首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work reports on the first attempt to study water mobility in phototrophic biofilms, applying the 1H-NMR relaxometry technique to closely monitored microbial communities grown in a microcosm under controlled ambient conditions. Longitudinal water proton relaxation times exhibited a bi-exponential behavior in all biofilm samples, indicating two types of water molecules with diverging dynamic properties, confined to different compartments of the biofilm. The fast-relaxing component can be attributed to water molecules tightly bound to the intracellular matrix, while the slow-relaxing component could reflect the behavior of water embedded in the biopolymer matrix, confined into matrix pores and channels. The results are discussed with respect to a possible key role of exopolysaccharides and uronic acids in water binding in phototrophic biofilms.  相似文献   

2.
Phototrophic biofilm samples from an Italian wastewater treatment plant were studied in microcosm experiments under varying irradiances, temperatures and flow regimes to assess the effects of environmental variables and phototrophic biomass on capsular exopolysaccharides (CPS). The results, obtained from circular dichroism spectroscopy and High Performance Liquid Chromatography, suggest that CPS have a stable spatial conformation and a complex monosaccharide composition. The total amount present was positively correlated with the biomass of cyanobacteria and diatoms, and negatively with the biovolume of green algae. The proportion of uronic acids showed the same correlation with these taxon groups, indicating a potential role of cyanobacteria and diatoms in the removal of residual nutrients and noxious cations in wastewater treatment. While overall biofilm growth was limited by low irradiance, high temperature (30°C) and low flow velocity (25 l h?1) yielded the highest phototrophic biomass, the largest amount of CPS produced, and the highest proportion of carboxylic acids present.  相似文献   

3.
In the present study, biomass development and changes in community composition of phototrophic biofilms grown under different controlled ambient conditions (light, temperature and flow) were examined. Source communities were taken from a wastewater treatment plant and used to inoculate growth surfaces in a semi-continuous-flow microcosm. We recorded biofilm growth curves in cultures over a period of 30 days across 12 experiments. Biovolume of phototrophs and community composition for taxonomic shifts were also obtained using light and electron microscopy. Species richness in the cultured biofilms was greatly reduced with respect to the natural samples, and diversity decreased even further during biofilm development. Diadesmis confervacea, Phormidium spp., Scenedesmus spp. and Synechocystis spp. were identified as key taxa in the microcosm. While a significant positive effect of irradiance on biofilm growth could be identified, impacts of temperature and flow rate on biofilm development and diversity were less evident. We discuss the hypothesis that biofilm development could have been subject to multistability, i.e. the existence of several possible stable biofilm configurations for the same set of environmental parameters; small variations in the species composition might have been sufficient to switch between these different configurations and thus have contributed to overwriting the original effects of temperature and flow velocity.  相似文献   

4.
1. The effect of phosphate on species composition in biofilms was studied under three different phosphate regimes (0.5, 5 and 50 μm ) in two different multi species communities: one composed of the four diatom species Melosira varians, Nitzschia perminuta, Navicula trivialis and Achnanthes lanceolata and one containing these diatom species plus the two cyanobacterial species Leptolyngbya foveolarum and Cylindrospermum stagnale. 2. Algal growth in monocultures and mixtures was measured as chlorophyll a and PAM fluorimetry was applied to document density and physiological condition of the two main groups of photosynthetic organisms in mixed cultures. 3. In phosphate‐replete communities, a single species dominated the community (N. perminuta in the diatom mixture and L. foveolarum in the all species mixture), while in the phosphate‐deprived communities several species persisted, in spite of severe phosphate limitation. 4. We conclude that high supply of phosphate enables the species L. foveolarum, and to a lesser extent N. perminuta, to overgrow biofilm consortia, facilitated by their filamentous growth form, motility or the excretion of inhibitors. The persistence of several species under a low phosphate regime is explained by a less intense interspecific interaction in low‐density biofilms. This clarifies field observations published previously.  相似文献   

