首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Brassinosteroids (BRs) play crucial roles in plant growth and development. Previous studies have shown that BRs promote cell elongation in vegetative organs in several plant species, but their contribution to meristem homeostasis remains unexplored. Our analyses report that both loss- and gain-of-function BR-related mutants in Arabidopsis thaliana have reduced meristem size, indicating that balanced BR signalling is needed for the optimal root growth. In the BR-insensitive bri1-116 mutant, the expression pattern of the cell division markers CYCB1;1, ICK2/KRP2 and KNOLLE revealed that a decreased mitotic activity accounts for the reduced meristem size; accordingly, this defect could be overcome by the overexpression of CYCD3;1. The activity of the quiescent centre (QC) was low in the short roots of bri1-116, as reported by cell type-specific markers and differentiation phenotypes of distal stem cells. Conversely, plants treated with the most active BR, brassinolide, or mutants with enhanced BR signalling, such as bes1-D, show a premature cell cycle exit that results in early differentiation of meristematic cells, which also negatively influence meristem size and overall root growth. In the stem cell niche, BRs promote the QC renewal and differentiation of distal stem cells. Together, our results provide evidence that BRs play a regulatory role in the control of cell-cycle progression and differentiation in the Arabidopsis root meristem.  相似文献   

3.
4.
In multicellular organisms, the balance between cell division and differentiation determines organ size, and represents a central unknown in developmental biology. In Arabidopsis roots, this balance is mediated between cytokinin and auxin through a regulatory circuit converging on the IAA3/SHORT HYPOCOTYL 2 (SHY2) gene. Here, we show that crosstalk between brassinosteroids (BRs) and auxin occurs in the vascular transition zone to promote root meristem development. We found that BR increases root meristem size by up‐regulating expression of the PINFORMED 7 (PIN7) gene and down‐regulating expression of the SHY2 gene. In addition, BES1 could directly bind to the promoter regions of both PIN7 and SHY2, indicating that PIN7 and SHY2 mediate the BR‐induced growth of the root meristem by serving as direct targets of BES1. Moreover, the PIN7 overexpression and loss‐of‐function SHY2 mutant were sensitive to the effects of BR and could partially suppress the short‐root phenotypes associated with deficient BR signaling. Interestingly, BRs could inhibit the accumulation of SHY2 protein in response to cytokinin. Taken together, these findings suggest that a complex equilibrium model exists in which regulatory interactions among BRs, auxin, and cytokinin regulate optimal root growth.  相似文献   

5.
Brassinosteroids(BRs),a group of plant steroidal hormones,play critical roles in many aspects of plant growth and development.Previous studies showed that BRI1-mediated BR signaling regulates cell division and differentiation during Arabidopsis root development via interplaying with auxin and other phytohormones.Arabidopsis somatic embryogenesis receptor-like kinases(SERKs),as co-receptors of BRI1,were found to play a fundamental role in an early activation step of BR signaling pathway.Here we report a novel function of SERKs in regulating Arabidopsis root development.Genetic analyses indicated that SERKs control root growth mainly via a BR-independent pathway.Although BR signaling pathway is completely disrupted in the serk1 bak1 bkk1 triple mutant,the root growth of the triple mutant is much severely damaged than the BR deficiency or signaling null mutants.More detailed analyses indicated that the triple mutant exhibited drastically reduced expression of a number of genes critical to polar auxin transport,cell cycle,endodermis development and root meristem differentiation,which were not observed in null BR biosynthesis mutant cpd and null BR signaling mutant bri1-701.  相似文献   

6.
Brassinosteroid (BR) signaling is essential for plant growth and development. In Arabidopsis (Arabidopsis thaliana), BRs are perceived by the BRASSINOSTEROID INSENSITIVE1 (BRI1) receptor. Root growth and hypocotyl elongation are convenient downstream physiological outputs of BR signaling. A computational approach was employed to predict root growth solely on the basis of BRI1 receptor activity. The developed mathematical model predicts that during normal root growth, few receptors are occupied with ligand. The model faithfully predicts root growth, as observed in bri1 loss-of-function mutants. For roots, it incorporates one stimulatory and two inhibitory modules, while for hypocotyls, a single inhibitory module is sufficient. Root growth as observed when BRI1 is overexpressed can only be predicted assuming that a decrease occurred in the BRI1 half-maximum response values. Root growth appears highly sensitive to variation in BR concentration and much less to reduction in BRI1 receptor level, suggesting that regulation occurs primarily by ligand availability and biochemical activity.  相似文献   

