首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Switchgrass‐derived ethanol has been proposed as an alternative to fossil fuels to improve sustainability of the US energy sector. In this study, life cycle analysis (LCA) was used to estimate the environmental benefits of this fuel. To better define the LCA environmental impacts associated with fertilization rates and farm‐landscape topography, results from a controlled experiment were analyzed. Data from switchgrass plots planted in 2008, consistently managed with three nitrogen rates (0, 56, and 112 kg N ha?1), two landscape positions (shoulder and footslope), and harvested annually (starting in 2009, the year after planting) through 2014 were used as input into the Greenhouse gases, Regulated Emissions and Energy use in transportation (GREET) model. Simulations determined nitrogen (N) rate and landscape impacts on the life cycle energy and emissions from switchgrass ethanol used in a passenger car as ethanol–gasoline blends (10% ethanol:E10, 85% ethanol:E85s). Results indicated that E85s may lead to lower fossil fuels use (58 to 77%), greenhouse gas (GHG) emissions (33 to 82%), and particulate matter (PM2.5) emissions (15 to 54%) in comparison with gasoline. However, volatile organic compounds (VOCs) and other criteria pollutants such as nitrogen oxides (NOx), particulate matter (PM10), and sulfur dioxides (SOx) were higher for E85s than those from gasoline. Nitrogen rate above 56 kg N ha?1 yielded no increased biomass production benefits; but did increase (up to twofold) GHG, VOCs, and criteria pollutants. Lower blend (E10) results were closely similar to those from gasoline. The landscape topography also influenced life cycle impacts. Biomass grown at the footslope of fertilized plots led to higher switchgrass biomass yield, lower GHG, VOCs, and criteria pollutants in comparison with those at the shoulder position. Results also showed that replacing switchgrass before maximum stand life (10–20 years.) can further reduce the energy and emissions reduction benefits.  相似文献   

2.
Scrutiny of food packaging environmental impacts has led to a variety of sustainability directives, but has largely focused on the direct impacts of materials. A growing awareness of the impacts of food waste warrants a recalibration of packaging environmental assessment to include the indirect effects due to influences on food waste. In this study, we model 13 food products and their typical packaging formats through a consistent life cycle assessment framework in order to demonstrate the effect of food waste on overall system greenhouse gas (GHG) emissions and cumulative energy demand (CED). Starting with food waste rate estimates from the U.S. Department of Agriculture, we calculate the effect on GHG emissions and CED of a hypothetical 10% decrease in food waste rate. This defines a limit for increases in packaging impacts from innovative packaging solutions that will still lead to net system environmental benefits. The ratio of food production to packaging production environmental impact provides a guide to predicting food waste effects on system performance. Based on a survey of the food LCA literature, this ratio for GHG emissions ranges from 0.06 (wine example) to 780 (beef example). High ratios with foods such as cereals, dairy, seafood, and meats suggest greater opportunity for net impact reductions through packaging‐based food waste reduction innovations. While this study is not intended to provide definitive LCAs for the product/package systems modeled, it does illustrate both the importance of considering food waste when comparing packaging alternatives, and the potential for using packaging to reduce overall system impacts by reducing food waste.  相似文献   

3.
玉米秸秆基纤维素乙醇生命周期能耗与温室气体排放分析   总被引:2,自引:0,他引:2  
生命周期评价是目前分析产品或工艺的环境负荷唯一标准化工具,利用其生命周期分析方法可以有效地研究纤维素乙醇生命周期能耗与温室气体排放问题。为了定量解释以玉米秸秆为原料的纤维素乙醇的节能和温室气体减排潜力,利用生命周期分析方法对以稀酸预处理、酶水解法生产的玉米秸秆基乙醇进行了生命周期能耗与温室气体排放分析,以汽车行驶1 km为功能单位。结果表明:与汽油相比,纤维素乙醇E100 (100%乙醇) 和E10 (乙醇和汽油体积比=1∶9) 生命周期化石能耗分别减少79.63%和6.25%,温室气体排放分别减少53.98%和6.69%;生物质阶段化石能耗占到总化石能耗68.3%,其中氮肥和柴油的生命周期能耗贡献最大,分别占到生物质阶段的45.78%和33.26%;工厂电力生产过程的生命周期温室气体排放最多,占净温室气体排放量的42.06%,提升技术减少排放是降低净排放的有效措施。  相似文献   

4.

