首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extractive content of lignin and the brown-rot decay-resistance against Coniophora puteana and Poria placenta were studied in larch heartwood from different species and origin (Larix decidua var. decidua, L. decidua var. sudetica, L. kaempferi , L. × eurolepis). The study material consisted of 106 trees from a 39-year old provenance trial in France. The hot-water-soluble extractives were very variable (from5.66% to 20.50% of dry weight), but there was no significant variation between the investigated species and origins. In contrast, acetone extractives, the total amount of phenolics and lignin showed significant differences. The concentration of phenolics and lignin was significantly higher in L. kaempferi and in L. × eurolepis than in L. decidua. The total phenolics content was strongly correlated with decay-resistance in all investigated larch origins. A higher concentration of phenolics goes hand in hand with higher decay resistance and phenolics might therefore be a promising parameter to rapidly evaluate the level of decay-resistance in larch.  相似文献   

2.
The susceptibility of Scots pine (Pinus sylvestris L.) sap- and heartwood against the wood decaying brown-rot fungus (Coniophora puteana) was investigated after long-term forest fertilization at three different sites in central Finland. Different wood properties: wood extractives, wood chemistry, and wood anatomy were used to explain sap- and heartwood decay. Scots pine sapwood was more susceptible to decay than its heartwood. In one site, sapwood seemed to be more resistant to wood decay after forest fertilization whereas the susceptibility of heartwood increased. Significant changes in the sapwood chemistry were found between treatment and sites, however, no relationship between wood chemistry and wood decay was observed in the factor analysis. The results of this study show that there was an inconsistent relationship between decay susceptibility and fertilization and the measured physical and chemical attributes of the wood were not consistently correlated with the decay rate.  相似文献   

3.
Larch heartwood is appreciated for its good mechanical properties, its colour and its texture, and it is often used outdoors because of its natural durability (decay resistance). In this study the colour of larch heartwood was studied in relation to extractives and decay resistance, with the aim to estimate durability of larch heartwood from its colour. On a total of 293 trees colour in the CIE L*a*b* space (L* lightness, a* red/green axis, b* yellow/blue axis), extractives content (acetone and hot-water extractives, amount of phenolics) and the brown-rot decay resistance were determined. For calculating the relative decay resistance ( x), mass loss after inoculation for 16 weeks with two fungi [ Coniophora puteana (Schum.ex.Fr.) Karst., Poria placenta (Fr.) Cke, European standard EN 113] of larch heartwood samples was compared to Scots pine ( Pinus sylvestris L) sapwood reference samples (EN 350-1). Different species [Japanese larch ( Larix kaempferi Lamb.), Hybrid larch (Larix deciduax L. kaempferi) and European larch ( L. decidua Mill.)], provenances and age classes (38-year, >150-year) were included. Japanese larch heartwood turned out to be significantly more reddish (higher a*-values) compared to the European larch provenances. Reddishness of the hybrids was intermediate. The red hue (+a*) was strongly correlated with the amount of phenols ( r =0.84) and decay resistance ( r =0.63) and therefore suitable for prediction of both parameters. The results suggest that colour measurements of larch heartwood could be of benefit in tree breeding programs and for an optimised utilization of larch timber.  相似文献   

4.
The aim of this study was to compare natural durability of Siberian larch heartwood grown in Siberia and Sweden as well as European larch and Scots pine heartwood grown in Sweden. The study was based on standard in- and above ground tests lasting 12 years but laboratory decay tests with white and brown rot fungi was also included. Field test results showed that Siberian larch heartwood from Siberia was the most durable among the studied heartwoods with a decay index of 60 after 12 years in Simlångsdalen (Sweden), while European larch heartwood grown in Sweden, was decayed to failure before the end of the test. Scots pine heartwood was found to perform similarly to Siberian larch from Siberia. No relationship could be established between natural durability of examined heartwoods and their water absorption behavior; however, strong correlation to the total amount of extractives was observed. Scots pine and Siberian larch heartwood from Siberia had 12.7 and 19.6% total extractives content respectively but the extractives composition differs. The study revealed also that lignin and monosaccharide content could not explain the variations in decay resistance of the studied heartwoods. No similarities in the natural durability revealed by laboratory and field tests were observed.  相似文献   

