首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
B P Babbitt  L Huang 《Biochemistry》1985,24(9):2186-2194
We have measured the equilibrium binding of dioleoylphosphatidylcholine vesicles (800-A diameter) containing various densities of incorporated palmitoyl-alpha-bungarotoxin (PBGT) to acetylcholine receptor (AchR) enriched microsac membranes. We have previously shown that these PBGT vesicles bind specifically to the microsacs mediated by direct interactions with the AchRs [Grant, S. W., Babbitt, B. P., West, L. K., & Huang, L. (1982) Biochemistry 21, 1274-1279]. The percent binding of liposomal lipid and associated PBGT to excess AchR sites, as well as the inhibition of binding by pretreatment of microsacs with excess alpha-bungarotoxin (alpha BGT), was strongly dependent upon the protein/lipid molar ratio of the vesicles. In addition, there existed a threshold level of approximately six PBGT molecules per vesicle at which the binding increased dramatically. The apparent association constant, KAapp, for lipid vesicle-microsac membrane binding increased approximately 4800-fold (from 3.95 X 10(4) to 1.90 X 10(8) M-1) due to an increase of 20-fold in the vesicle-associated PBGT surface density. Direct competition for binding to microsac membranes between vesicles with different PBGT/lipid molar ratios indicated that multivalent binders could easily replace binders of lower valency when receptor sites were limited. Measurement of the temperature dependence of the KAapp indicated that weak (low valency) and medium strength (intermediate valency) PBGT vesicle binders bound to microsacs in a fashion similar to the binding of alpha BGT and PBGT to detergent-solubilized AchRs. Strong PBGT vesicle binders (high valency) appear to bind by a somewhat different mechanism. All results are discussed in terms of the effects of ligand (PBGT) valency on the binding strength of vesicles to microsac membranes.  相似文献   

2.
B Babbitt  L Huang  E Freire 《Biochemistry》1984,23(17):3920-3926
The interactions of palmitoyl-alpha-bungarotoxin (PBGT) with dipalmitoylphosphatidylcholine (DPPC) bilayers have been studied by using high-sensitivity differential scanning calorimetry together with steady-state and time-resolved phosphorescence and fluorescence spectroscopy. The incorporation of PBGT into large single lamellar vesicles causes a decrease in the phospholipid phase transition temperature (Tm), a broadening of the heat capacity function, and a decrease in the enthalpy change associated with the phospholipid gel to liquid-crystalline transition. Analysis of the dependence of this decreased enthalpy change on the protein/lipid molar ratio indicates that each PBGT molecule exhibits a localized effect upon the bilayer, preventing approximately six lipid molecules from participating in the lipid phase transition. Additional calorimetric experiments indicate that binding to acetylcholine receptor enriched membranes causes a small increase in the Tm of the PBGT/DPPC vesicles. Steady-state fluorescence depolarization measurements employing 1,6-diphenyl-1,3,5-hexatriene (DPH) indicate that the association of PBGT with the phospholipid bilayer decreases the apparent order of the bulk lipid below Tm while increasing the order above Tm. These results have been further supported by rotational mobility measurements of erythrosin-labeled PBGT associated with giant (about 2-micron) unilamellar vesicles composed of dielaidoylphosphatidylcholine or dioleoylphosphatidylcholine using the time-dependent decay of delayed fluorescence/phosphorescence emission anisotropy. Rotational correlation times in the submillisecond time scale (about 30 microseconds) indicate that the protein is highly mobile in the fluid phase and that below Tm the rotational mobility is only slightly restricted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Twelve fragments of bovine serum albumin, isolated following limited tryptic or peptic hydrolysis, have been studied to define secondary structure and locate ligand-binding sites. Based on circular dichroism, the conformational pattern of albumin (68% alpha helix and 18% beta structure) is substantially retained by individual fragments, indicating that secondary configuration is locally determined and is not destroyed during the cleavage process nor during fragment purification. The strong bilirubin-binding site of bovine serum albumin is present in 3 of the 12 fragments. Residues 186-238 are common to the three fragments and absent from those fragments which do not bind bilirubin; consequently the strong bilirubin-binding site is suggested to involve this region. By similar reasoning, the presence of palmitate-binding sites in some fragments and not in others indicates that the three strongest sites for the binding of palmitate are located in the carboxyl-terminal two-thirds of the molecule. The first site (KA approximately 2 X 10(7) M-1) is suggested as residues 377-503; the second site (KA approximately 8 X 10(6) M-1), residues 239-306; the third site (KA approximately 2 X 10(6) M-1), residues 307-377. Bromocresol Green, a reagent used in the assay of ablumin, was bound by fragments rougly in proportion to their size but showed particular affinity for the region of the strong bilirubin-binding site. The fluorescent probe, 8-anilino-1-naphthalensulfonate, was in general bound by large fragments, supporting the concept that this ligand is held principally in clefts between domains of the macromolecule.  相似文献   