Purpose  

The aim of this study was to perform a well-to-pump life cycle assessment (LCA) to investigate the overall net energy balance and environmental impact of bioethanol production using Tall Fescue grass straw as feedstock. The energy requirements and greenhouse gas (GHG) emissions were compared to those of gasoline to explore the potential of bioethanol as sustainable fuel.  相似文献   

5.
Cellulosic ethanol is widely believed to offer substantial environmental advantages over petroleum fuels and grain‐based ethanol, particularly in reducing greenhouse gas emissions from transportation. The environmental impacts of biofuels are largely caused by precombustion activities, feedstock production and conversion facility operations. Life cycle analysis (LCA) is required to understand these impacts. This article describes a field‐to‐blending terminal LCA of cellulosic ethanol produced by biochemical conversion (hydrolysis and fermentation) using corn stover or switchgrass as feedstock. This LCA develops unique models for most elements of the biofuel production process and assigns environmental impact to different phases of production. More than 30 scenarios are evaluated, reflecting a range of feedstock, technology and scale options for near‐term and future facilities. Cellulosic ethanol, as modeled here, has the potential to significantly reduce greenhouse gas (GHG) emissions compared to petroleum‐based liquid transportation fuels, though substantial uncertainty exists. Most of the conservative scenarios estimate GHG emissions of approximately 45–60 g carbon dioxide equivalent per MJ of delivered fuel (g CO2e MJ?1) without credit for coproducts, and 20–30 g CO2e MJ?1 when coproducts are considered. Under most scenarios, feedstock production, grinding and transport dominate the total GHG footprint. The most optimistic scenarios include sequestration of carbon in soil and have GHG emissions below zero g CO2e MJ?1, while the most pessimistic have life‐cycle GHG emissions higher than petroleum gasoline. Soil carbon changes are the greatest source of uncertainty, dominating all other sources of GHG emissions at the upper bound of their uncertainty. Many LCAs of biofuels are narrowly constrained to GHG emissions and energy; however, these narrow assessments may miss important environmental impacts. To ensure a more holistic assessment of environmental performance, a complete life cycle inventory, with over 1100 tracked material and energy flows for each scenario is provided in the online supplementary material for this article.  相似文献   

6.
Life cycle assessment of fuel ethanol from cassava in Thailand   总被引:2,自引:0,他引:2  
Goal and Scope  A well-to-wheel analysis has been conducted for cassava-based ethanol (CE) in Thailand. The aim of the analysis is to assess the potentials of CE in the form of gasohol E10 for promoting energy security and reducing environmental impacts in comparison with conventional gasoline (CG). Method  In the LCA procedure, three separate but interrelated components: inventory analysis, characterization and interpretation were performed for the complete chain of the fuel life cycle. To compare gasohol E10 and CG, this study addressed their impact potentials per gasoline-equivalent litre, taking into account the performance difference between gasohol and gasoline in an explosion motor. Results and Discussions  The results obtained show that CE in the form of E10, along its whole life cycle, reduces certain environmental loads compared to CG. The percentage reductions relative to CG are 6.1% for fossil energy use, 6.0% for global warming potential, 6.8% for acidification, and 12.2% for nutrient enrichment. Using biomass in place of fossil fuels for process energy in the manufacture of ethanol leads to improved overall life cycle energy and environmental performance of ethanol blends relative to CG. Conclusions and Outlook  The LCA brings to light the key areas in the ethanol production cycle that researchers and technicians need to work on to maximize ethanol’s contribution to energy security and environmental sustainability ESS-Submission Editor: Mark Goedkoop (goedkoop@pre.nl)  相似文献   

