首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Sedimentation analysis of polyadenylation-specific complexes.   总被引:21,自引:11,他引:10  
Precursor RNA containing the adenovirus L3 polyadenylation site is assembled into a 50S complex upon incubation with HeLa nuclear extract at 30 degrees C. The cofactor and sequence requirements for 50S complex formation are similar to those of the in vitro polyadenylation reaction. Assembly of this complex requires ATP but is not dependent upon synthesis of a poly(A) tract. In addition, a 50S complex does not form on substrate RNA in which the AAUAAA hexanucleotide upstream of the poly(A) site has been mutated to AAGAAA or on RNA in which sequences between +5 and +48 nucleotides downstream of the site have been removed. These mutations also prevent in vitro processing of substrate RNA. Kinetic studies suggest that the 50S complex is an intermediate in the polyadenylation reaction. It forms at an early stage in the reaction and at later times contains both poly(A)+ RNA as well as unreacted precursor. U-type small nuclear ribonucleoprotein particles are components of the 50S complex, as shown by immunoprecipitation with antiserum specific to the trimethyl cap of these small nuclear RNAs.  相似文献   

4.
5.
6.
The spatial and temporal patterns of nucleic acid synthesis are described as observed in various regions of the germarium from the third instar up to the adult. The nurse cells proliferate in the third instar and undergo endopolyploidization in the fifth instar, as revealed by [3H]thymidine autoradiography and Feulgen-scanning cytophotometry. No indication of DNA under-replication or amplification has been found. RNA synthesis occurs throughout the development of the trophocytes but is highest in the fifth instar. Ultrahistochemical and electron microscopic autoradiographic studies revealed a mass transfer of ribonucleoprotein from the nucleus into the cytoplasm, where the material accumulates on the nuclear envelope in the form of electron-dense bodies. The results are briefly discussed with respect to the role of endopolyploidy in cells of high gene activity.  相似文献   

7.
Identifier sequences are transcribed to generate a brain-specific BC-1 RNA present as a ribonucleoprotein particle in the dendrites and somata of neurons. This ribonucleoprotein particle contains an identifier sequence-binding protein (Bp-1 protein). We report here the purification of BC-1 RNA and demonstrate that Bp-1 protein interacts directly with the RNA. We also demonstrate an accumulation of Bp-1 protein in the nucleus of brain cells from mouse fetus and newborns that precedes the postnatal increase in BC-1 RNA. Cytoplasmic Bp-1 protein present in a complex with BC-1 RNA increases postnatally with a concomitant decrease in nuclear Bp-1 protein. These observations suggest that Bp-1 protein may play a role(s) in the synthesis and nuclear export of BC-1 RNA.  相似文献   

8.
Ribonucleoprotein complexes composed of small molecular weight nuclear RNA (4--9 S) and proteins were isolated from hepatic nuclei of Rana catesbeiana (bullfrog) and the protein moiety of this nuclear ribonucleoprotein complex compared during different stages of development. SDS-polyacrylamide gel analysis of premetamorphic tadpoles and adult frog nuclear ribonucleoprotein complexes revealed that while the protein profiles of these two particles were very similar polypeptides of 47,000, 70,000, and 11,000 molecular weight were present in significantly higher concentrations in the frog ribonucleoprotein complexes. Comparison of the chromatin proteins isolated from these two developmental stages demonstrated that these three polypeptides of frog ribonucleoprotein were not contaminants from chromatin. Since these three polypeptides could not be preferentially extracted from the frog ribonucleoprotein complex by 0.5 M KCl or 1 M urea, it was unlikely that these polypeptides were bound nonspecifically to the ribonucleoprotein particle. Polypeptide analysis of the nuclear ribonucleoprotein complexes isolated from tadpoles immersed in the thyroid hormone L-thyroxine revealed an increase in two polypeptides of 37,000 and 45,000 molecular weight during metamorphosis. The absence of reduced amount of these two polypeptides in either the premetamorphic tadpole or adult frog demonstrated that their presence in Rana catesbeiana nuclear ribonucleoprotein was transient during development and specifically associated with tadpole metamorphosis. We conclude from these experiments that the nuclear ribonucleoprotein complex is a dynamic structure during Rana catesbeiana development and that specific changes in its protein composition are associated with discrete stages of amphibian development.  相似文献   