5.
The heartwood of Caesalpinia echinata Lam. (Leguminosae) (commonly called brazilwood) is used for violin bow manufacture due to the unique vibrational and physical properties found in the wood. In the present work, the effects of Pycnoporus sanguineus (white-rot fungus), Gloeophyllum trabeum (brown-rot fungus), Chaetomium globosum (soft-rot fungus), and Cryptotermes brevis (dry-wood termite) on weight losses and chemical composition of extractives and cell-wall polysaccharides of C. echinata wood were investigated under laboratory conditions and compared to those obtained for Anadenanthera macrocarpa, Eucalyptus grandis, and Pinus elliottii. The heartwood of C. echinata was found to be as resistant as A. macrocarpa to the decay fungi tested and to the attack of the dry-wood termite. Pinitol and galactopinitol A were the main sugar alcohols found in the extractives of wood of C. echinata, their presence, however, did not appear related to the resistance to fungal decay. Although only incipient stages of decay were found, the modifications in cell-wall polysaccharide composition of heartwood of C. echinata by rot fungi were related to decrease in polymers other than xylans. The high resistance of C. echinata to xylophages is probably due to the presence of toxic extractives in the wood.  相似文献   

6.
7.
Non-structural carbohydrates in silver birch (Betula pendula Roth) wood were analysed in a 7-year-old clone and in five mature stems. The analysis was conducted to obtain more detailed information on seasonal fluctuation of these components and of the tree-to-tree variation and within stem variation. The sugars were analysed by GLC-MS. The smallest total soluble sugar amounts (consisting of sucrose, fructose, glucose, raffinose and myo-inositol) in young trees were measured during mid-summer (ca. 0.3%) and the largest while in dormancy (ca. 1.6% on wood dry weight basis). Raffinose was detected in autumn as a minor component. The proportion of monosaccharides and the amount of myo-inositol were largest during growth. Compared to other studies silver birch showed more evident seasonal fluctuation in soluble sugars than evergreen tree species. The sugar amount in mature stems was approximately at the same level as in young trees that had the same felling time. Tree-to-tree variation in the non-structural carbohydrates in the mature wood was fairly large. However, the amount of total soluble sugars, sucrose and glucose showed significant variation within the stem. The amount of these sugars was largest in samples that were taken close to the cambium. Starch was also detected close to pith. According to the heartwood definition and starch measurement results in this paper, it could be stated that silver birch does not form heartwood.  相似文献   

