首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E Durand  F Lofaso  S Dauger  G Vardon  C Gaultier  J Gallego 《Journal of applied physiology》2004,96(3):1216-22; discussion 1196
Previous studies suggested that defective arousal might be a major mechanism in sleep-disordered breathing such as sudden infant death syndrome and obstructive sleep apnea. In this study, we examined the effects of intermittent hypoxia (IH) on the arousal response to hypoxia in 4-day-old mice. We hypothesized that IH would increase arousal latency, as previously reported in other species, and we measured the concomitant changes in ventilation to shed light on the relationship between breathing and arousal. Arousal was scored according to behavioral criteria. Breathing variables were measured noninvasively by use of whole-body flow plethysmography. In the hypoxic group (n = 14), the pups were exposed to 5% O(2) in N(2) for 3 min and returned to air for 6 min. This test was repeated eight times. The normoxic mice (n = 14) were constantly exposed to normoxia. The hypoxic mice showed a 60% increase in arousal latency (P < 0.0001). Normoxic controls showed virtually no arousals. IH depressed normoxic ventilation below baseline prehypoxic levels, while preserving the ventilatory response to hypoxia. The breathing pattern and arousal responses recovered fully after 2 h of normoxia. We conclude that IH rapidly and reversibly depressed breathing and delayed arousal in newborn mice. Both effects may be due to hypoxia-induced release of inhibitory neurotransmitters acting concomitantly on both functions.  相似文献   

2.
We studied the contributions of hypoxemia, hypocapnia, and hyperpnea to the acute hypoxic diuretic response (HDR) in humans and evaluated the role of peripheral O(2) chemosensitivity and renal hormones in HDR. Thirteen healthy male subjects (age 19-38 yr) were examined after sodium equilibration (intake: 120 mmol/day) during 90 min of normoxia (NO), poikilocapnic hypoxia (PH), and isocapnic hypoxia (IH) (days 1-3, random order, double blind), as well as normoxic voluntary hyperpnea (HP; day 4), matching ventilation during IH. O(2) saturation during PH and IH was kept equal to a mean level measured between 30 and 90 min of breathing 12% O(2) in a pretest. Urine flow during PH and IH (1.81 +/- 0.92 and 1.94 +/- 1.03 ml/min, respectively) but not during HP (1.64 +/- 0.96 ml/min) significantly exceeded that during NO (control, 1.38 +/- 0.71 ml/min). Urine flow increases vs. each test day's baseline were significant with PH, IH, and HP. Differences in glomerular filtration rate, fractional sodium clearance, urodilatin, systemic blood pressure, or leg venous compliance were excluded as factors of HDR. However, slight increases in plasma and urinary endothelin-1 and epinephrine with PH and IH could play a role. In conclusion, the early HDR in humans is mainly due to hypoxia and hypocapnia. It occurs without natriuresis and is unrelated to O(2) chemosensitivity (hypoxic ventilatory response).  相似文献   

3.
We tested the hypothesis that intermittent hypoxia (IH) and/or continuous hypoxia (CH) would enhance the ventilatory response to acute hypoxia (HVR), thereby altering blood pressure (BP) and cerebral perfusion. Seven healthy volunteers were randomly selected to complete 10-12 days of IH (5-min hypoxia to 5-min normoxia repeated for 90 min) before ascending to mild CH (1,560 m) for 12 days. Seven other volunteers did not receive any IH before ascending to CH for the same 12 days. Before the IH and CH, following 12 days of CH and 12-13 days post-CH exposure, all subjects underwent a 20-min acute exposure to poikilocapnic hypoxia (inspired fraction of O(2), 0.12) in which ventilation, end-tidal gases, arterial O(2) saturation, BP, and middle cerebral artery blood flow velocity (MCAV) were measured continuously. Following the IH and CH exposures, the peak HVR was elevated and was related to the increase in BP (r = 0.66 to r = 0.88, respectively; P < 0.05) and to a reciprocal decrease in MCAV (r = 0.73 to r = 0.80 vs. preexposures; P < 0.05) during the hypoxic test. Following both IH and CH exposures, HVR, BP, and MCAV sensitivity to hypoxia were elevated compared with preexposure, with no between-group differences following the IH and/or CH conditions, or persistent effects following 12 days of sea level exposure. Our findings indicate that IH and/or mild CH can equally enhance the HVR, which, by either direct or indirect mechanisms, facilitates alterations in BP and MCAV.  相似文献   