5.
1. Phototrophic biofilms consist of a matrix of phototrophs, non‐photosynthetic bacteria and extracellular polymeric substances (EPS) which is spatially structured. Despite widespread exploitation of algae and bacteria within phototrophic biofilms, for example by protozoans, the ‘engineering’ effects of these ciliates on the spatial heterogeneity of phototrophic biofilms are poorly studied. 2. We studied the potential engineering effects of two ciliates, Urostyla sp. and Paramecium bursaria, on the spatial heterogeneity of synthetic multispecies biofilms. Biomass of phototrophic organisms, EPS and bacteria was analysed three dimensionally using confocal laser scanning microscopy. Spatial heterogeneity and cover of the phototrophs, bacteria and EPS were determined at several depths within the biofilm. 3. Ciliate species did not interfere with the overall development of phototrophic microorganisms, because the thickness of the biofilm was equal whether the ciliates were present or not, even though their abundance did affect spatial heterogeneity of biofilm components. When Urostyla was present, it reduced aggregation in EPS and bacteria and increased EPS biovolume. This implies a local facilitating effect of ciliates on photosynthetic activity. Biofilms to which Paramecium was added did not differ from controls in terms of phototrophs, EPS cover and biovolume. Nevertheless, ciliates affected the spatial heterogeneity of these components as phototrophs and EPS became more evenly distributed. 4. This study shows that ecosystem engineering by organisms does not only occur at large spatial scales, as in grasslands and estuaries, but also plays a role at the microscopic scale of biofilms. This effect on spatial heterogeneity was not driven by substantial exploitation of biofilm components, but via the subtle engineering effects of ciliates.  相似文献   

6.
Phototrophic biofilms seem to be suitable candidates for tertiary wastewater treatment due to their high uptake capacity for nutrients and other pollutants, also taking into account the time and cost savings derived from easy procedures for biomass harvesting. Biomass accrual, structure, and physiology of biofilms affect the efficiency of nutrient removal by its microbial community. Here, we construct a biofilm consisting of a cyanobacterium Synechocystis sp. and the green alga Chlorococcum sp. and determine the effect of combined variations of irradiance and temperature on the biofilm structure and function. The two species were isolated from phototrophic biofilms naturally developing in an Italian wastewater treatment plant and grown in a microcosm designed for biofilm investigations. Phototrophic biomass accumulation, percent species composition, photosynthetic response and the amount and composition of capsular polysaccharides (CPS), including anionic residues, are reported. The results showed that biofilm development required relatively moderate irradiances (60 μmol photons m−2 s−1) below which development was arrested. Both light and temperature had a strong effect on the composition of each species to the biofilm. The CPS compositions also changed with temperature, light and species composition. The CPS of the green-algal-dominated biofilm had the higher uronic acid content indicating a potential to exploit green algae in the treatment of waste contaminated with heavy metals. Given the knowledge of the response of certain species to light and temperature combinations, it may be possible to construct biofilms of known species and CPS composition to use them for specific applications.  相似文献   

7.
Photosynthesis versus irradiance curves and their associated photosynthetic parameters from different phototrophic biofilms isolated from an extreme acidic environment (Río Tinto, SW, Spain) were studied in order to relate them to their species composition and the physicochemical characteristics of their respective sampling locations. The results indicated that the biofilms are low light acclimated showing a photoinhibition model; only floating communities of filamentous algae showed a light saturation model. Thus, all the biofilms analysed showed photoinhibition over 60 μmol photon m(-2) s(-1) except in the case of Zygnemopsis sp. sample, which showed a light-saturated photosynthesis model under irradiations higher that 200 μmol photon m(-2) s(-1). The highest values of compensation light intensity (I(c)) were showed also by Zygnemosis sp. biofilm (c. 40 μmol photon m(-2) s(-1)), followed by Euglena mutabilis and Chlorella sp. samples (c. 20 μmol photon m(-2) s(-1)). The diatom sample showed the lowest I(c) values (c. 5 μmol photon m(-2) s(-1)). As far as we know this is the first attempt to determine the photosynthetic activity of low pH and heavy metal tolerant phototrophic biofilms, which may give light in the understanding of the ecological importance of these biofilms for the maintenance of the primary production of these extreme and unique ecosystems.  相似文献   

8.
We investigated phototrophic microorganisms dwelling on stone walls made of Piperno, a volcanic rock frequently used as construction material in historical buildings in Naples, Italy. Biofilms from three historical buildings in the center of the city and from a natural Piperno quarry located in a suburban area were examined. Light and electron microscopy, and molecular biology techniques allowed the identification of 17 species belonging to Cyanobacteria, Rhodophyta, Bacillariophyta, and Chlorophyta. Cyanobacteria were the dominant components in all the biofilms. No significant differences in microbial composition were observed for biofilms collected in autumn and spring, with minor exceptions for the quarry samples, where environmental conditions were relatively more stable than in the city. Results are discussed in comparison with information on microbial communities dwelling on other kinds of substrata commonly used in historical buildings in the Neapolitan area.  相似文献   