7.
Steroid signaling in plants: from the cell surface to the nucleus.   总被引:9,自引:0,他引:9  
Steroid hormones are signaling molecules important for normal growth, development and differentiation of multicellular organisms. Brassinosteroids (BRs) are a class of polyhydroxylated steroids that are necessary for plant development. Molecular genetic studies in Arabidopsis thaliana have led to the cloning and characterization of the BR receptor, BRI1, which is a transmembrane receptor serine/threonine kinase. The extracellular domain of BRI1, which is composed mainly of leucine-rich repeats, can confer BR responsivity to heterologous cells and is required for BR binding. Although downstream components of BR action are mostly unknown, multiple genes whose expression are regulated by BRs have been identified and suggest mechanisms by which BRs affect cell elongation and division.  相似文献   

8.
Brassinosteroid (BR) mutants of Arabidopsis have pleiotropic phenotypes and provide evidence that BRs function throughout the life of the plant from seedling development to senescence. Screens for BR signaling mutants identified one locus, BRI1, which encodes a protein with homology to leucine-rich repeat receptor serine (Ser)/threonine (Thr) kinases. Twenty-seven alleles of this putative BR receptor have been isolated to date, and we present here the identification of the molecular lesions of 14 recessive alleles that represent five new mutations. BR-insensitive-1 (BRI1) is expressed at high levels in the meristem, root, shoot, and hypocotyl of seedlings and at lower levels later in development. Confocal microscopy analysis of full-length BRI1 fused to green fluorescent protein indicates that BRI1 is localized in the plasma membrane, and an in vitro kinase assay indicates that BRI1 is a functional Ser/Thr kinase. Among the bri1 mutants identified are mutants in the kinase domain, and we demonstrate that one of these mutations severely impairs BRI1 kinase activity. Therefore, we conclude that BRI1 is a ubiquitously expressed leucine-rich repeat receptor that plays a role in BR signaling through Ser/Thr phosphorylation.  相似文献   

9.
10.
Plant steroid hormones, brassinosteroids (BRs), are perceived by the plasma membrane-localized leucine-rich-repeat-receptor kinase BRI1. Based on sequence similarity, we have identified three members of the BRI1 family, named BRL1, BRL2 and BRL3. BRL1 and BRL3, but not BRL2, encode functional BR receptors that bind brassinolide, the most active BR, with high affinity. In agreement, only BRL1 and BRL3 can rescue bri1 mutants when expressed under the control of the BRI1 promoter. While BRI1 is ubiquitously expressed in growing cells, the expression of BRL1 and BRL3 is restricted to non-overlapping subsets of vascular cells. Loss-of-function of brl1 causes abnormal phloem:xylem differentiation ratios and enhances the vascular defects of a weak bri1 mutant. bri1 brl1 brl3 triple mutants enhance bri1 dwarfism and also exhibit abnormal vascular differentiation. Thus, Arabidopsis contains a small number of BR receptors that have specific functions in cell growth and vascular differentiation.  相似文献   

11.
Xu W  Huang J  Li B  Li J  Wang Y 《Cell research》2008,18(4):472-478
Brassinosteroids (BRs) are a major group of plant hormones that regulate plant growth and development. BRI1, a protein localized to the plasma membrane, functions as a BR receptor and it has been proposed that its kinase activity has an essential role in BR-regulated plant growth and development. Here we report the isolation and molecular characterization of a new allele of bri1, bri1-301, which shows moderate morphological phenotypes and a reduced response to BRs under normal growth conditions. Sequence analysis identified a two-base alteration from GG to AT, resulting in a conversion of 989G to 989I in the BRI1 kinase domain. An in vitro assay of kinase activity showed that bri1-301 has no detectable autophosphorylation activity or phosphorylation activity towards the BRI1 substrates TTL and BAK1. Furthermore, our results suggest that bri1-301, even with extremely impaired kinase activity, still retains partial function in regulating plant growth and development, which raises the question of whether BRI1 kinase activity is essential for BR-mediated growth and development in higher plants.  相似文献   