4.
Chronic hypoxia (CH) is believed to induce myocardial protection, but this is in contrast with clinical evidence. Here, we test the hypothesis that repeated brief reoxygenation episodes during prolonged CH improve myocardial tolerance to hypoxia-induced dysfunction. Male 5-week-old Sprague-Dawley rats (n = 7-9/group) were exposed for 2 weeks to CH (F(I)O(2) = 0.10), intermittent hypoxia (IH, same as CH, but 1 hr/day exposure to room air), or normoxia (N, F(I)O(2) = 0.21). Hearts were isolated, Langendorff perfused for 30 min with hypoxic medium (Krebs-Henseleit, PO(2) = 67 mmHg), and exposed to hyperoxia (PO(2) = 670 mm Hg). CH hearts displayed higher end-diastolic pressure, lower rate x pressure product, and higher vascular resistance than IH. During hypoxic perfusion, anaerobic mechanisms recruitment was similar in CH and IH hearts, but less than in N. Thus, despite differing only for 1 hr daily exposure to room air, CH and IH induced different responses in animal homeostasis, markers of oxidative stress, and myocardial tolerance to reoxygenation. We conclude that the protection in animals exposed to CH appears conferred by the hypoxic preconditioning due to the reoxygenation rather than by hypoxia per se.  相似文献   

5.
Intermittent hypoxia (IH) resulting from sleep apnea can lead to pulmonary hypertension (PH) and right heart failure, similar to chronic sustained hypoxia (CH). Supplemental CO(2), however, attenuates hypoxic PH. We therefore hypothesized that, similar to CH, IH elicits PH and associated increases in arterial endothelial nitric oxide synthase (eNOS) expression, ionomycin-dependent vasodilation, and receptor-mediated pulmonary vasoconstriction. We further hypothesized that supplemental CO(2) inhibits these responses to IH. To test these hypotheses, we measured eNOS expression by Western blot in intrapulmonary arteries from CH (2 wk, 0.5 atm), hypocapnic IH (H-IH) (3 min cycles of 5% O(2)/air flush, 7 h/day, 2 wk), and eucapnic IH (E-IH) (3 min cycles of 5% O(2), 5% CO(2)/air flush, 7 h/day, 2 wk) rats and their respective controls. Furthermore, vasodilatory responses to the calcium ionophore ionomycin and vasoconstrictor responses to the thromboxane mimetic U-46619 were measured in isolated saline-perfused lungs from each group. Hematocrit, arterial wall thickness, and right ventricle-to-total ventricle weight ratios were additionally assessed as indexes of polycythemia, arterial remodeling, and PH, respectively. Consistent with our hypotheses, E-IH resulted in attenuated polycythemia, arterial remodeling, RV hypertrophy, and eNOS upregulation compared with H-IH. However, in contrast to CH, neither H-IH nor E-IH increased ionomycin-dependent vasodilation. Furthermore, H-IH and E-IH similarly augmented U-46619-induced pulmonary vasoconstriction but to a lesser degree than CH. We conclude that maintenance of eucapnia decreases IH-induced PH and upregulation of arterial eNOS. In contrast, increases in pulmonary vasoconstrictor reactivity following H-IH are unaltered by exposure to supplemental CO(2).  相似文献   

6.
This study investigated whether changes in GABA-mediated neurotransmission within the nucleus of the solitary tract (NTS) contribute to the changes in breathing (resting ventilation and the acute HVR) that occur following exposure to chronic hypoxia (CH). Rats were exposed to 9 days of hypobaric hypoxia (0.5 atm) and then subjected to acute hypoxic breathing trials before and after bilateral microinjections of GABA, bicuculline (a GABAA-receptor antagonist), or bicuculline plus CGP-35348 (a GABAB receptor antagonist) into the caudal regions of the NTS. Breathing was measured using whole body plethysmography. CH caused an increase in resting ventilation when the animals were breathing 30% O2 but did not alter ventilation during acute hypoxia (10% O2). GABA alone had no effect on breathing in either the control or chronically hypoxic rats. Bicuculline and bicuculline/CGP had no effect on breathing in control rats. Following CH, bicuculline and bicuculline/CGP reduced minute ventilation (VI) during acute exposure to 30% O2 but had no effect during acute exposure to 10% O2. The bicuculline-induced reduction in VI resulted from a decrease in breathing frequency (fR) and tidal volume (VT). The bicuculline/CGP-induced reduction in VI was due to a decrease in fR with no change in VT. The results suggest that changes in GABA receptor-mediated neurotransmission, within the NTS, are involved in the increase in resting ventilation that occurs following CH.  相似文献   