9.
Phototrophic biofilms are used in a variety of biotechnological and industrial processes. Understanding their structure, ie microbial composition, is a necessary step for understanding their function and, ultimately, for the success of their application. DNA analysis methods can be used to obtain information on the taxonomic composition and relative abundance of the biofilm members. The potential bias introduced by DNA extraction methods in the study of the diversity of a complex phototrophic sulfide-oxidizing biofilm was examined. The efficiency of eight different DNA extraction methods combining physical, mechanical and chemical procedures was assessed. Methods were compared in terms of extraction efficiency, measured by DNA quantification, and detectable diversity (16S rRNA genes recovered), evaluated by denaturing gradient gel electrophoresis (DGGE). Significant differences were found in DNA yields ranging from 116 ± 12 to 1893 ± 96 ng of DNA. The different DGGE fingerprints ranged from 7 to 12 bands. Methods including phenol–chloroform extraction after enzymatic lysis resulted in the greatest DNA yields and detectable diversity. Additionally, two methods showing similar yields and retrieved diversity were compared by cloning and sequencing. Clones belonging to members of the Alpha-, Beta- and Gamma- proteobacteria, Bacteroidetes, Cyanobacteria and to the Firmicutes were recovered from both libraries. However, when bead-beating was applied, clones belonging to the Deltaproteobacteria were also recovered, as well as plastid signatures. Phenol–chloroform extraction after bead-beating and enzymatic lysis was therefore considered to be the most suitable method for DNA extraction from such highly diverse phototrophic biofilms.  相似文献   

10.
Electroactivity is a property of microorganisms assembled in biofilms that has been highlighted in a variety of environments. This characteristic was assessed for phototrophic river biofilms at the community scale and at the bacterial population scale. At the community scale, electroactivity was evaluated on stainless steel and copper alloy coupons used both as biofilm colonization supports and as working electrodes. At the population scale, the ability of environmental bacterial strains to catalyze oxygen reduction was assessed by cyclic voltammetry. Our data demonstrate that phototrophic river biofilm development on the electrodes, measured by dry mass and chlorophyll a content, resulted in significant increases of the recorded potentials, with potentials of up to +120 mV/saturated calomel electrode (SCE) on stainless steel electrodes and +60 mV/SCE on copper electrodes. Thirty-two bacterial strains isolated from natural phototrophic river biofilms were tested by cyclic voltammetry. Twenty-five were able to catalyze oxygen reduction, with shifts of potential ranging from 0.06 to 0.23 V, cathodic peak potentials ranging from -0.36 to -0.76 V/SCE, and peak amplitudes ranging from -9.5 to -19.4 μA. These isolates were diversified phylogenetically (Actinobacteria, Firmicutes, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria) and exhibited various phenotypic properties (Gram stain, oxidase, and catalase characteristics). These data suggest that phototrophic river biofilm communities and/or most of their constitutive bacterial populations present the ability to promote electronic exchange with a metallic electrode, supporting the following possibilities: (i) development of electrochemistry-based sensors allowing in situ phototrophic river biofilm detection and (ii) production of microbial fuel cell inocula under oligotrophic conditions.  相似文献   

11.
Bioprocess and Biosystems Engineering - Biotechnological production of valuables by microorganisms is commonly achieved by cultivating the cells as suspended solids in an appropriate liquid medium....  相似文献   