7.
Consequential life cycle assessment (CLCA) has emerged as a tool for estimating environmental impacts of changes in product systems that go beyond physical relationships accounted for in attributional LCA (ALCA). This study builds on recent efforts to use more complex economic models for policy‐based CLCA. A partial market equilibrium (PME) model, called the U.S. Forest Products Module (USFPM), is combined with LCA to analyze an energy demand scenario in which wood use increases 400 million cubic meters in the United States for ethanol production. Several types of indirect economic and environmental impacts are identified and estimated using USFPM‐LCA. A key finding is that if wood use for biofuels increases to high levels and mill residue is used for biofuels and replaced by natural gas for heat and power in forest products mills, then the increased greenhouse gas emissions from natural gas could offset reductions obtained by substituting biofuels for gasoline. Such high levels of biofuel demand, however, appear to have relatively low environmental impacts across related forest product sectors.  相似文献   

8.
Life cycle assessment (LCA) is generally described as a tool for environmental decision making. Results from attributional LCA (ALCA), the most commonly used LCA method, often are presented in a way that suggests that policy decisions based on these results will yield the quantitative benefits estimated by ALCA. For example, ALCAs of biofuels are routinely used to suggest that the implementation of one alternative (say, a biofuel) will cause an X% change in greenhouse gas emissions, compared with a baseline (typically gasoline). However, because of several simplifications inherent in ALCA, the method, in fact, is not predictive of real‐world impacts on climate change, and hence the usual quantitative interpretation of ALCA results is not valid. A conceptually superior approach, consequential LCA (CLCA), avoids many of the limitations of ALCA, but because it is meant to model actual changes in the real world, CLCA results are scenario dependent and uncertain. These limitations mean that even the best practical CLCAs cannot produce definitive quantitative estimates of actual environmental outcomes. Both forms of LCA, however, can yield valuable insights about potential environmental effects, and CLCA can support robust decision making. By openly recognizing the limitations and understanding the appropriate uses of LCA as discussed here, practitioners and researchers can help policy makers implement policies that are less likely to have perverse effects and more likely to lead to effective environmental policies, including climate mitigation strategies.  相似文献   

9.
Life cycle assessment (LCA) was combined with primary data from nine forest harvesting operations in New York, Maine, Massachusetts, and Vermont, from 2013 to 2019 where forest biomass (FB) for bioenergy was one of several products. The objective was to conduct a data‐driven study of greenhouse gas emissions associated with FB feedstock harvesting operations in the Northeast United States. Deterministic and stochastic LCA models were built to simulate the current FB bioenergy feedstock supply chain in the Northeast US with a cradle‐to‐gate scope (forest harvest through roadside loading) and a functional unit of 1.0 Mg of green FB feedstock at a 50% moisture content. Baseline LCA, sensitivity analysis, and uncertainty analyses were conducted for three different FB feedstock types—dirty chips, clean chips, and grindings—enabling an empirically driven investigation of differences between feedstock types, individual harvesting process contributions, and literature comparisons. The baseline LCA average impacts were lower for grindings (4.57 kg CO2eq/Mg) and dirty chips (7.16 kg CO2eq/Mg) than for clean chips (23.99 kg CO2eq/Mg) under economic allocation, but impacts were of similar magnitude under mass allocation, ranging from 24.42 to 27.89 kg CO2eq/Mg. Uncertainty analysis showed a wider range of probable results under mass allocation compared to economic allocation. Sensitivity analysis revealed the impact of variations in the production masses and total economic values of primary products of forest harvests on the LCA results due to allocation of supply chain emissions. The high variability in fuel use between logging contractors also had a distinct influence on LCA results. The results of this study can aid decision‐makers in energy policy and guide emissions reductions efforts while informing future LCAs that expand the system boundary to regional FB energy pathways, including electricity generation, transportation fuels, pellets for heat, and combined heat and power.  相似文献   