8.
In Norway spruce, a fungistatic reaction zone with a high pH and enrichment of phenolics is formed in the sapwood facing heartwood colonized by the white-rot fungus Heterobasidion parviporum. Fungal penetration of the reaction zone eventually results in expansion of this xylem defense. To obtain information about mechanisms operating upon heartwood and reaction zone colonization by the pathogen, hyphal growth and wood degradation were investigated using real-time PCR, microscopy, and comparative wood density analysis of naturally colonized trees with extensive stem decay. The hyphae associated with delignified wood at stump level were devoid of any extracellular matrix, whereas incipient decay at the top of decay columns was characterized by a carbohydrate-rich hyphal sheath attaching hyphae to tracheid walls. The amount of pathogen DNA peaked in aniline wood, a narrow darkened tissue at the colony border apparently representing a compromised region of the reaction zone. Vigorous production of pathogen conidiophores occurred in this region. Colonization of aniline wood was characterized by hyphal growth within polyphenolic lumen deposits in tracheids and rays, and the hyphae were fully encased in a carbohydrate-rich extracellular matrix. Together, these data indicate that the interaction of the fungus with the reaction zone involves a local concentration of fungal biomass that forms an efficient translocation channel for nutrients. Finally, the enhanced production of the hyphal sheath may be instrumental in lateral expansion of the decay column beyond the reaction zone boundary.To grow to great heights, trees continually replace their water- and nutrient-conducting elements. Older elements, such as the heartwood that is formed in many trees, gradually become nonconductive. In contrast to the living sapwood, heartwood lacks active defense mechanisms against microbes. However, lignin, the polymer coating cell wall polysaccharides, is highly resistant to microbial degradation. In fact, white-rot fungi, besides having evolved the ability to tolerate or detoxify the secondary metabolites accumulating in heartwood, are the only organisms capable of efficiently degrading lignin. Following establishment in the heartwood of living trees, the colonies of pathogenic white-rot fungi expand and eventually also threaten the conductive sapwood.The white-rot fungus Heterobasidion annosum sensu lato, composed of three species with overlapping geographic distributions and host ranges in Europe (23), is the most important pathogen of Norway spruce (Picea abies L. Karst) in boreal forests. Primary infection of Norway spruce stands by H. annosum sensu lato takes place through fresh thinning stumps or wounds on roots and at the base of the stem. Basidiospores landing on these entrance points give rise to mycelia which colonize the root systems, and eventually the fungus spreads into the stem heartwood. At sites infested with Heterobasidion parviporum, a species primarily restricted to Norway spruce, roots of saplings can become infected by the fungus after around 10 years of growth (25). Stem colonization usually initiates only after the heartwood has started to develop, which in Norway spruce takes place in trees 25 to 40 years old (17). Due to relatively rapid axial spread within heartwood, the decay column caused by H. annosum sensu lato often is up to 10 m high in the stems of mature Norway spruce trees.In response to sapwood challenge by an expanding heartwood-based colony of H. annosum sensu lato, Norway spruce forms a so-called reaction zone (RZ) in the border area between healthy sapwood and colonized heartwood. This xylem defense is characterized by high pH due to increased carbonate content and enrichment of phenolic compounds, particularly lignans, some of which have shown antifungal properties in bioassays (14, 30, 31). Although several wood decay fungi are able to eventually penetrate the RZ regions formed in trees, the strategies employed by fungi to breach these unique defense barriers are poorly understood (24). The purpose of this study was to obtain information about the mechanisms operating in heartwood colonization and expansion of the decay column via penetration of the RZ. To do this, we examined spatial growth of H. parviporum and the associated substrate exploitation patterns within naturally colonized mature stems of Norway spruce.  相似文献   

9.
倒木是高寒森林生态系统重要的碳(C)库和养分库,其不同分解阶段的质量变化,是认识倒木分解过程中C和养分释放的重要基础。以一个分解序列的岷江冷杉(Abies faxoniana)倒木为研究对象,研究了心材、边材和树皮在5个分解阶段的C:N:P化学计量特征,以及木质素和纤维素含量动态。结果显示:I至III分解阶段,随着分解程度加深,树皮C含量升高,而心材和边材C含量降低,从IV分解阶段开始倒木各组分C含量均开始显著降低。除III分解阶段的心材外,倒木各组分N含量总体表现为随着分解程度加深而增加的趋势,除边材N含量在V分解阶段时显著升高外,其余组分均未达到显著性水平。心材和树皮P含量表现为先降后升的变化趋势,最小值分别出现在III和II分解阶段;边材P含量表现为随着分解程度加深而增加。在同一分解阶段,树皮相对于边材和心材均具有最低的C:N:P化学计量比,易分解比例Fm也表明树皮更易于分解。边材在I和II分解阶段的C:N:P化学计量比最高,心材在III到V分解阶段C:N:P化学计量比最高。心材C:P、树皮和边材的C:N和C:P临界值与N和P的初始值成反比。纤维素含量随着倒木分解而降低,不同分解阶段的纤维素含量表现为:心材>边材>树皮;但木质素含量随着分解程度加深而增加,表现为:树皮>边材>心材;倒木3个组分纤维素含量下降均快于木质素,此外,IV和V分解阶段的树皮木质素与纤维素比值显著增高,且一直处于较高水平。统计分析结果表明:倒木N含量显著影响不同分解阶段木质素和纤维素分解。由生态化学计量学理论推测:树皮分解前期易受N限制,整个分解阶段均易受P限制,心材和边材在整个分解阶段均易受N和P限制。  相似文献   