4.
A thyroid hormone binding protein(s) has been characterized in the cytosol of fetal rat brain cells in primary cultures. This protein is closely related to the one described in brain supernatants with respect to its electrophoretic mobility, binding kinetic parameters and estimated molecular weight (65 000 daltons). However, in contrast to the brain cytosolic binding protein, two classes of affinity sites for triiodothyronine (T3) and thyroxine (T4) have been demonstrated: a high affinity site (KA = 1.2-3.7(3) X 10(9) M-1 for T3 and KA = 3.7-5 X 10(8) M-1 for T4) and a low affinity site (KA = 0.8-1.4 X 10(8) M-1 for T3 and 1.6-2.9 X 10(7) M-1 for T4). The results are discussed with respect to their cellular significance.  相似文献   

5.
To understand the mechanism of diphtheria toxin membrane translocation, the toxin was entrapped within lipid vesicles, and its low pH-induced translocation across the lipid bilayer was measured. Proteolysis and resistance to guanidinium chloride denaturation were used to demonstrate that the toxin molecules were entrapped. Low pH-induced movement of entrapped toxin to the outer (trans) face of the bilayer was assayed by the binding of external streptavidin to biotin-labeled entrapped toxin. Complete translocation was quantified by the amount of protein released into the external medium. Using whole toxin, it was found that the A fragment was efficiently translocated, but the B fragment was not. This was true both in the low temperature (A domain folded) and high temperature (A domain unfolded) toxin conformations previously identified [Jiang J. X., Abrams, F. S., and London, E. (1991) Biochemistry 30, 3857-3864]. Remarkably, even isolated fragment A appeared to self-translocate under some conditions. Toxin-induced translocation may partly result from formation of a nonspecific toxin-induced pore. This idea is supported by the toxin-induced release of fluorescent dextrans coentrapped within the vesicles. However, low pH-induced exposure of entrapped toxin on the outside of the membrane was conformation dependent. Exposure was greatest for the high temperature conformation. This suggests the existence of a more specific translocation process. The nature and relationship of these processes, and their relative roles in translocation in vivo are discussed.  相似文献   

6.
alpha-Bungarotoxin (alpha-BGT), a snake venom polypeptide, interacts potently and specifically with a nicotinic receptor population in neuronal tissue. However, the identity of this site is unclear, because, unlike at the neuromuscular junction and in electroplax, in nervous tissue the toxin does not block nicotinic cholinergic responses. Therefore, we sought endogenous compounds other than acetylcholine that could interact with the neuronal alpha-BGT site. In the present experiments, thymopoietin, a polypeptide isolated from the thymus, is shown to inhibit potently alpha-BGT binding to brain membranes in a dose-dependent manner (IC50 = 3.1 nM). This effect was not shared by a wide variety of other peptides, including thysplenin, a closely related polypeptide. Thymopoietin did not inhibit the binding of other radioligands known to interact with different populations of cholinergic receptors, such as [3H]nicotine and [3H]methylcarbachol, which bind to nicotinic receptors, or [3H]quinuclidinylbenzilate, which binds to muscarinic receptors. These results show that thymopoietin potently and specifically affects 125I-alpha-BGT binding to brain membranes and suggest that thymopoietin might be an endogenous ligand for alpha-BGT receptors in neuronal tissue.  相似文献   

