首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Actin Depolymerizing Factor (ADF) gene family of Arabidopsis thaliana encodes 11 functional protein isovariants in four ancient subclasses. We report the characterization of the tissue-specific and developmental expression of all Arabidopsis ADF genes and the subcellular localization of several protein isovariants. The four subclasses exhibited distinct expression patterns as examined by qRT-PCR and histochemical assays of a GUS reporter gene under the control of individual ADF regulatory sequences. Subclass I ADFs were expressed strongly and constitutively in all vegetative and reproductive tissues except pollen. Subclass II ADFs were expressed specifically in mature pollen and pollen tubes or root epidermal trichoblast cells and root hairs, and these patterns evolved from an ancient dual expression pattern comprised of both polar tip growth cell types, still observed in the monocot Oryza sativa. Subclass III ADFs were expressed weakly in vegetative tissues, but were strongest in fast growing and/or differentiating cells including callus, emerging leaves, and meristem regions. The single subclass IV ADF was constitutively expressed at moderate levels in all tissues, including pollen. Immunocytochemical analysis with subclass-specific monoclonal antibodies demonstrated that subclass I isovariants localize to both the cytoplasm and the nucleus of leaf cells, while subclass II isovariants predominantly localize to the cytoplasm at the tip region of elongating root hairs and pollen tubes. The distinct expression patterns of the ADF subclasses support a model of ADF s co-evolving with the ancient and divergent actin isovariants.  相似文献   

2.
Song XF  Yang CY  Liu J  Yang WC 《Plant physiology》2006,141(3):966-976
The polar growth of plant cells depends on the secretion of a large amount of membrane and cell wall materials at the growing tip to sustain rapid growth. Small GTP-binding proteins, such as Rho-related GTPases from plants and ADP-ribosylation factors (ARFs), have been shown to play important roles in polar growth via regulating intracellular membrane trafficking. To investigate the role of membrane trafficking in plant development, a Dissociation insertion line that disrupted a putative ARF GTPase-activating protein (ARFGAP) gene, AT2G35210, was identified in Arabidopsis (Arabidopsis thaliana). Phenotypic analysis showed that the mutant seedlings developed isotropically expanded, short, and branched root hairs. Pollen germination in vitro indicated that the pollen tube growth rate was slightly affected in the mutant. AT2G35210 is specifically expressed in roots, pollen grains, and pollen tubes; therefore, it is designated as ROOT AND POLLEN ARFGAP (RPA). RPA encodes a protein with an N-terminal ARFGAP domain. Subcellular localization experiments showed that RPA is localized at the Golgi complexes via its 79 C-terminal amino acids. We further showed that RPA possesses ARF GTPase-activating activity and specifically activates Arabidopsis ARF1 and ARF1-like protein U5 in vitro. Furthermore, RPA complemented Saccharomyces cerevisiae glo3Delta gcs1Delta double mutant, which suggested that RPA functions as an ARFGAP during vesicle transport between the Golgi and the endoplasmic reticulum. Together, we demonstrated that RPA plays a role in root hair and pollen tube growth, most likely through the regulation of Arabidopsis ARF1 and ARF1-like protein U5 activity.  相似文献   

3.
Plants encode at least two ancient and divergent classes of actin, reproductive and vegetative, and each class produces several subclasses of actin isovariants. To gain insight into the functional significance of the actin isovariants, we generated transgenic Arabidopsis lines that expressed a reproductive actin, ACT1, under the control of the regulatory sequences of a vegetative actin gene, ACT2. In the wild-type plants, ACT1 is predominantly expressed in the mature pollen, growing pollen tubes, and ovules, whereas ACT2 is constitutively and strongly expressed in all vegetative tissues and organs, but not in pollen. Misexpression of ACT1 in vegetative tissues causes dwarfing of plants and altered morphology of most organs, and the effects are in direct proportion to protein expression levels. Similar overexpression of ACT2 has little effect. Immunolocalization of actin in leaf cells from transgenic plants with highest levels of ACT1 protein revealed massive polymerization, bundling, and reorganization of actin filaments. This phenomenon suggests that misexpression of ACT1 isovariant in vegetative tissues affects the dynamics of actin and actin-associated proteins, in turn disrupting the organization of actin cytoskeleton and normal development of plants.  相似文献   