12.
Brassinosteroids (BRs) are growth-promoting natural substances required for normal plant growth and development. To understand the molecular mechanism of BR action, a cDNA microarray containing 1265 rice genes was analyzed for expression differences in rice lamina joint treated with brassinolide (BL). A novel BL-enhanced gene, designated OsBLE2, was identified and cloned. The full-length cDNA is 3243 bp long, encoding a predicted polypeptide of 761 amino acid residues and nine possible transmembrane regions. OsBLE2 expression was most responsive to BL in the lamina joint and leaf sheath in rice seedlings. Besides, auxin and gibberellins also increased its expression. OsBLE2 expressed more, as revealed by in situ hybridization, in vascular bundles and root primordia, where the cells are actively undergoing division, elongation, and differentiation. Transgenic rice expressing antisense OsBLE2 exhibits various degrees of repressed growth. BL could not enhance its expression in transgenic rice expressing antisense BRI1, a BR receptor, indicating that BR signaling to the enhanced expression of OsBLE2 is through BRI1. BL effect in the d1 mutant rice was much weaker than that in its wild-type control, indicating that heterotrimeric G protein may be a component of BRs signaling. These results suggest that OsBLE2 is involved in BL-regulated growth and development processes in rice.  相似文献   

13.
Brassinosteroids (BRs) are essential steroid hormones that have crucial roles in plant growth and development. BRs are perceived by the cell-surface receptor-like kinase brassinosteroid insensitive 1 (BRI1). In the absence of BRs, the cytosolic kinase domain (KD) of BRI1 is inhibited by its auto-inhibitory carboxyl terminus, as well as by interacting with an inhibitor protein, BRI1 kinase inhibitor 1 (BKI1). How BR binding to the extracellular domain of BRI1 leads to activation of the KD and dissociation of BKI1 into the cytosol remains unclear. Here we report the crystal structure of BRI1 KD in complex with the interacting peptide derived from BKI1. We also provide biochemical evidence that BRI1-associated kinase 1 (BAK1) plays an essential role in initiating BR signaling. Steroid-dependent heterodimerization of BRI1 and BAK1 ectodomains brings their cytoplasmic KDs in the right orientation for competing with BKI1 and transphosphorylation.  相似文献   

14.
15.
16.
Brassinosteroids (BRs) are endogenous plant hormones essential for plant growth and development. Brassinosteroid insensitive1 (BRI1)-assocaiated receptor kinase (BAK1) is one of the key components in the BR signal transduction pathway due to its direct association with the BR receptor, BRI1. Although BRI1 and its orthologs have been identified from both dicotyledonous and monocotyledonous plants, less is known about BAK1 and its orthologs in higher plants other than Arabidopsis. This article provides the first piece of evidence that AtBAK1 can greatly affect growth and development of rice plants when ectopically expressed, suggesting that rice may share similar BR perception mechanism via BRI1/BAK1 complex. Interestingly, transgenic rice plants displayed semi-dwarfism and shortened primary roots. Physiological analysis and cell morphology assay demonstrated that the observed phenotypes in transgenic plants were presumably caused by hypersensitivity to endogenous levels of BRs, different from BR insensitive and deficient rice mutants. Consistently, several known BR inducible genes were also upregulated in transgenic rice plants, further suggesting that BAK1 was able to affect BR signaling in rice. On the other hand, the transgenic plants generated by overproducing AtBAK1 may potentially have agricultural applications because the dwarfed phenotype is generally resistant to lodging, while the fertility remains unaffected.  相似文献   

17.
18.
19.
20.
The mechanisms of the maintenance of long-term cell proliferation and its cessation in the meristem of the growing root were analyzed. Quiescent center (QC) remains in the meristem for a long time, whereas all other cells leave the meristem after several mitotic cycles. The question arises as to what extent such organization of proliferation corresponds to the concept of stem cells elaborated for animals. The definition of animal stem cells is met by the QC cells rather than by actively dividing cells that boundary it. However, QC is not a self-maintaining population of cells originated during early stages of embryogenesis; it is formed from dividing cells in the main or lateral root. After root decapitation, the QC can arise from the cells that normally would leave the meristem before long. There is a zone of the meristem whose cells are capable of remaining and forming QC after the removal of the apical part of the root. Maintenance of the size of the meristem depends on the interaction between QC, initial cells located at its surface, and the actively dividing cells. Apparently, the life span of cells in the meristem determines the time when the meristematic cell will begin the elongation. The number of cells starting the elongation depends on proliferation rate and on the changes in life span of meristematic cells which determine their initial number. The life span of the cells in the meristem for most actively dividing cells does not depend on the cell divisions, and remains unchanged in the presence of various inhibitors. As a result of inhibited proliferation in the main part of the meristem, cell divisions in the QC are activated and newly formed cells may proceed to rapid divisions. Thus, the size of the meristem is maintained by the operation of several mechanisms, and individual processes may be, on the one hand, relatively independent and, on the other hand, regulated either by feedback or directly. As a result, the root growth becomes resistant to various external events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号