10.
Kim S  Dale BE 《Bioresource technology》2008,99(12):5250-5260
Life cycle analysis enables to investigate environmental performance of fuel ethanol used in an E10 fueled compact passenger vehicle. Ethanol is derived from corn grain via dry milling. This type of analysis is an important component for identifying practices that will help to ensure that a renewable fuel, such as ethanol, may be produced in a sustainable manner. Based on data from eight counties in seven Corn Belt states as corn farming sites, we show ethanol derived from corn grain as E10 fuel would reduce nonrenewable energy and greenhouse gas emissions, but would increase acidification, eutrophication and photochemical smog, compared to using gasoline as liquid fuel. The ethanol fuel systems considered in this study offer economic benefits, namely more money returned to society than the investment for producing ethanol. The environmental performance of ethanol fuel system varies significantly with corn farming sites because of different crop management practices, soil properties, and climatic conditions. The dominant factor determining most environmental impacts considered here (i.e., greenhouse gas emissions, acidification, eutrophication, and photochemical smog formation) is soil related nitrogen losses (e.g., N2O, NOx, and NO3-). The sources of soil nitrogen include nitrogen fertilizer, crop residues, and air deposition. Nitrogen fertilizer is probably the primary source. Simulations using an agro-ecosystem model predict that planting winter cover crops would reduce soil nitrogen losses and increase soil organic carbon levels, thereby greatly improving the environmental performance of the ethanol fuel system.  相似文献   

11.
Uruguay is pursuing renewable energy production pathways using feedstocks from its agricultural sector to supply transportation fuels, among them ethanol produced from commercial technologies that use sweet and grain sorghum. However, the environmental performance of the fuel is not known. We investigate the life cycle environmental and cost performance of these two major agricultural crops used to produce ethanol that have begun commercial production and are poised to grow to meet national energy targets for replacing gasoline. Using both attributional and consequential life cycle assessment (LCA) frameworks for system boundaries to quantify the carbon intensity, and engineering cost analysis to estimate the unit production cost of ethanol from grain and sweet sorghum, we determined abatement costs. We found 1) an accounting error in estimating N2O emissions for a specific crop in multiple crop rotations when using Intergovernmental Panel on Climate Change(IPCC) Tier 1 methods within an attributional LCA framework, due to N legacy effects; 2) choice of baseline and crop identity in multiple crop rotations evaluated within the consequential LCA framework both affect the global warming intensity (GWI) of ethanol; and 3) although abatement costs for ethanol from grain sorghum are positive and from sweet sorghum they are negative, both grain and sweet sorghum pathways have a high potential for reducing transport fuel GWI by more than 50% relative to gasoline, and are within the ranges targeted by the US renewable transportation fuel policies.  相似文献   

12.
Goal and Scope  The potential environmental impacts associated with two landfill technologies for the treatment of municipal solid waste (MSW), the engineered landfill and the bioreactor landfill, were assessed using the life cycle assessment (LCA) tool. The system boundaries were expanded to include an external energy production function since the landfill gas collected from the bioreactor landfill can be energetically valorized into either electricity or heat; the functional unit was then defined as the stabilization of 600 000 tonnes of MSW and the production of 2.56x108 MJ of electricity and 7.81x108 MJ of heat. Methods  Only the life cycle stages that presented differences between the two compared options were considered in the study. The four life cycle stages considered in the study cover the landfill cell construction, the daily and closure operations, the leachate and landfill gas associated emissions and the external energy production. The temporal boundary corresponded to the stabilization of the waste and was represented by the time to produce 95% of the calculated landfill gas volume. The potential impacts were evaluated using the EDIP97 method, stopping after the characterization step. Results and Discussion  The inventory phase of the LCA showed that the engineered landfill uses 26% more natural resources and generates 81% more solid wastes throughout its life cycle than the bioreactor landfill. The evaluated impacts, essentially associated with the external energy production and the landfill gas related emissions, are on average 91% higher for the engineered landfill, since for this option 1) no energy is recovered from the landfill gas and 2) more landfill gas is released untreated after the end of the post-closure monitoring period. The valorization of the landfill gas to electricity or heat showed similar environmental profiles (1% more raw materials and 7% more solid waste for the heat option but 13% more impacts for the electricity option). Conclusion and Recommendations  The methodological choices made during this study, e.g. simplification of the systems by the exclusion of the identical life cycle stages, limit the use of the results to the comparison of the two considered options. The validity of this comparison could however be improved if the systems were placed in the larger context of municipal solid waste management and include activities such as recycling, composting and incineration.  相似文献   