12.
The high-potential iron-sulfur protein (HiPIP) from Rhodospirillum tenue (strain 3761) shows only a weak (20-25%) sequence similarity to HiPIPs from Chromatium vinosum, Ectothiorhodospira halophila and Ectothiorhodospira vacuolata, including the strict conservation of only two of the twelve residues assumed to be in the 4Fe-4S cluster packing region [Tedro, S. M., Meyer, T. E. and Kamen, M. D. (1979) J. Biol. Chem. 254, 1495-1500]. In spite of these differences, the general range and distribution of hyperfine-shifted 1H-NMR peaks of oxidized and reduced R. tenue HiPIP resemble those of E. halophila HiPIP I [Krishnamoorthi, R., Markley, J. L., Cusanovich, M. A., Pryzycieki, C. T. and Meyer, T. E. (1986) Biochemistry 25, 60-67]. Temperature- and pH-dependence and longitudinal relaxation behavior were determined for hyperfine-shifted peaks of the oxidized protein. Tentative assignments of peaks to ligands and aromatic residues suggest the presence of common apoprotein-active-site interactions in these proteins. Differences occur in the pattern of paramagnetically shifted peaks attributed to hydrogens bonded to the 4Fe-4S cluster. Hyperfine-shifted peaks of R. tenue HiPIP are not perturbed by pH changes in the range 5-9. In contrast, those of the C. vinosum protein exhibit a pH-dependence of chemical shifts that has been attributed to the titration of His42 [Nettesheim, D. G., Meyer, T. E., Feinberg, B. A. and Otvos, J. D. (1983) J. Biol. Chem. 258, 8235-8239]. Since R. tenue HiPIP contains no histidine, the present observation confirms the above hypothesis.  相似文献   

13.
A kinetic model for mixed phototrophic biofilms is introduced, which focuses on the interactions between photoautotrophic, heterotrophic, and chemoautotrophic (nitrifying) functional microbial groups. Biofilm-specific phenomena are taken into account, such as extracellular polymeric substances (EPS) production by phototrophs as well as gradients of substrates and light in the biofilm. Acid-base equilibria, in particular carbon speciation, are explicitly accounted for, allowing for the determination of pH profiles across the biofilm. Further to previous models reported in literature, the PHOBIA model combines a number of kinetic mechanisms specific to phototrophic microbial communities, such as internal polyglucose storage under dynamic light conditions, phototrophic growth in the darkness using internally stored reserves, photoadaptation and photoinhibition, preference for ammonia over nitrate as N-source and the ability to utilize bicarbonate as a carbon source in the absence of CO(2). The sensitivity of the PHOBIA model to a number of key parameters is analyzed. An example on the potential use of phototrophic biofilms in wastewater polishing is discussed, where their performance is compared with conventional algal ponds. The PHOBIA model is presented in a manner that is compatible with other reference models in the area of water treatment. Its current version forms a theoretical base which is readily extendable once further experimental observations become available.  相似文献   

14.
In the current study, five phototrophic biofilms from different Southern Europe limestone monuments were characterised by molecular techniques and cultivated under laboratory conditions. Phototrophic biofilms were collected from Orologio Tower in Martano (Italy), Santa Clara-a-Velha Monastery and Ajuda National Palace, both in Portugal, and Seville and Granada Cathedrals from Spain. The biofilms were grown under laboratory conditions and periodically sampled in order to monitor their evolution over a three-month period. Prokaryotic communities from natural samples and cultivated biofilms were monitored using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments in conjunction with clone sequencing and phylogenetic analysis. DNA-based molecular analysis of 16S rRNA gene fragments from the natural green biofilms revealed complex and different communities composition with respect to phototrophic microorganisms. The biofilms from Orologio Tower (Martano, Italy) and Santa Clara-a-Velha Monastery (Coimbra, Portugal) were dominated by the microalga Chlorella. The cyanobacterium Chroococcidiopsis was the dominating genus from Ajuda National Palace biofilm (Lisbon, Portugal). The biofilms from Seville and Granada Cathedrals (Spain) were both dominated by the cyanobacterium Pleurocapsa. The DGGE analysis of the cultivated biofilms showed that the communities developed differently in terms of species establishment and community composition during the three-month incubation period. The biofilm culture from Coimbra (Portugal) showed a remarkable stability of the microbial components of the natural community in laboratory conditions. With this work, a multiple-species community assemblage was obtained for further stone colonisation experiments.  相似文献   

15.
A system of nonlinear hyperbolic partial differential equations is derived using mixture theory to model the formation of biofilms. In contrast with most of the existing models, our equations have a finite speed of propagation, without using artificial free boundary conditions. Adapted numerical scheme will be described in detail and several simulations will be presented in one and more space dimensions in the particular case of cyanobacteria biofilms. Besides, the numerical scheme we present is able to deal in a natural and effective way with regions where one of the phases is vanishing.  相似文献   