7.
Obstructive sleep apnea is associated with increased risk for cardiovascular diseases. As obstructive sleep apnea is characterized by episodic cycles of hypoxia and normoxia during sleep, we investigated effects of intermittent hypoxia (IH) on ischemia-reperfusion-induced myocardial injury. C57BL/6 mice were subjected to IH (2 min 6% O(2) and 2 min 21% O(2)) for 8 h/day for 1, 2, or 4 wk; isolated hearts were then subjected to ischemia-reperfusion. IH for 1 or 2 wk significantly enhanced ischemia-reperfusion-induced myocardial injury. However, enhanced cardiac damage was not seen in mice treated with 4 wk of IH, suggesting that the heart has adapted to chronic IH. Ischemia-reperfusion-induced lipid peroxidation and protein carbonylation were enhanced with 2 wk of IH, while, with 4 wk, oxidative stress was normalized to levels in animals without IH. H(2)O(2) scavenging activity in adapted hearts was higher after ischemia-reperfusion, suggesting the increased antioxidant capacity. This might be due to the involvement of thioredoxin, as the expression level of this protein was increased, while levels of other antioxidant enzymes were unchanged. In the heart from mice treated with 2 wk of IH, ischemia-reperfusion was found to decrease thioredoxin. Ischemia-reperfusion injury can also be enhanced when thioredoxin reductase was inhibited in control hearts. These results demonstrate that IH changes the susceptibility of the heart to oxidative stress in part via alteration of thioredoxin.  相似文献   

8.
We have reported that, in rats, hypoxia (10.8% O2) stimulates prolactin (PRL) release from the pituitary. This study is designed to compare the response of pituitary PRL to acute hypoxia (AH), continual hypoxia (CH), intermittent hypoxia (IH), cold, and restraint, individually and combined with hypoxia. This study also investigates the involvement of the corticotropin-releasing hormone receptor 1 (CRH R1) in the hypoxia-induced PRL response. Hypoxia was induced by exposing the rats to high altitudes of 2 km (16.0% O2) or 5 km (10.8% O2). The PRL levels in the pituitary (iPRL) and in plasma (pPRL) were measured by immunocytochemistry and RIA assay, respectively. The acute hypoxia of 5 km for 2-24 h caused a biphasic change (early decrease and late increase) of PRL. Both CH and IH at 2 or 5 km for 1-5 days markedly increased pPRL but decreased iPRL. Continual severe hypoxia (10.8% O2) for periods of 10, 15, and 25 days significantly enhanced pPRL but this effect was less marked at the lower altitude (16.0% O2) and did not occur during intermittent hypoxia (at both altitudes). The increased pPRL was significantly enhanced by restraint, restraint + hypoxia, hypoxia, and cold + hypoxia exposure. Treatment with a CRH R1 antagonist (CP-154,526) reversed hypoxia-decreased immunoreactive PRL and upregulated PRLmRNA in the pituitary. The data suggest that both CH and IH can stimulate rat PRL release in a time-course- and intensity-dependent manner. However, compared to the relatively low CH-induced response, restraint induced a more powerful response than either cold or hypoxia alone. CRH R1 mediates PRL secretion and PRL mRNA expression in the pituitary under hypoxic exposure. Hypoxia-enhanced PRL response over the lifespan may play a significant role in adaptation to an extreme environment.  相似文献   

9.
Sojourners to high altitude experience poor-quality of sleep due to hypobaric hypoxia (HH). Brain neurotransmitters are the key regulators of sleep wakefulness. Scientific literature has limited information on the role of brain neurotransmitters involved in sleep disturbance in HH. The present study aimed to investigate the time dependent changes in neurotransmitter levels and enzymes involved in the biosynthesis of brain neurotransmitters in frontal cortex, brain stem, cerebellum, pons and medulla and the effect of these alterations on sleep architecture in HH. Thirty adult Sprague-Dawley rats, body weight of 230-250 g were exposed to simulated altitude ~7620 m, 282 mm Hg, partial pressure of O(2) 59 mm Hg for 7 and 14 days continuously in an animal decompression chamber. After 7 and 14 days of HH, brain nor-epinephrine and dopamine levels were significantly increased in frontal cortex, brain stem, cerebellum and pons and medulla whereas serotonin level was significantly reduced in frontal cortex and pons and medulla after 14 days of HH. Tyrosine hydroxylase level in locus coeruleus (LC) was significantly increased whereas Choline Acetyl Transferase and Glutamic Acid Decarboxylase (GAD) levels were significantly reduced in laterodorsal-tegmentum and pedunculopontine-tegmentum after 7 days of HH. GAD was also reduced in LC after 7 days HH. Alteration in these neurotransmitters and enzyme levels was accompanied with reduction in quality and quantity of sleep. There was a significant increase in sleep latency, rapid eye movement (REM) latency, duration of active awake, quiet awake, quiet sleep and a significant decrease in duration of REM sleep and deep sleep on day 7 and 14 of HH. It was concluded that HH alters the expression of enzymes linked to sleep neurotransmitter synthesis pathway and subsequent loss of homeostasis at neurotransmitter level disrupts the sleep pattern in hypobaric hypoxia.  相似文献   