9.
Assembly and intracellular transport of snRNP particles.   总被引:7,自引:0,他引:7  
The assembly of the major small nuclear ribonucleoprotein (snRNP) particles begins in the cytoplasm where large pools of common core proteins are preassembled in several RNA-free intermediate particles. Newly synthesized snRNAs transiently enter the cytoplasm and complex with core particles to form pre-snRNP particles. Subsequently, the cap structure at the 5' end of the snRNA is hypermethylated. The resulting trimethylguanosine (TMG) cap is an integral part of the nuclear localization signal for snRNP particles and the pre-snRNP particles are rapidly transported into the nucleus. SnRNP particles mature when snRNA-specific proteins complex with the particles, in some cases, just before or during nuclear transport, but in most instances after the particles are in the nucleus. In addition, U6 snRNA hybridizes with U4 snRNA to form a U4/U6 snRNP in the nucleus. The transport signals are retained on the snRNP particles and proteins since existing particles and proteins enter the reformed nucleus after mitosis.  相似文献   

10.
11.
The RNA-binding protein Y14 heterodimerizes with Mago as the core of the exon junction complex during precursor mRNA splicing and plays a role in mRNA surveillance in the cytoplasm. Using the Y14/Magoh heterodimer as bait in a screening for its interacting partners, we identified the protein-arginine methyltransferase PRMT5 as a candidate. We show that Y14 and Magoh, but not other factors of the exon junction complex, interact with the cytoplasmic PRMT5-containing methylosome. We further provide evidence that Y14 promoted the activity of PRMT5 in methylation of Sm proteins of the small nuclear ribonucleoprotein core, whereas knockdown of Y14 reduced their methylation level. Moreover, Y14 overexpression induced the formation of a large, active, and small nuclear ribonucleoprotein (snRNP)-associated methylosome complex. However, Y14 may only transiently associate with the snRNP assembly complex in the cytoplasm. Together, our results suggest that Y14 facilitates Sm protein methylation probably by its activity in promoting the formation or stability of the methylosome-containing complex. We hypothesize that Y14 provides a regulatory link between pre-mRNA splicing and snRNP biogenesis.  相似文献   

12.
13.
The accumulation of protein and RNA components of small nuclear U-ribonucleoprotein particles is non-co-ordinate during oogenesis and early embryogenesis in Xenopus laevis. Northern blot hybridization of a cloned Xenopus U2-RNA gene to oocyte and embryo RNAs demonstrates that the amount of small nuclear U2-RNA per oocyte reaches a plateau early in oogenesis (at the start of yolk deposition); further accumulation is not observed in oogenesis, nor in embryogenesis until the late blastula stage. In contrast, we show by immunoblot analysis that the proteins that bind to small nuclear U-RNAs continue to be accumulated after vitellogenesis begins, reaching maximum amounts only at the end of oocyte development. No further accumulation of these proteins is seen during embryogenesis. The consequences of this non-co-ordinate synthesis of small nuclear RNA and small nuclear RNA-binding proteins are as follows: a 10- to 20-fold excess of the protein components of the small ribonucleoprotein particles over small nuclear RNA exists in large oocytes; the bulk of the protein is cytoplasmic, while the RNA is nuclear. Thus the excess protein in the cytoplasm is uncomplexed with RNA. The imbalance between protein and RNA is not corrected until the late blastula or early gastrula stages of embryogenesis, when a tenfold increase in the amount of small nuclear U2-RNA is detected. Thus the protein, but not the RNA, components of small nuclear U-ribonucleoprotein particles are stockpiled in oocytes for later use in embryonic development. During the course of these studies, we also found that there are tissue-specific differences in the Sm-antigenic proteins of X. laevis.  相似文献   