7.
P A Bartlett  C K Marlowe 《Biochemistry》1987,26(26):8553-8561
A number of phosphonamidate and phosphonate tripeptide analogues have been studied as transition-state-analogue inhibitors of the zinc endopeptidase thermolysin. Those with the form Cbz-GlyP(Y)Leu-X [ZGP(Y)LX, X = NH2 or amino acid, Y = NH or O linkage] are potent (Ki = 9-760 nM for X = NH, 9-660 microM for X = O) but otherwise ordinary in their binding behavior, with second-order rate constants for association (kon) greater than 10(5) M-1 s-1. Those with the form Cbz-XP(Y)-Leu-Ala [ZXP(Y)LA,XP = alpha-substituted phosphorus amino acid analogue] are similarly potent (Ki for ZFPLA = 68 pM) but slow binding (kon less than or equal to 1300 M-1 s-1). Several kinetic mechanisms for slow binding behavior are considered, including two-step processes and those that require prior isomerization of inhibitor or enzyme to a rare form. The association rates of ZFPLA and ZFP(O)LA are first order in inhibitor concentration up to 1-2 mM, indicating that any loose complex along the binding pathway must have a dissociation constant above this value. The crystallographic investigation described in the preceding paper [Holden, H. M., Tronrud, D. E., Monzingo, A. F., Weaver, L. H., & Matthews, B. W. (1987) Biochemistry (preceding paper in this issue)] identifies a specific water molecule in the active site that may hinder binding of the alpha-substituted inhibitors. The implication of this observation for a mechanism for slow binding is discussed.  相似文献   

8.
1. A 50-kDa fragment representing the NH2-terminus of the heavy subunit of botulinum type A neurotoxin was found, at low pH, to evoke the release of K+ from lipid vesicles loaded with potassium phosphate. Similar K+ release was also observed with the intact neurotoxin, its heavy chain and a fragment consisting of the light subunit linked the 50-kDa NH2-terminal heavy chain fragment. The light subunit alone, however, was inactive. 2. In addition to K+, the channels formed in lipid bilayers by botulinum neurotoxin type A or the NH2-terminal heavy chain fragment were found to be large enough to permit the release of NAD (Mr 665). 3. The optimum pH for the release of K+ was found to be 4.5. Above this value K+ release rapidly decreased and was undetectable above pH 6.0. 4. The binding of radiolabelled botulinum toxin to a variety of phospholipids was assessed. High levels of toxin binding were only observed to lipid vesicles with an overall negative charge; much weaker binding occurred to lipid vesicles composed of electrically neutral phospholipids. 5. A positive correlation between the efficiency of toxin-binding and the efficiency of K+ release from lipid vesicles was not observed. Whereas lipid vesicles containing the lipids cardiolipin or dicetyl phosphate bound the highest levels of neurotoxin, the toxin-evoked release of K+ was low compared to vesicles containing either phosphatidyl glycerol, phosphatidyl serine or phosphatidyl inositol. 6. The implications of these observations to the mechanism by which the toxin molecule is translocated into the nerve ending are discussed.  相似文献   

9.
In the native, membrane-bound form of the nicotinic acetylcholine receptor (M-AcChR) the two sites for the cholinergic antagonist alpha-bungarotoxin (alpha-BGT) have different binding properties. One site has high affinity, and the M-AcChR/alpha-BGT complexes thus formed dissociate very slowly, similar to the complexes formed with detergent-solubilized AcChR (S-AcChR). The second site has much lower affinity (KD approximately 59 +/- 35 nM) and forms quickly reversible complexes. The nondenaturing detergent Triton X-100 is known to solubilize the AcChR in a form unable, upon binding of cholinergic ligands, to open the ion channel and to become desensitized. Solubilization of the AcChR in Triton X-100 affects the binding properties of this second site and converts it to a high-affinity, slowly reversible site. Prolonged incubation of M-AcChR at 4 degrees C converts the low-affinity site to a high-affinity site similar to those observed in the presence of Triton X-100. Although the two sites have similar properties when the AcChR is solubilized in Triton X-100, their nonequivalence can be demonstrated by the effect on alpha-BGT binding of concanavalin A, which strongly reduces the association rate of one site only. The Bmax of alpha-BGT to either Triton-solubilized AcChR or M-AcChR is not affected by the presence of concanavalin A. Occupancy of the high-affinity, slowly reversible site in M-AcChR inhibits the Triton X-100 induced conversion to irreversibility of the second site. At difference with alpha-BGT, the long alpha-neurotoxin from Naja naja siamensis venom (alpha-NTX) binds with high affinity and in a very slowly reversible fashion to two sites in the M-AcChR (Conti-Tronconi & Raftery, 1986). We confirm here that Triton-solubilized AcChR or M-AcChR binds in a very slowly reversible fashion the same amount of alpha-NTX.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The translocation of the enzymatic moiety of diphtheria toxin, fragment A, across the membranes of pure lipid vesicles was demonstrated. A new assay, which employed vesicles made to contain radiolabeled NAD and elongation factor-2, was used to measure the appearance of the enzymatic activity of the A fragment in the vesicles. When the vesicles were exposed to a low-pH medium in the presence of diphtheria toxin, small molecules, such as NAD, escaped into the extravesicular medium, whereas large molecules mostly remained inside the vesicles. The vesicle-entrapped elongation factor-2 became ADP-ribosylated, indicating the entry of fragment A into the vesicle. The translocation of the A fragment depended upon the pH of the medium, being negligible at pH greater than 7.0 and maximal at pH 4.5. The entire toxin molecule was needed for function; neither the A fragment nor the B fragment alone was able to translocate itself across and react with the sequestered substrates. After exposure of the toxin to low pH, the entry of the A fragment was rapid, being virtually complete within 2-3 min at pH 5.5, and within 1 min at pH 4.7. Translocation occurred in the absence of any protein in the vesicle membrane. These results are consistent with the notion that the diphtheria toxin molecule enters the cytoplasm of a cell by escaping from an acidic compartment such as an endocytic vesicle.  相似文献   