13.
A dissolved air flotation (DAF) system upgrade was proposed for an urban paper mill to recycle effluent. To understand the influence of operating variables on the environmental impacts of greenhouse gas (GHG) emissions and water consumption, a dynamic supply chain model was linked with life cycle assessment (LCA) to produce an environmental inventory. Water is a critical natural resource, and understanding the environmental impacts of recycling water is paramount in continued development of sustainable supply chains involving water. The methodology used in this study bridged the gap between detailed process models and static LCA modeling so that operating variables beyond discrete scenario analysis could be investigated without creating unnecessarily complex models. The model performed well in evaluating environmental impacts. It was found that there was no single optimum operating regime for all environmental impacts. For a mill discharging 80 cubic meters of effluent per hour (m3/hour), GHGs could be minimized with a DAF capacity of 17.5 m3/hour, while water consumption could be minimized with a DAF capacity of 25 m3/hour, which allowed insight into where environmental trade‐offs would occur. The study shows that more complexity can be achieved in supply chain modeling without requiring a full technical model. It also illustrates the need to consider multiple environmental impacts and highlights the trade‐off of GHG emissions with water consumption in water recycling. The supply chain model used in this water treatment case study was able to identify the environmental trade‐offs from the operating variables selected.  相似文献   

14.
Goal, Scope and Background  Assessing future energy and transport systems is of major importance for providing timely information for decision makers. In the discussion of technology options, fuel cells are often portrayed as attractive options for power plants and automotive applications. However, when analysing these systems, the LCA analyst is confronted with methodological problems, particularly with data gaps and the requirement of an anticipation of future developments. This series of two papers aims at providing a methodological framework for assessing future energy and transport systems (Part 1) and applies this to the two major application areas of fuel cells (Part 2). Methods  To allow the LCA of future energy and transport systems forecasting tools like, amongst others, cost estimation methods and process simulation of systems are investigated with respect to the applicability in LCAs of future systems (Part 1). The manufacturing process of an SOFC stack is used as an illustration for the forecasting procedure. In Part 2, detailed LCAs of fuel cell power plants and power trains are carried out including fuel (hydrogen, methanol, gasoline, diesel and natural gas) and energy converter production. To compare it with competing technologies, internal combustion engines (automotive applications) and reciprocating engines, gas turbines and combined cycle plants (stationary applications) are analysed as well. Results and Discussion  Principally, the investigated forecasting methods are suitable for future energy system assessment. The selection of the best method depends on different factors such as required ressources, quality of the results and flexibility. In particular, the time horizon of the investigation determines which forecasting tool may be applied. Environmentally relevant process steps exhibiting a significant time dependency shall always be investigated using different independent forecasting tools to ensure stability of the results. The results of the LCA (Part 2) underline that principally, fuel cells offer advantages in the impact categories which are typically dominated by pollutant emissions, such as acidification and eutrophication, whereas for global warming and primary energy demand, the situation depends on a set of parameters such as driving cycle and fuel economy ratio in mobile applica-tions and thermal/total efficiencies in stationary applications. For the latter impact categories, the choice of the primary en-ergy carrier for fuel production (renewable or fossil) dominates the impact reduction. With increasing efficiency and improving emission performance of the conventional systems, the competition regarding all impact categories in both mobile and stationary applications is getting even stronger. The production of the fuel cell system is of low overall significance in stationary applications, whereas in automotive applications, the production of the fuel cell power train and required materials leads to increased impacts compared to internal combustion engines and thus reduces the achievable environmental impact reduction. Recommendations and Perspectives  The rapid technological and energy economic development will bring further advances for both fuel cells and conventional energy converters. Therefore, LCAs at such an early stage of the market development can only be considered preliminary. It is an essential requirement to accompany the ongoing research and development with iterative LCAs, constantly pointing at environmental hot spots and bottlenecks.  相似文献   