4.
5.
In flowering plants, the interaction of pollen tubes with female tissues is important for the accomplishment of double fertilization. Little information is known about the mechanisms that underlie signalling between pollen tubes and female tissues. In this study, two Arabidopsis pollen tube‐expressed CrRLK1L protein kinases, Buddha's Paper Seal 1 (BUPS1) and BUPS2, were identified as being required for normal tip growth of pollen tubes in the pistil. They are expressed prolifically in pollen and pollen tubes and are localized on the plasma membrane of the pollen tube tip region. Mutations in BUPS1 drastically reduced seed set. Most of the bups1 mutant pollen tubes growing in the pistil exhibited a swollen pollen tube tip, leading to failure of fertilization. The bups2 pollen tubes had a slightly abnormal morphology but could still accomplish double fertilization. The bups1 bups2 double mutant exhibited a slightly enhanced phenotype compared to the single bups1 mutants. The BUPS1 proteins could form homomers and heteromers with BUPS2, whereas BUPS2 could only form heteromers with BUPS1. The BUPS proteins could interact with the Arabidopsis pollen‐expressed RopGEFs in the yeast two‐hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. The results indicated that the BUPSs may mediate normal polar growth of pollen tubes in the pistil.  相似文献   

6.
In flowering plants, penetration of the pollen tube through stigma, style, and transmitting tract is essential for delivery of sperm nuclei to the egg cells embedded deeply within female tissues. Despite its importance in plant reproduction, little is known about the underlying molecular mechanisms that regulate the navigation of the pollen tube through the stigma, style, and transmitting tract. Here, we report the identification and characterization of an Arabidopsis thaliana gene, VANGUARD1 (VGD1) that encodes a pectin methylesterase (PME)-homologous protein of 595 amino acids and is required for enhancing the growth of pollen tubes in the style and transmitting tract tissues. VGD1 was expressed specifically in pollen grain and the pollen tube. The VGD1 protein was distributed throughout the pollen grain and pollen tube, including the plasma membrane and cell wall. Functional interruption of VGD1 reduced PME activity in the pollen to 82% of the wild type and greatly retarded the growth of the pollen tube in the style and transmitting tract, resulting in a significant reduction of male fertility. In addition, the vgd1 pollen tubes were unstable and burst more frequently when germinated and grown on in vitro culture medium, compared with wild-type pollen tubes. Our study suggests that the VGD1 product is required for growth of the pollen tube, possibly via modifying the cell wall and enhancing the interaction of the pollen tube with the female style and transmitting tract tissues.  相似文献   

7.
Oxysterol-binding proteins (OSBPs) and oxysterol-binding-protein related proteins (ORPs) are encoded by most eukaryotic genomes examined to date; however, they have not yet been characterized in plants. Here we report the identification and characterization of PiORP1, an ORP of Petunia inflata that interacts with the cytoplasmic kinase domain of a receptor-like kinase, named PRK1, of P. inflata. PiORP1 is phosphorylated by PRK1 in vitro and therefore may be involved in PRK1 signaling during pollen development and growth. RNA gel blot analysis showed that PiORP1 and PRK1 had very similar expression patterns in developing pollen, mature pollen and pollen tubes. GFP fusion proteins of PiORP1 localized in the plasma membrane of pollen tubes at distinct foci and its PH domain alone was sufficient to mediate this localization. The sequence for the oxysterol-binding domain of PiORP1 was used to search the genome of Arabidopsis; 12 ORPs were identified and phylogenetic analysis revealed that they fell into two distinct clades, consistent with the ORPs of other eukaryotes. RT-PCR analysis showed that all 12 Arabidopsis ORPs were expressed; 10 were expressed in most of the tissues examined under normal growth conditions, but only three were expressed in pollen. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. GenBank accession number for PiORP1: DQ241801  相似文献   

8.
9.
Profilin is a low-molecular weight, actin monomer-binding protein that regulates the organization of actin cytoskeleton in eukaryotes, including higher plants. Unlike the simple human or yeast systems, the model plant Arabidopsis has an ancient and highly divergent multi-gene family encoding five distinct profilin isovariants. Here we compare and characterize the regulation of these profilins in different organs and during microspore development using isovariant-specific monoclonal antibodies. We show that PRF1, PRF2, and PRF3 are constitutive, being strongly expressed in all vegetative tissues at various stages of development. These profilin isovariants are also predominant in ovules and microspores at the early stages of microsporogenesis. In contrast, PRF4 and PRF5 are late pollen-specific and are not detectable in other cell types of the plant body including microspores and root hairs. Immunocytochemical studies at the subcellular level reveal that both the constitutive and pollen-specific profilins are abundant in the cytoplasm. In vegetative cell types, such as root apical cells, profilins showed localization to nuclei in addition to the cytoplasmic staining. The functional diversity of profilin isovariants is discussed in light of their spatio-temporal regulation during vegetative development, pollen maturation, and pollen tube growth.  相似文献   