10.
11.
Natural decay resistance of teak wood grown in home-garden forestry and the factors influencing decay resistance were determined in comparison with that of a typical forest plantation. Accelerated laboratory tests were conducted on 1800 wood samples drawn from 15 trees of three planted sites. Analysis of variance based on a univariate mixed model showed that planted site, fungal species, and their interaction terms were important sources of variation in decay resistance. With increasing decay resistance from centre to periphery of the heartwood, radial position was a critical factor and the interaction effect of fungal species × radial position was significant in influencing the durability. No significant differences were found in decay resistance either between the opposite radii or due to the various possible interaction terms of radii with the site, fungal species and radial position. There were significant differences in decay resistance against brown-rot fungi between wet and dry sites of home-garden teak although differences against white-rot fungi were non-significant among the three planted sites. Polyporus palustris was the more aggressive brown-rot fungus than Gloeophyllum trabeum. The higher susceptibility of wet site home-garden teak to brown-rot decay was associated with a paler colour of the wood and lower extractive content.  相似文献   

12.
Conifers decrease the amount of biomass apportioned to leaves relative to sapwood in response to increasing atmospheric evaporative demand. We determined how these climate-driven shifts in allocation affect the aboveground water relations of ponderosa pine growing in contrasting arid (desert) and humid (montane) climates. To support higher transpiration rates, a low leaf:sapwood area ratio (AL/AS) in desert versus montane trees could increase leaf-specific hydraulic conductance (KL). Alternatively, a high sapwood volume:leaf area ratio in the desert environment may increase the contribution of stored water to transpiration. Transpiration and hydraulic conductance were determined by measuring sap flow (JS) and shoot water potential during the summer (June-July) and fall (August-September). The daily contribution of stored water to transpiration was determined using the lag between the beginning of transpiration from the crown at sunrise and JS. In the summer, mean maximum JS was 31.80LJ.74 and 24.34Dž.05 g m-2 s-1 for desert and montane trees (a 30.6% difference), respectively. In the fall, JS was 25.33NJ.52 and 16.36dž.64 g m-2 s-1 in desert and montane trees (a 54.8% difference), respectively. JS was significantly higher in desert relative to montane trees during summer and fall (P<0.05). Predawn and midday shoot water potential and sapwood relative water content did not differ between environments. Desert trees had a 129% higher KL than montane trees in the summer (2.41᎒-5 versus 1.05᎒-5 kg m-2 s-1 MPa-1, P<0.001) and a 162% higher KL in the fall (1.97᎒-5 versus 0.75᎒-5 kg m-2 s-1 MPa-1, P<0.001). Canopy conductance decreased with D in all trees at all measurement periods (P<0.05). Maximum gC was 3.91 times higher in desert relative to montane trees averaged over the summer and fall. Water storage capacity accounted for 11 kg (11%) and 10.6 kg (17%) of daily transpiration in the summer and fall, respectively, and did not differ between desert and montane trees. By preventing xylem tensions from reaching levels that cause xylem cavitation, high KL in desert ponderosa pine may facilitate its avoidance. Thus, the primary benefit of low leaf:sapwood allocation in progressively arid environments is to increase KL and not to increase the contribution of stored water to transpiration.  相似文献   

13.
Abstract: The possible roles of oxalic acid, veratryl alcohol, and manganese were investigated in relation to lignin biodegradation by white-rot basidiomycetes. Oxalate inhibited both lignin peroxidase (LiP) and manganese-peroxidase (MnP). and was decarboxylated by the mediation of veratryl alcohol and Mn. Oxalate was shown to regulate the mineralization of lignin in the in vivo system of Phanerochaete chrysosporium . In the brown-rot wood decay process, oxalic acid may serve as an acid catalyst as well as an electron donor for the Fenton reaction, to breakdown cellulose and hemicellulose. Oxaloacetase and glyoxylate oxidase may play a key role in production of oxalic acid by white-rot and brown-rot basidiomycetes such as Phanerochaete chrysosporium, Coriolus versicolor and Tyromyces palustris . A possible role of oxalate metabolism is discussed in relation to the physiology of wood-rotting fungi.  相似文献   