14.
15.
16.
The biosynthesis of U1, U2, U4 and U5 spliceosomal small nuclear RNAs (snRNAs) involves the nuclear export of precursor molecules extended at their 3' ends, followed by a cytoplasmic phase during which the pre-snRNAs assemble into ribonucleoprotein particles and undergo hypermethylation of their 5' caps and 3' end processing prior to nuclear import. Previous studies have demonstrated that the assembly of pre-snRNAs into ribonucleoprotein particles containing the Sm core proteins is essential for nuclear import in mammalian cells but that 5' cap hypermethylation is not. In the present investigation we have asked whether or not 3' end processing is required for nuclear import of U2 RNA. We designed human pre-U2 RNAs that carried modified 3' tails, and identified one that was stalled (or greatly slowed) in 3' end processing, leading to its accumulation in the cytoplasm of human cells. Nonetheless, this 3' processing arrested pre-U2 RNA molecule was found to undergo cytoplasmic assembly into Sm protein-containing complexes to the same extent as normal pre-U2 RNA. The Sm protein-associated, unprocessed mutant pre-U2 RNA was not observed in the nuclear fraction. Using an assay based on suppression of a genetically blocked SV40 pre-mRNA splicing pathway, we found that the 3' processing deficient U2 RNA was significantly reduced in its ability to rescue splicing, consistent with its impaired nuclear import.  相似文献   

17.
18.
Ro RNPs are evolutionarily conserved ribonucleoprotein particles that consist of a small RNA, known as Y RNA, associated with several proteins, such as La, Ro60, and Ro52. The Y RNAs (Y1-Y5), which are transcribed by RNA polymerase III, have been shown to reside almost exclusively in the cytoplasm as Ro RNPs. To obtain more insight into the nuclear export pathway of Y RNAs, hY1 RNA export was studied in Xenopus laevis oocytes. Injection of various hY1 RNA mutants showed that an intact Ro60 binding site is a prerequisite for nuclear export, whereas the presence of an intact La binding site resulted in strong nuclear retention of hY1 RNA. Competition studies with various classes of RNAs indicated that, in addition to Ro60, another titratable factor was necessary for nuclear export of hY1 RNA. This factor appears also to be involved in nuclear export of tRNA. Because export of hY1 RNA could not be blocked by a synthetic peptide containing the recently identified nuclear export signal of the HIV-1 Rev protein, nuclear export of hY1 RNA does not seem to be dependent on a Rev-like nuclear export signal.  相似文献   

19.
We have recently shown that the matrix protein M of Borna disease virus (BDV) copurifies with the affinity-purified nucleoprotein (N) from BDV-infected cells, suggesting that M is an integral component of the viral ribonucleoprotein complex (RNP). However, further studies were hampered by the lack of appropriate tools. Here we generated an M-specific rabbit polyclonal antiserum to investigate the intracellular distribution of M as well as its colocalization with other viral proteins in BDV-infected cells. Immunofluorescence analysis revealed that M is located both in the cytoplasm and in nuclear punctate structures typical for BDV infection. Colocalization studies indicated an association of M with nucleocapsid proteins in these nuclear punctate structures. In situ hybridization analysis revealed that M also colocalizes with the viral genome, implying that M associates directly with viral RNPs. Biochemical studies demonstrated that M binds specifically to the phosphoprotein P but not to N. Binding of M to P involves the N terminus of P and is independent of the ability of P to oligomerize. Surprisingly, despite P-M complex formation, BDV polymerase activity was not inhibited but rather slightly elevated by M, as revealed in a minireplicon assay. Thus, unlike M proteins of other negative-strand RNA viruses, BDV-M seems to be an integral component of the RNPs without interfering with the viral polymerase activity. We propose that this unique feature of BDV-M is a prerequisite for the establishment of BDV persistence.  相似文献   

20.
A ribonucleoprotein complex isolated from rabbit thymus nuclear lysates was found to be an inhibitor of DNA-dependent RNA polymerase II. The inhibition appeared to be of a competitive type and was completely reversed by high concentration of DNA. Highest inhibition was observed when enzyme and complex were preincubated before addition of DNA while there was little inhibition after enzyme had started synthesis on the DNA template. The RNA isolated from the complex was equally inhibitory and was a more effective inhibitor than either tRNA or rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号