16.
17.
Aeroterrestrial phototrophic biofilms colonize natural and man-made surfaces and may damage the material they settle on. The occurrence of biofilms varies between regions with different climatic conditions. The aim of this study was to evaluate the influence of meteorological factors on the growth of aeroterrestrial phototrophs. Phototrophic biomass was recorded on roof tiles at six sites within Germany five times over a period of five years and compared to climatic parameters from neighboring weather stations. All correlating meteorological factors influenced water availability on the surface of the roof tiles. The results indicate that the frequency of rainy days and not the mean precipitation per season is more important for biofilm proliferation. It is also inferred that the macroclimate is more important than the microclimate. In conclusion, changed (regional) climatic conditions may determine where in central Europe global change will promote or inhibit phototrophic growth in the future.  相似文献   

18.
The self-association of the synthetic antibiotic actinocyl-bis(3-dimethylaminopropylamine) was studied in aqueous solution by one- and two-dimensional 1H NMR spectroscopy at 500 MHz. The two-dimensional homonuclear correlation NMR techniques (TOCSY and ROESY) were used to completely assign all the proton signals of the antibiotic and to quantitatively analyze the mutual arrangement of the antibiotic molecules in their aggregates. The concentration and temperature dependences of proton chemical shifts were used to determine the equilibrium constants and the thermodynamic parameters (delta H and delta S) of the self-association, as well as the limiting values of proton chemical shifts in associates. The experimental results were analyzed using both the indefinite noncooperative and cooperative models of the molecular self-association. The calculated value of the cooperativity coefficient (sigma approximately 1.1) for our synthetic antibiotic confirmed a substantially lower anticooperative effect at the aggregation of its molecules in comparison with that of the antitumor antibiotic actinomycin D (sigma approximately 1.5). We calculated the most favorable structure of the dimeric associate of the synthetic antibiotic in aqueous solution and found that, like in the actinomycin D dimer, the antiparallel orientation of the phenoxazone chromophore planes of interacting molecules is characteristic of its dimer. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2002, vol. 28, no. 4; see also http://www.maik.ru.  相似文献   

19.
Terrestrial cyanobacteria grow as phototrophic biofilms and offer a wide spectrum of interesting products. For cultivation of phototrophic biofilms different reactor concepts have been developed in the last years. One of the main influencing factors is the surface material and the adhesion strength of the chosen production strain. In this work a flow chamber was developed, in which, in combination with optical coherence tomography and computational fluid dynamics simulation, an easy analysis of adhesion forces between different biofilms and varied surface materials is possible. Hereby, differences between two cyanobacteria strains and two surface materials were shown. With longer cultivation time of biofilms adhesion increased in all experiments. Additionally, the content of extracellular polymeric substances was analyzed and its role in surface adhesion was evaluated. To test the comparability of obtained results from the flow chamber with other methods, analogous experiments were conducted with a rotational rheometer, which proved to be successful. Thus, with the presented flow chamber an easy to implement method for analysis of biofilm adhesion was developed, which can be used in future research for determination of suitable combinations of microorganisms with cultivation surfaces on lab scale in advance of larger processes.  相似文献   

20.
Time-dependent NOE studies of the C13(1) and C17(1) methylene proton resonances of the heme peripheral propanoate groups have elucidated their mobility in the active site of the ferric high-spin form of Galeorhinus japonicus myoglobin. A large difference in the chemical shift due to the non-equivalence of the heme C13(1) and C17(1) methylene proton resonances allows selective irradiation of a given proton resonance by a high-power selective decoupler pulse in spite of their fast relaxation rates. NOE accumulation of the resonance of one methylene proton after saturation of the resonance of the other proton essentially follows the theoretical prediction derived using the two-spin approximation, and the cross-relaxation rates for the heme C13(1) and C17(1) methylene proton spin systems were quantitatively determined. The correlation time for the mobility of the internuclear vector connecting the heme C13(1) or C17(1) methylene protons was then calculated from the cross-relaxation rate and values of approximately 11 ns were obtained for both C13(1) and C17(1) methylene groups in 2 mM Galeorhinus japonicus myoglobin at 35 degrees C. The immobile C13(1) and C17(1) methylenes of the heme propanoate groups, together with a large difference in chemical shift between the methylene proton resonances, dictate their fixed orientation with respect to the protein moiety as well as the heme plane, and are therefore consistent with the immobile heme in the active site of myoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号