10.
The signal-mediated and spatially controlled assembly and dynamics of actin are crucial for maintaining shape, motility, and tip growth of eukaryotic cells. We report that a novel Armadillo repeat protein in Arabidopsis thaliana, ARMADILLO REPEAT ONLY1 (ARO1), is of fundamental importance for polar growth and F-actin organization in tip-growing pollen tubes. ARO1 is specifically expressed in the vegetative cell of pollen as well as in the egg cell. ARO1-GFP (for green fluorescent protein) fusion proteins accumulate most notably in pollen tube tips and partially colocalize with F-actin in the shank of pollen tubes. ARO1 knockout results in a highly disorganized actin cytoskeleton, growth depolarization, and ultimately tube growth arrest. Tip-localized ARO1-GFP is spatially shifted toward the future site of tip growth, indicating a role of ARO1 in the signaling network controlling tip growth and regulating actin organization. After the pollen tube discharges its contents into the receptive synergid, ARO1-GFP colocalizes with emerging F-actin structures near the site of sperm cell fusion, suggesting additional participation in the mechanism of sperm cell tracking toward the female gametes. The variable localization of ARO1 in the cytoplasm, the nucleus, and at the plasma membrane, however, indicates a multifunctional role like that of beta-catenin/Armadillo and the p120 catenins.  相似文献   

11.
Pollen tubes must navigate through different female tissues to deliver sperm to the embryo sac for fertilization. Protein disulfide isomerases play important roles in the maturation of secreted or plasma membrane proteins. Here, we show that certain T-DNA insertions in Arabidopsis thaliana PDIL2-1, a protein disulfide isomerase (PDI), have reduced seed set, due to delays in embryo sac maturation. Reciprocal crosses indicate that these mutations acted sporophytically, and aniline blue staining and scanning electron microscopy showed that funicular and micropylar pollen tube guidance were disrupted. A PDIL2-1-yellow fluorescent protein fusion was mainly localized in the endoplasmic reticulum and was expressed in all tissues examined. In ovules, expression in integument tissues was much higher in the micropylar region in later developmental stages, but there was no expression in embryo sacs. We show that reduced seed set occurred when another copy of full-length PDIL2-1 or when enzymatically active truncated versions were expressed, but not when an enzymatically inactive version was expressed, indicating that these T-DNA insertion lines are gain-of-function mutants. Our results suggest that these truncated versions of PDIL2-1 function in sporophytic tissues to affect ovule structure and impede embryo sac development, thereby disrupting pollen tube guidance.  相似文献   

12.
In flowering plants, male gametes are delivered to female gametophytes by pollen tubes. Although it is important for sexual plant reproduction, little is known about the genetic mechanism that controls pollen germination and pollen tube growth. Here we report the identification and characterization of two novel mutants, gnom-like 2-1 ( gnl2-1 ) and gnl2-2 in Arabidopsis thaliana , in which the pollen grains failed to germinate in vitro and in vivo . GNL2 encodes a protein homologous to the adenosine diphosphate-ribosylation factor-guanine nucleotide exchange factors, GNOM and GNL1 that are involved in endosomal recycling and endoplasmic reticulum-Golgi vesicular trafficking. It was prolifically expressed in pollen grains and pollen tubes. The results of the present study suggest that GNL2 plays an important role in pollen germination.  相似文献   