15.
Background, aim and scope  The interest in the use of biomass as a renewable energy resource has rapidly grown over the past few years. In Singapore, biomass resources are mostly from waste wood. This article presents a few technological options, namely carbonization, for the conversion of woody biomass into a solid fuel, charcoal. Materials and methods  In the first stage, a life cycle assessment (LCA) ‘gate-to-gate’ system was developed for a conventional carbonizer system, a modern carbonizer from Japan, and a proposed four-stage partial furnace carbonizer from Tunisia. The potential environmental impacts were generated for global warming potential, acidification, human toxicity and photochemical oxidant potential. Based on the first set of results, the second LCA investigation was carried out comparing the selected carbonizer from Japan and an existing incinerator in Singapore. The second LCA adopted a unique approach combining social costs of pollution with the economic factors of the two biomass conversion technologies. Results  The carbonizer from Japan resulted in approximately 85% less greenhouse gases than the conventional carbonization system and 54% less than the proposed four-stage carbonizer from Tunisia. In terms of acidification and human toxicity, the carbonizers from Japan and Tunisia display nearly similar results—both were considerably lower than the conventional carbonizer. For photochemical oxidant potential, very minimal emissions are generated from the four-stage carbonizer and nearly zero impact is realized for the carbonization technology from Japan. Discussion  From the first set of LCA results, the Japanese carbonizer is favored in terms of its environmental results. The highest environmental impacts from the conventional carbonizer were due to large and uncontrolled emissions of acidic gases, greenhouse gases (particularly CO2 and CH4), particulates, and non-methane volatile organic compounds from both fugitive sources and energy requirements. The second LCA addressed the performance of the carbonizer from Japan against an existing incinerator in terms of environmental as well as cost performances. This unique approach translated pollution emissions into monetary costs to highlight the impacts of social health. Conclusions  For the first LCA, the accumulated impacts from the Japanese carbonizer proved to display significantly lower environmental impacts, especially for global warming potential. The overall environmental performance of the four-stage carbonizer from Tunisia ranked slightly lower than the one from Japan and much higher than the conventional carbonizer. The second LCA results displayed a noteworthy improvement of 90% for human health from the modern Japanese carbonizer technology—when compared against conventional incinerators. Without considering health issues or social costs, the total value per ton of wood treated is nearly similar for both incinerator and carbonizer. Recommendations and perspectives  The interest in biomass as raw material for producing energy has emerged rapidly in many countries. However, careful analysis and comparison of technologies are necessary to ensure favorable environmental outcomes. A full life cycle study, along with costs and the impact of pollution on society, should be performed before any large-scale biomass conversion technology is implemented. LCA can be applied to quantify and verify the overall environmental performance of a particular technology of interest as well as further explore the proposed technology in terms of costs and social implications.  相似文献   