14.
Thomas Ranius 《Oecologia》2001,126(2):208-215
A species rich beetle fauna is associated with old, hollow trees. Many of these species are regarded as endangered, but there is little understanding of the population structure and extinction risks of these species. In this study I show that one of the most endangered beetles, Osmoderma eremita, has a population structure which conforms to that of a metapopulation, with each tree possibly sustaining a local population. This was revealed by performing a mark-release-recapture experiment in 26 trees over a 5-year period. The spatial variability between trees was much greater than temporal variability between years. The population size was on average 11 adults tree-1 year-1, but differed widely between trees (0-85 adults tree-1 year-1). The population size in each tree varied moderately between years [mean coefficient of variation (C.V.)=0.51], but more widely than from sampling errors alone (P=0.008, Monte Carlo simulation). The population size variability in all trees combined, however, was not larger than expected from sampling errors alone in a constant population (C.V.=0.15, P=0.335, Monte Carlo simulation). Thus, the fluctuations of local populations cancel each other out when they are added together. This pattern can arise only when the fluctuations occur asynchronously between trees. The asynchrony of the fluctuations justifies the assumption usually made in metapopulation modelling, that local populations within a metapopulation fluctuate independently of one another. The asynchrony might greatly increase persistence time at the metapopulation level (per stand), compared to the local population level (per tree). The total population size of O. eremita in the study area was estimated to be 3,900 individuals. Other localities sustaining O. eremita are smaller in area, and most of these must be enlarged to allow long-term metapopulation persistence and to satisfy genetic considerations of the O. eremita populations.  相似文献   

15.
Mangrove partitioning and storage of macronutrients and trace metals were examined in different arid coastal settings of Western Australia. Total living biomass in three Rhizophora stylosa forests, which ranged from 233 to 289 t DW ha-1, was significantly greater than biomass in three Avicennia marina forests (range: 79-155 t DW ha-1). Although prop roots and stems were the largest single tree components for R. stylosa and A. marina, respectively, most nutrients were stored in leaves and living roots of both species. However, only a small fraction of the total nutrient pool was vested in tree biomass; the vast bulk was in soils. A large below-ground pool of dead fine roots was identified at all stands, equivalent to 36-88% DW of total living tree biomass. The amount of Ca, S, Cl, Na, Si, Fe, Mn, Zn, B, Mo and Cu vested in dead roots of both species was greater than in the total living tree biomass. The proportion of Fe and S vested in live and dead roots was exceptionally large, consistent with previous evidence of metal plaques on mangrove roots. Sulphur, iron and zinc in dead roots of both species constituted the bulk of these metals. R. stylosa trees preferentially accumulated more Mg, S, Cl, Na, Si, Fe, Mn, B and Mo than A. marina trees. Proportionally greater storage of P, N, Ca, K, Cu and Zn occurred in two of the three A. marina forests. Foliar concentrations of Mg, S, Mn, B and Mo in mangrove leaves were at the high end of the range reported for other tropical trees, but other elemental concentrations were at the low or mid-range. Nitrogen limitation in these forests is implied by a positive correlation between total tree N and net canopy production and by a lower percentage of ecosystem N in tree biomass as compared with other forests. Unlike terrestrial forests where a large proportion of nutrient capital is vested in floor litter, most elements in these mangrove forests are stored in dead roots. A large reservoir of dead roots below the forest floor may serve as a conservation mechanism, particularly in such arid oligotrophic environments.  相似文献   

16.
A new method for the determination of the lignin in cork has been reported. This procedure gives values ca. 25–30%. It is based on the colorimetric estimation of the lignin released by autoclaving with alkali. Using this method it was shown that cork is highly resistant to decay by brown-rot wood-destroying molds. This is attributed to the protective action of the suberin or to the presence in the cork of substances toxic to the molds.  相似文献   