11.
M R Mauk  A G Mauk  P C Weber  J B Matthew 《Biochemistry》1986,25(22):7085-7091
The stability of the complex formed between cytochrome c and dimethyl ester heme substituted cytochrome b5 (DME-cytochrome b5) has been determined under a variety of experimental conditions to evaluate the role of the cytochrome b5 heme propionate groups in the interaction of the two native proteins. Interaction between cytochrome c and the modified cytochrome b5 was found to produce a difference spectrum in the visible range that is very similar to that generated by the interaction of the native proteins and that can be used to monitor complex formation between the two proteins. At pH 8 [25 degrees C (HEPPS), I = 5 mM], DME-cytochrome b5 and cytochrome c form a 1:1 complex with an association constant KA of 3 (1) X 10(6) M-1. This pH is the optimal pH for complex formation between these two proteins and is significantly higher than that observed for the interaction between the two native proteins. The stability of the complex formed between DME-cytochrome b5 and cytochrome c is strongly dependent on ionic strength with KA ranging from 2.4 X 10(7) M-1 at I = 1 mM to 8.2 X 10(4) M-1 at I = 13 mM [pH 8.0 (HEPPS), 25 degrees C]. Calculations for the native, trypsin-solubilized form of cytochrome b5 and cytochrome c confirm that the intermolecular complex proposed by Salemme [Salemme, F. R. (1976) J. Mol. Biol. 102, 563] describes the protein-protein orientation that is electrostatically favored at neutral pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effect of fibrinogen and fibrinogen-derived products on the velocity of rouleau formation of human erythrocytes was quantitatively examined with a rheoscope combined with a video-camera, an image analyzer and a computer. (i) The velocity of rouleau formation by naturally occurring low-molecular-weight fibrinogen of 305 kDa and by desialylated fibrinogen was the same as that by native fibrinogen of 340 kDa. (ii) Concerning fibrinogen degradation products by plasmin, the velocity of rouleau formation decreased upon going from fibrinogen greater than fragment X greater than fragment Y (the ratio of molar concentration of fibrinogen, fragment X and fragment Y for giving a certain velocity of rouleau formation was approx. 1:2:5). The effect of fragments X and Y on the fibrinogen-induced rouleau formation was additive. (iii) Fragments D and E could not induce rouleau formation and did not affect the fibrinogen-, fragment X- and fragment Y-induced rouleau formation. (iv) Fibrinopeptides A and B and artificial tetrapeptides (Gly-Pro-Arg-Pro and Gly-His-Arg-Pro) did not affect the fibrinogen-induced rouleau formation. (v) The possible erythrocyte-binding site in fibrinogen molecule for leading to rouleaux was proposed to be in A alpha-chain (probably, around residues No. 207-303) near the terminal domain of the trinodular structure of fibrinogen.  相似文献   