13.
14.
张亮生  马成荣  戢茜  王翼飞 《遗传》2009,31(2):186-198
ET(Su(var), Enhancer of zeste (E(z)), and Trithorax)结构域基因家族是一组含有保守SET结构域的蛋白的统称, 它们参与蛋白甲基化, 影响染色体结构, 并且调控基因表达, 在植物发育中起着重要的作用。分析拟南芥和水稻中SET结构域基因家族进化关系, 对研究这一基因家族中各成员的功能有着重要的意义。我们系统地鉴定了47个拟南芥(Arabidopsis thaliana)和43个水稻(Orysa sativa japonica cultivar Nipponbare)的SET结构域基因, 染色体定位和基因复制分析表明SET结构域基因扩增是由片段复制和反转录引起的, 根据这些结构域差异和系统发育分析把拟南芥和水稻的SET结构域基因划分成5个亚家族。通过分析SET结构域基因家族在拟南芥和水稻各个发育阶段的表达谱, 发现SET结构域基因绝大部分至少在一个组织中表达; 大部分在花和花粉中高表达; 一些SET结构域基因在某些组织中有特异的表达模式, 表明与组织发育有密切的关系。在拟南芥和水稻中分别找到了4个差异表达基因。拟南芥4个差异基因都在花粉管高表达, 水稻4个差异基因有3个在雄性花蕊中高表达, 另一个在幼穗中高表达。  相似文献   

15.
16.
We have searched the Arabidopsis and rice (Oryza sativa) genomes for homologs of LRX1, an Arabidopsis gene encoding a novel type of cell wall protein containing a leucine-rich repeat (LRR) and an extensin domain. Eleven and eight LRX (LRR/EXTENSIN) genes have been identified in these two plant species, respectively. The LRX gene family encodes proteins characterized by a short N-terminal domain, a domain with 10 LRRs, a cysteine-rich motif, and a variable C-terminal extensin-like domain. Phylogenetic analysis performed on the conserved domains indicates the existence of two major clades of LRX proteins that arose before the eudicot/monocot divergence and then diversified independently in each lineage. In Arabidopsis, gene expression studies by northern hybridization and promoter::uidA fusions showed that the two phylogenetic clades represent a specialization into "reproductive" and "vegetative" LRXs. The four Arabidopsis genes of the "reproductive" clade are specifically expressed in pollen, whereas the seven "vegetative" genes are predominantly expressed in various sporophytic tissues. This separation into two expression classes is also supported by previous studies on maize (Zea mays) and tomato (Lycopersicon esculentum) LRX homologs and by information on available rice ESTs. The strong conservation of the amino acids responsible for the putative recognition specificity of the LRR domain throughout the family suggests that the LRX proteins interact with similar ligands.  相似文献   

17.
Growing pollen tubes of Tradescantia paludosa are protected from inhibition of growth at 41°C by a prior exposure to gradually increasing temperatures. Heat shock proteins (hsps) are not synthesized by pollen tubes as determined by labeling with [35S]methionine and two-dimensional gel electrophoresis, during either a heat shock at 41°C or a gradual temperature increase to 41°C. A comparison after two-dimensional electrophoresis of silver-stained spots and radioactive spots after autoradiography of an extract of ungerminated pollen mixed with a trace amount of [35S]methionine-labeled vegetative tissue heat shocked at 41°C to act as a hsps marker, indicates that the majority, if not all, of the major hsps are not present in the pollen grain at anthesis. The type of thermotolerance seen with pollen tubes can thus be achieved without the presence or the new synthesis of the hsps.  相似文献   

18.
The pollen receptor kinases (PRK) are critical regulators of pollen tube growth. The Arabidopsis genome encodes eight PRK genes, of which six are highly expressed in pollen tubes. The potential functions of AtPRK1 through AtPRK5, but not of AtPRK6,in pollen growth were analyzed in tobacco. Herein, AtPRK6 was cloned, and its function was identified. AtPRK6 was expressed specifically in pollen tubes. A yeast two-hybrid screen of AtPRK6 against 14 Arabidopsis Rop guanine nucleotide exchange factors (RopGEFs) showed that AtPRK6 interacted with AtRopGEF8 and AtRopGEF12. These interactions were confirmed in Arabidopsis mesophyll protoplasts. The interactions between AtPRK6 and AtRopGEF8/12 were mediated by the C-termini of AtRopGEF8/12 and by the juxtamembrane and kinase domain of AtPRK6, but were not dependent on the kinase activity. In addition, transient overexpression of AtPRK6::GFP in Arabidopsis protoplasts revealed that AtPRK6 was localized to the plasma membrane. Tobacco pollen tubes overexpressing AtPRK6 exhibited shorter tubes with enlarged tips. This depolarized tube growth required the kinase domain of AtPRK6 and was not dependent on kinase activity. Taken together, the results show that AtPRK6,through its juxtamembrane and kinase domains (KD), interacts with AtRopGEF8/12 and plays crucial roles in polarized growth of pollen tubes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号