17.
Liu S  Lu H  Hu R  Shupe A  Lin L  Liang B 《Biotechnology advances》2012,30(4):785-810
Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars. At higher acid concentration and higher temperature the hydrolysis produced more xylose monomers in a comparatively shorter period of reaction time. Xylose is the most abundant monomeric sugar in the hydrolysate. The other comparatively small amounts of monomeric sugars include arabinose, glucose, rhamnose, mannose and galactose. Acetic acid, formic acid, furfural, HMF and other byproducts are inevitably generated during the acid hydrolysis process. Short reaction time is preferred for the hydrolysis of hot-water wood extracts. Acid hydrolysis presents a perfect opportunity for the removal or separation of aromatic materials from the wood extract/hydrolysate. The hot-water wood extract hydrolysate, after solid-removal, can be purified by Nano-membrane filtration to yield a fermentable sugar stream. Fermentation products such as ethanol can be produced from the sugar stream without a detoxification step.  相似文献   

18.
The effect of overall oxygen mass transfer coefficient (kLa) on the conversion of xylose to xylitol by Candida guilliermondii FTI 20037 was investigated in batch experiments. Rice straw hemicellulose hydrolysate obtained by acid hydrolysis was employed as a xylose-rich medium. The results showed that this bioconversion strongly depended on the aeration rate. The maximum volumetric productivity (0.52 g/l hу) and the highest xylitol yield (0.73 g/g) were achieved at an overall oxygen mass transfer coefficient of 15 hу. Under these conditions 80% efficiency in relation to theoretical yield was attained.  相似文献   

19.
McDowell  Susan C.  Turner  David P. 《Oecologia》2002,133(2):102-111
We quantified the physiological costs and the total amount of resources allocated to reproduction in two closely related species of Rubus, one of which is invasive. These two species share several morphological and life-history characteristics and grow together in the Pacific Northwestern United States. Reproductive effort was manipulated in canes of both species by removing flower buds. The non-invasive species, R. ursinus, exhibited significantly greater water stress in the reproductive canes, as indicated by lower leaf water potential (O) and reduced stomatal conductance (gs). This species also showed a reduction in leaf nitrogen concentration ([N]) associated with reproduction. Combined, these factors led to reduced photosynthesis (A) on a diurnal basis, lower water-use efficiency as inferred from '13C, and reduced photosynthetic capacity. All of these effects were more pronounced during the fruiting stage than in the flowering stage. The invasive species, R. discolor, showed no changes in water stress, [N], '13C, or A associated with reproduction. A model was used to estimate total gross photosynthesis (Agross) for reproductive and non-reproductive canes of both species over cane lifetime. Reproduction was associated with a greater decline in Agross for the non-invasive R. ursinus than for the invasive R. discolor. Although R. discolor allocated more resources directly to flowers and fruit than R. ursinus, the invasive species had significantly lower reproductive effort, or total amount of resources diverted from vegetative activity to reproduction, than the non-invasive species. By minimizing the reduction of photosynthesis associated with reproduction, this invasive species may be able to minimize the trade-offs commonly associated with reproduction.  相似文献   

20.
We focused in selecting four fungi, naturally living in Eucalyptus sp. fields, for application in accelerating stump decay. The wood-rot fungi Pycnoporus sanguineus (Ps), Lentinus bertieri (Lb) and Xylaria sp. (Xa) were isolated from Eucalyptus sp. field and the fungus Lentinula edodes (Led) was obtained from a commercial strain. All fungi were studied according to their capacity to degrade eucalyptus urograndis wood. In order to evaluate mass losses of seven years old eucalyptus urograndis' wood test blocks from heartwood were prepared added to glass flasks with red clay soil. The humidity of the soil was adjusted with 50 and 100% of its water retention capacity. Mass loss evaluations occurred at 30 until 120 days after eucalyptus wood degradation. Chemical analysis and soil pH were measured only in the last evaluation. Mycelial growth assays with potato-dextrose-agar, malt-agar and sawdust-dextrose-agar at three temperatures was carried out in order to get information about the best conditions of fungi growth. On the 120th day, Ps and Lb showed good capacity of wood degradation by leading to a high mass loss in soil with highest humidity. These fungi were the best consumers of lignin, hemicellulose, cellulose and extractives, caused acidification in the soil. Ps and Lb had faster mycelial growth in sawdust-dextrose-agar, especially in high temperature, comparing to Xa and Led. Xa and Led are not good eucalyptus urograndis heartwood degraders, because they consume preferentially hemicellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号