13.
The 1,024-amino-acid acylated hemolysin of Escherichia coli subverts host cell functions and causes cell lysis. Both activities require insertion of the toxin into target mammalian cell membranes. To identify directly the principal toxin sequences dictating membrane binding and insertion, we assayed the lipid bilayer interaction of native protoxin, stably active toxin, and recombinant peptides. Binding was assessed by flotation of protein-liposome mixtures through density gradients, and insertion was assessed by labeling with a photoactivatable probe incorporated into the target lipid bilayer. Both the active acylated hemolysin and the inactive unacylated protoxin were able to bind and also insert. Ca(2+) binding, which is required for toxin activity, did not influence the in vitro interaction with liposomes. Three overlapping large peptides were expressed separately. A C-terminal peptide including residues 601 to 1024 did not interact in either assay. An internal peptide spanning residues 496 to 831, including the two acylation sites, bound to phospholipid vesicles and showed a low level of insertion-dependent labeling. In vitro acylation had no effect on the bilayer interaction of either this peptide or the full-length protoxin. An N-terminal peptide comprising residues 1 to 520 also bound to phospholipid vesicles and showed strong insertion-dependent labeling, ca. 5- to 25-fold that of the internal peptide. Generation of five smaller peptides from the N-terminal region identified the principal determinant of lipid insertion as the hydrophobic sequence encompassing residues 177 to 411, which is conserved among hemolysin-related toxins.  相似文献   

14.
Certain Escherichia coli mutants defective in phosphatidylglycerol biosynthesis accumulate novel glucosamine-derived phospholipids. We previously demonstrated that the simplest of these substance (lipid X) is a diacylglucosamine 1-phosphate bearing beta-hydroxymyristoyl groups at positions 2 and 3 (Takayama, K., Qureshi, N., Mascagni, P., Nashed, M. A., Anderson, L., and Raetz, C. R. H. (1983) J. Biol. Chem. 258, 7379-7385). We now report the structural characterization of a triacylglucosamine 1-phosphate (designated lipid Y) that is also found in these mutants. Hydrolyzates of Y contain 2 mol of beta-hydroxymyristate and 1 mol of palmitate/mol of glucosamine. In the lipid, one of the beta-hydroxymyristates is amide-linked at position 2, while the two other fatty acyl groups are ester-linked. Fast atom bombardment mass spectrometry is used to confirm that Y is a monosaccharide derivative and that the molecular weight of Y as the free acid (C50H96NO13P) is 950.29. Analysis of Y by proton NMR spectroscopy at 200 MHz reveals that the anomeric configuration is alpha. Further, one of the esterified fatty acid residues is attached to the 3 OH of the sugar, while the second is linked to an OH moiety of a hydroxymyristate. The 4 and 6 OH groups of the sugar are unsubstituted, as in E. coli lipid X. To establish the precise location of each esterified fatty acyl residue, we subjected Y to a very mild alkaline hydrolysis in the presence of triethylamine. This resulted in the selective removal of a single hydroxymyristoyl group. The triethylamine-treated derivative (lipid Y) has a molecular weight of 723. NMR spectroscopy of Y shows that the 3 OH of the sugar is no longer substituted, while the beta OH of the remaining amide-linked hydroxymyristate is still esterified with palmitate. On the basis of these findings, we propose that lipid Y has the same fundamental structure as lipid X, except for the additional presence of a palmitoyl moiety on the N-linked hydroxymyristate. Presumably, lipid Y is synthesized from X by a selective acylation reaction.  相似文献   