16.
In France, greenhouse gas (GHG) emissions from transport have grown steadily since 1950 and transport is now the main source of emissions. Despite technological improvements, urban sprawl increases the environmental stress due to car use. This study evaluates urban mobility through assessments of the transport system and travel habits, by applying life cycle assessment methods to the results of mobility simulations that were produced by a Land Use and Transport Interactions (LUTI) model. The environmental impacts of four life cycle phases of urban mobility in the Lyon area (exhausts, fuel processing, infrastructure and vehicle life cycle) were estimated through nine indicators (global warming potential, particulate matter emissions, photochemical oxidant emissions, terrestrial acidification, fossil resource depletion, metal depletion, non-renewable energy use, renewable energy use and land occupancy). GHG emissions were estimated to be 3.02 kg CO2-eq inhabitant−1 day−1, strongly linked to car use, and indirect impacts represented 21% of GHG emissions, which is consistent with previous studies. Combining life cycle assessment (LCA) with a LUTI model allows changes in the vehicle mix and fuel sources combined with demographic shifts to be assessed, and provides environmental perspectives for transport policy makers and urban planners. It can also provide detailed analysis, by allowing levels of emissions that are generated by different categories of households to be differentiated, according to their revenue and location. Public policies can then focus more accurately on the emitters and be assessed from both an environmental and social point of view.  相似文献   

17.
Albedo change during feedstock production can substantially alter the life cycle climate impact of bioenergy. Life cycle assessment (LCA) studies have compared the effects of albedo and greenhouse gases (GHGs) based on global warming potential (GWP). However, using GWP leads to unequal weighting of climate forcers that act on different timescales. In this study, albedo was included in the time‐dependent LCA, which accounts for the timing of emissions and their impacts. We employed field‐measured albedo and life cycle emissions data along with time‐dependent models of radiative transfer, biogenic carbon fluxes and nitrous oxide emissions from soil. Climate impacts were expressed as global mean surface temperature change over time (?T) and as GWP. The bioenergy system analysed was heat and power production from short‐rotation willow grown on former fallow land in Sweden. We found a net cooling effect in terms of ?T per hectare (?3.8 × 10–11 K in year 100) and GWP100 per MJ fuel (?12.2 g CO2e), as a result of soil carbon sequestration via high inputs of carbon from willow roots and litter. Albedo was higher under willow than fallow, contributing to the cooling effect and accounting for 34% of GWP100, 36% of ?T in year 50 and 6% of ?T in year 100. Albedo dominated the short‐term temperature response (10–20 years) but became, in relative terms, less important over time, owing to accumulation of soil carbon under sustained production and the longer perturbation lifetime of GHGs. The timing of impacts was explicit with ?T, which improves the relevance of LCA results to climate targets. Our method can be used to quantify the first‐order radiative effect of albedo change on the global climate and relate it to the climate impact of GHG emissions in LCA of bioenergy, alternative energy sources or land uses.  相似文献   

18.
Background, aims, and scope  China has been the largest primary magnesium producer in the world since year 2000 and is an important part of the global magnesium supply chain. Almost all of the primary magnesium in China is produced using the Pidgeon process invented in the 1940s in Canada. The environmental problems of the primary magnesium production with the Pidgeon process have already attracted much attention of the local government and enterprises. The main purposes of this research are to investigate the environmental impacts of magnesium production and to determine the accumulative environmental performances of three different scenarios. System boundary included the cradle-to-gate life cycle of magnesium production, including dolomite ore extraction, ferrosilicon production, the Pidgeon process, transportation of materials, and emissions from thermal power plant. The life cycle assessment (LCA) case study was performed on three different fuel use scenarios from coal as the overall fuel to two kinds of gaseous fuels, the producer gas and coke oven gas. The burden use of gaseous fuels was also considered. Methods  The procedures, details, and results obtained are based on the application of the existing international standards of LCA, i.e., the ISO 14040. Depletion of abiotic resources, global warming, acidification, and human toxicity were adopted as the midpoint impact categories developed by the problem-oriented approach of CML to estimate the characterized results of the case study. The local characterization and normalization factors of abiotic resources were used to calculate abiotic depletion potential (ADP). The analytic hierarchy process was used to determine the weight factors. Using the Umberto version 4.0, the emissions of dolomite ore extraction were estimated and the transportation models of the three scenarios were designed. Results and conclusions  The emissions inventory showed that both the Pidgeon process of magnesium production and the Fe–Si production were mainly to blame for the total pollutant emissions in the life cycle of magnesium production. The characterized results indicated that ADP, acidification potential, and human toxicity potential decreased cumulatively from scenarios 1 to 3, with the exception of global warming potential. The final single scores indicated that the accumulative environmental performance of scenario 3 was the best compared with scenarios 1 and 2. The impact of abiotic resources depletion deserves more attention although the types and the amount of mineral resources for Mg production are abundant in China. This study suggested that producer gas was an alternative fuel for magnesium production rather than the coal burned directly in areas where the cost of oven gas-produced coke is high. The utilization of “clean” energy and the reduction of greenhouse gases and acidic gases emission were the main goals of the technological improvements and cleaner production of the magnesium industry in China. Recommendation and perspective  This paper has demonstrated that the theory and method of LCA are actually helpful for the research on the accumulative environmental performance of primary magnesium production. Further studies with “cradle-to-cradle” scheme are recommended. Furthermore, other energy sources used in magnesium production and the cost of energy production could be treated in further research.  相似文献   