10.
Intermittent hypoxia (IH) associated with sleep apnea leads to cardio-respiratory morbidities. Previous studies have shown that IH alters the synthesis of neurotransmitters including catecholamines and neuropeptides in brainstem regions associated with regulation of cardio-respiratory functions. GABA, a major inhibitory neurotransmitter in the CNS, has been implicated in cardio-respiratory control. GABA synthesis is primarily catalyzed by glutamic acid decarboxylase (GAD). In this study, we tested the hypothesis that IH like its effect on other transmitters also alters GABA synthesis. The impact of IH on GABA synthesis was investigated in pheochromocytoma 12 cells, a neuronal cell line which is known to express active form of GAD67 in the cytosolic fraction and also assessed the underlying mechanisms contributing to IH-evoked response. Exposure of cell cultures to IH decreased GAD67 activity and GABA level. IH-evoked decrease in GAD67 activity was caused by increased cAMP - protein kinase A (PKA) - dependent phosphorylation of GAD67, but not as a result of changes in either GAD67 mRNA or protein expression. PKA inhibitor restored GAD67 activity and GABA levels in IH treated cells. Pheochromocytoma 12 cells express dopamine 1 receptor (D1R), a G-protein coupled receptor whose activation increased adenylyl cyclase activity. Treatment with either D1R antagonist or adenylyl cyclase inhibitor reversed IH-evoked GAD67 inhibition. Silencing D1R expression with siRNA reversed cAMP elevation and GAD67 inhibition by IH. These results provide evidence for the role of D1R-cAMP-PKA signaling in IH-mediated inhibition of GAD67 via protein phosphorylation resulting in down-regulation of GABA synthesis.  相似文献   

11.
间歇性低氧处理大鼠心肌的抗心律失常与抗氧化效应   总被引:17,自引:3,他引:14  
Zhang Y  Zhong N  Zhu HF  Zhou ZN 《生理学报》2000,52(2):89-92
利用结扎在体大鼠冠脉方法研究不同时间间歇性低氧处理对血、再灌注心律失常以及心肌超氧化物歧化酶(SOD)、丙二醛(MDA)的影响,并与连续性低氧相比较。实验结果如下:⑴间歇性低氧(intermittent hypoxia exposure)28d(IH28)、42d(IH42)、间歇性低氧28d后1周(PIH28-2W)和连续性低氧(comtinued hypoxia exposure)28d(CH  相似文献   

12.
Carotid bodies are functionally immature at birth and exhibit poor sensitivity to hypoxia. Previous studies have shown that continuous hypoxia at birth impairs hypoxic sensing at the carotid body. Intermittent hypoxia (IH) is more frequently experienced in neonatal life. Previous studies on adult animals have shown that IH facilitates hypoxic sensing at the carotid bodies. On the basis of these studies, in the present study we tested the hypothesis that neonatal IH facilitates hypoxic sensing of the carotid body and augments ventilatory response to hypoxia. Experiments were performed on 2-day-old rat pups that were exposed to 16 h of IH soon after the birth. The IH paradigm consisted of 15 s of 5% O2 (nadir) followed by 5 min of 21% O2 (9 episodes/h). In one group of experiments (IH and control, n = 6 pups each), sensory activity was recorded from ex vivo carotid bodies, and in the other (IH and control, n = 7 pups each) ventilation was monitored in unanesthetized pups by plethysmography. In control pups, sensory response of the carotid body was weak and was slow in onset (approximately 100 s). In contrast, carotid body sensory response to hypoxia was greater and the time course of the response was faster (approximately 30 s) in IH compared with control pups. The magnitude of the hypoxic ventilatory response was greater in IH compared with control pups, whereas changes in O2 consumption and CO2 production during hypoxia were comparable between both groups. The magnitude of ventilatory stimulation by hyperoxic hypercapnia (7% CO2-balance O2), however, was the same between both groups of pups. These results demonstrate that neonatal IH facilitates carotid body sensory response to hypoxia and augments hypoxic ventilatory chemoreflex.  相似文献   