15.
Nicotinic acetylcholine receptors (nAChRs) are targets for insect-selective neonicotinoid insecticides exemplified by imidacloprid (IMI) and mammalian-selective nicotinoids including nicotine and epibatidine (EPI). Despite their importance, insect nAChRs are poorly understood compared with their vertebrate counterparts. This study characterizes the [(3)H]IMI, [(3)H]EPI, and [(3)H]alpha-bungarotoxin (alpha-BGT) binding sites in hybrid nAChRs consisting of Drosophila melanogaster (fruit fly) or Myzus persicae (peach-potato aphid) alpha2 coassembled with rat beta2 subunits (Dalpha2/Rbeta2 and Mpalpha2/Rbeta2) and compares them with native insect and vertebrate alpha4beta2nAChRs. [(3)H]IMI and [(3)H]EPI bind to Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 hybrids but [(3)H]alpha-BGT does not. In native Drosophila receptors, [(3)H]EPI has a single high-affinity binding site that is independent from that for [(3)H]IMI and, interestingly, overlaps the [(3)H]alpha-BGT site. In the Mpalpha2/Rbeta2 hybrid, [(3)H]IMI and [(3)H]EPI bind to the same site and have similar pharmacological profiles. On considering both neonicotinoids and nicotinoids, the Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 receptors display intermediate pharmacological profiles between those of native insect and vertebrate alpha4beta2 receptors, limiting the use of these hybrid receptors for predictive toxicology. These findings are consistent with the agonist binding site being located at the nAChR subunit interface and indicate that both alpha and beta subunits influence the pharmacological properties of insect nAChRs.  相似文献   

16.
Fragment A of diphtheria toxin has been shown to insert into lipid bilayers at low pH (Montecucco, C., Schiavo, G., and Tomasi, M. (1985) Biochem. J. 231, 123-128; Zhao, J.-M., and London, E. (1988) J. Biol. Chem. 263, 15369-15377). In this report, evidence is provided which demonstrates that fragment A, like diphtheria toxin, can also cause the release of a fluorescent dye (calcein) from vesicles under acidic conditions and that this release parallels fragment A insertion into the membrane. Although the permeability changes are not as large as those obtained with whole toxin (Jiang, G.-S., Solow, R., and Hu, V. W. (1989) J. Biol. Chem. 264, 13424-13429), molecular sieving experiments indicate that the lesion induced by fragment A increases in size with decreasing pH and reaches an upper limit of 30 A at pH 4.0. In addition to size differences, the lesion induced by fragment A releases calcein in a graded manner, whereas diphtheria toxin causes an all-or-none release. One possible interpretation of this result is that the fragment A lesion is transient in comparison to that induced by whole toxin. Although the molecular bases for the observed differences are not understood, these data suggest that fragment A interaction with the lipid bilayer may play a significant role in mediating its own translocation across membranes and that fragment B may aid this process by initiating, enlarging, and stabilizing the lesion formed.  相似文献   

17.
The biological activity of two glycoproteins, hemagglutinin and neuraminidase (HN) and fusion (F) proteins, of Sendai virus (HVJ) were studied using purified proteins. The proteins were purified by chromatography on DEAE and CM cellulose in the presence of Nonidet P-40 (NP40). The glycoproteins were reconstituted at various ratios of F to HN into lipid vesicles containing fragment A of diphtheria toxin. The association of HN and F proteins with the vesicles was confirmed by electron microscopy and sucrose density gradient centrifugation. The cytotoxic activity of vesicles containing fragment A on fusion with L cells was determined by measuring colony formation of the cells. It was found that for maximum cytotoxic activity of the vesicles, there was an optimal ratio of F to HN of two. This suggests that HN is not merely the initial binding site to the cell surface, and that interactions between HN and F proteins on the virus surface may be important for the biological activities of these proteins on the cells.  相似文献   

18.
The nerve cord of the cockroach (Periplaneta americana) contains distinct saturable components of specific binding for the ligands N-[propionyl-3H]propionylated alpha-bungarotoxin and L-[benzilic-4,4'-3H]quinuclidinyl benzilate. N-[Propionyl-3H]propionylated alpha-bungarotoxin bound reversibly to homogenates with a Kd of 4.8 nM and Bmax of 910 fmol mg-1. The association rate constant (1.9 X 10(5) M-1 s-1) and dissociation rate constant (1.2 X 10(-4) s-1) yielded a Kd of 0.6 nM. Nicotinic ligands were found to displace toxin binding most effectively. The binding sites characterized in this way showed many similarities with the properties of the vertebrate neuronal alpha-bungarotoxin binding site. For a range of cholinergic ligands, inhibition constants calculated from toxin binding studies closely corresponded to their effectiveness in blocking the depolarizing response to acetylcholine recorded by electrophysiological methods from an identified cockroach motoneurone. The N-[propionyl-3H]propionylated alpha-bungarotoxin binding component therefore appears to be a constituent of a functional CNS acetylcholine receptor. Binding of L-[benzilic-4,4'-3H]quinuclidinyl benzilate was reversible with a Kd of 8 nM and Bmax of 138 fmol mg-1, determined from equilibrium binding experiments. The Kd calculated from the association rate constant (2.4 X 10(5) M-1 s-1) and dissociation rate constant (1.3 X 10(-4) s-1) was 1.9 nM. Muscarinic ligands were the most potent inhibitors of quinuclidinyl benzilate binding. The characteristics of this binding site resembled those of vertebrate CNS muscarinic cholinergic receptors. In contrast with vertebrate CNS, the nerve cord of Periplaneta americana contains more (approximately X 7) alpha-bungarotoxin binding sites than quinuclidinyl benzilate binding sites.  相似文献   

