosis (MAP) (ATCC 19698). All variants displayed greater anti-mycobacterial activity than nisin A. Nisin S was the most potent variant against M. tuberculosis, M. kansasii and M. avium subsp. hominissuis, retarding growth by a maximum of 29% when compared with nisin A. Sub-species variations of inhibition were also observed with nisin S reducing growth of Mycobacterium avium subsp. hominissuis by 28% and Mycobacterium avium subsp. paratuberculosis by 19% and nisin T contrastingly reducing growth of MAP by 27% and MAC by 16%.Nisin S, nisin T and nisin V are potent novel anti-mycobacterial compounds, which have the capacity to be further modified, potentially generating compounds with additional beneficial characteristics. This is the first report to demonstrate an enhancement of efficacy by any bioengineered bacteriocin against mycobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号