19.
Greenhouse gas (GHG) intensity is frequently used to assess the mitigation potential of biofuels; however, failure to quantify other environmental impacts may result in unintended consequences, effectively shifting the environmental burden of fuel production rather than reducing it. We modeled production of E85, a gasoline/ethanol blend, from forage sorghum (Sorghum bicolor cv. photoperiod LS) grown, processed, and consumed in California's Imperial Valley in order to evaluate the influence of nitrogen (N) management on well‐to‐wheel (WTW) environmental impacts from cellulosic ethanol. We simulated 25 N management scenarios varying application rate, application method, and N source. Life cycle environmental impacts were characterized using the EPA's criteria for emissions affecting the environment and human health. Our results suggest efficient use of N is an important pathway for minimizing WTW emissions on an energy yield basis. Simulations in which N was injected had the highest nitrogen use efficiency. Even at rates as high as 450 kg N ha?1, injected N simulations generated a yield response sufficient to outweigh accompanying increases in most N‐induced emissions on an energy yield basis. Thus, within the biofuel life cycle, trade‐offs across productivity, GHG intensity, and pollutant loads may be possible to avoid at regional to global scales. However, trade‐offs were seemingly unavoidable when impacts from E85 were compared to those of conventional gasoline. The GHG intensity of sorghum‐derived E85 ranged from 29 to 44 g CO2 eq MJ?1, roughly 1/3 to 1/2 that of gasoline. Conversely, emissions contributing to local air and water pollution tended to be substantially higher in the E85 life cycle. These adverse impacts were strongly influenced by N management and could be partially mitigated by efficient application of N fertilizers. Together, our results emphasize the importance of minimizing on‐farm emissions in maximizing both the environmental benefits and profitability of biofuels.  相似文献   

20.
In many cases, policy makers and laymen perceive harmful emissions from chemical plants as the most important source of environmental impacts in chemical production. As a result, regulations and environmental efforts have tended to focus on this area. Concerns about energy use and greenhouse gas emissions, however, are increasing in all industrial sectors. Using a life cycle assessment (LCA) approach, we analyzed the full environmental impacts of producing 99 chemical products in Western Europe from cradle to factory gate. We applied several life cycle impact assessment (LCIA) methods to cover various impact areas. Our analysis shows that for both organic and inorganic chemical production in industrial countries, energy‐related impacts often represent more than half and sometimes up to 80% of the total impacts, according to a range of LCIA methods. Resource use for material feedstock is also important, whereas direct emissions from chemical plants may make up only 5% to 10% of the total environmental impacts. Additionally, the energy‐related impacts of organic chemical production increase with the complexity of the chemicals. The results of this study offer important information for policy makers and sustainability experts in the chemical industry striving to reduce environmental impacts. We identify more sustainable energy production and use as an important option for improvements in the environmental profile of chemical production in industrial countries, especially for the production of advanced organic and fine chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号