19.
S A Forman  K W Miller 《Biochemistry》1989,28(4):1678-1685
The relationship between the high-affinity procaine channel inhibition site (apparent dissociation constant Kp congruent to 200 microM) and the agonist self-inhibition site on acetylcholine receptors (AChRs) from Torpedo electroplaque was investigated by using rapid 86Rb+ quenched-flux assays at 4 degrees C in native AChR-rich vesicles on which 50-60% of ACh activation sites were blocked with alpha-bungarotoxin (alpha-BTX). In the presence of channel-activating acetylcholine (ACh) concentrations (10 microM-10 mM) alone, AChR undergoes one phase of inactivation (fast desensitization, rate = kd) in under a second. Addition of procaine produces two-phase inactivation similar to that seen with self-inhibiting (greater than 10 mM) ACh concentrations [Forman & Miller (1988) Biophys. J. 54, 149-158]--rapid inactivation (rate = kr) complete in 30-75 ms is followed by fast desensitization at the same kd observed without procaine. The dependence of kr on [procaine] is consistent with a bimolecular association between procaine and its AChR site with kon = 2.5 X 10(5) M-1 s-1, koff = 36 s-1, and Kp = 145 +/- 36 microM). Inhibition of AChR function by mixtures of procaine (up to 12Kp) plus self-inhibiting concentrations of ACh or suberyldicholine ([SubCh] up to 13 X the 50% self-inhibiting agonist concentration, KB) was studied by reducing the level of alpha-BTX block in vesicles. The apparent KB increased in the presence of procaine, and the apparent KP increased linearly with [SubCh], indicating mutually exclusive actions at a common AChR site. Our data support a mechanism where procaine binds preferentially to the open-channel AChR state, since no procaine-induced inactivation is observed without agonist and kr's dependence on [ACh] in the channel-activating range closely parallels that of 86Rb+ flux response to ACh.  相似文献   

20.
Species-specific reaggregation of cells from the marine sponge Microciona prolifera is mediated by a proteoglycan-like aggregation factor (MAF) of Mr = 2 X 10(7) which has two functional domains, a cell binding domain and an aggregation factor interaction domain. After extensive trypsin digestion, over 60% of the MAF mass was converted into a glycopeptide fragment of Mr = 10,000 (T-10) which is therefore a representative part of the major portion, but not of the entire MAF molecule. The T-10 fragment has a similar amino acid and carbohydrate composition as the intact MAF and displays species-specific binding. Although T-10 also inhibited MAF association with homotypic cells, its apparent affinity is 3 X 10(6) M-1, i.e. 13,000 times lower than that of native MAF. Reconstitution of binding affinity in the same order of magnitude as native MAF (Ka = 10(10) M-1) was obtained by cross-linking the glycopeptide fragment into polymers of the approximate size of MAF (Mr greater than 1.5 X 10(7) using diepoxybutane and glutaraldehyde, or periodate oxidation and glutaraldehyde. The apparent association constants of intermediate polymers with Mr = 1 X 10(5), 6 X 10(5), 9 X 10(5), 2 X 10(6) and above 1.5 X 10(7) increased proportionally to their size and were in line with association constants of MAF degradation fragments. Since the binding affinity of the T-10 glycopeptide fragment could be reconstituted by cross-linking, and since this fragment accounts for over 60% of MAF, we propose that the specificity and high affinity of the MAF-cell association is based on a highly polyvalent interaction of low affinity cell-binding sites. Such a polyvalency of the cell binding domain is advantageous for efficient cell-cell interactions and thus differs from most known interaction molecules and receptors characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号