13.
14.
Sleep‐disordered breathing with recurrent apnea is associated with intermittent hypoxia (IH). Cardiovascular morbidities caused by IH are triggered by increased generation of reactive oxygen species (ROS) by pro‐oxidant enzymes, especially NADPH oxidase‐2 (Nox2). Previous studies showed that (i) IH activates hypoxia‐inducible factor 1 (HIF‐1) in a ROS‐dependent manner and (ii) HIF‐1 is required for IH‐induced ROS generation, indicating the existence of a feed‐forward mechanism. In the present study, using multiple pharmacological and genetic approaches, we investigated whether IH‐induced expression of Nox2 is mediated by HIF‐1 in the central and peripheral nervous system of mice as well as in cultured cells. IH increased Nox2 mRNA, protein, and enzyme activity in PC12 pheochromocytoma cells as well as in wild‐type mouse embryonic fibroblasts (MEFs). This effect was abolished or attenuated by blocking HIF‐1 activity through RNA interference or pharmacologic inhibition (digoxin or YC‐1) or by genetic knockout of HIF‐1α in MEFs. Increasing HIF‐1α expression by treating PC 12 cells with the iron chelator deferoxamine for 20 h or by transfecting them with HIF‐1alpha expression vector increased Nox2 expression and enzyme activity. Exposure of wild‐type mice to IH (8 h/day for 10 days) up‐regulated Nox2 mRNA expression in brain cortex, brain stem, and carotid body but not in cerebellum. IH did not induce Nox2 expression in cortex, brainstem, carotid body, or cerebellum of Hif1a+/? mice, which do not manifest increased ROS or cardiovascular morbidities in response to IH. These results establish a pathogenic mechanism linking HIF‐1, ROS generation, and cardiovascular pathology in response to IH. J. Cell. Physiol. 226: 2925–2933, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
Obstructive apnea and voluntary breath holding are associated with transient increases in muscle sympathetic nerve activity (MSNA) and arterial pressure. The contribution of changes in blood flow relative to the contribution of changes in vascular resistance to the apnea-induced transient rise in arterial pressure is unclear. We measured heart rate, mean arterial blood pressure (MAP), MSNA (peroneal microneurography), and femoral artery blood velocity (V(FA), Doppler) in humans during voluntary end-expiratory apnea while they were exposed to room air, hypoxia (10.5% inspiratory fraction of O2), and hyperoxia (100% inspiratory fraction of O2). Changes from baseline of leg blood flow (Q) and vascular resistance (R) were estimated from the following relationships: Q proportional to V(FA), corrected for the heart rate, and R proportional to MAP/Q. During apnea, MSNA rose; this rise in MSNA was followed by a rise in MAP, which peaked a few seconds after resumption of breathing. Responses of MSNA and MAP to apnea were greatest during hypoxia and smallest during hyperoxia (P < 0.05 for both compared with room air breathing). Similarly, apnea was associated with a decrease in Q and an increase in R. The decrease in Q was greatest during hypoxia and smallest during hyperoxia (-25 +/- 3 vs. -6 +/- 4%, P < 0.05), and the increase in R was the greatest during hypoxia and the least during hyperoxia (60 +/- 8 vs. 21 +/- 6%, P < 0.05). Thus voluntary apnea is associated with vasoconstriction, which is in part mediated by the sympathetic nervous system. Because apnea-induced vasoconstriction is most intense during hypoxia and attenuated during hyperoxia, it appears to depend at least in part on stimulation of arterial chemoreceptors.  相似文献   

16.
Gasping is a critically important mechanism for autoresuscitation and survival during extreme tissue hypoxia. Evidence of antecedent hypoxia in sudden infant death syndrome suggests that intermittently occurring hypoxic episodes may modify gasping and autoresuscitation. To examine this issue, an intermittent hypoxia (IH) profile consisting of alternating room air and 10% O(2)-balance N(2) every 90 s was applied to pregnant Sprague-Dawley rats (IHRA; n = 50) and to pups after a normal pregnancy (RAIH; n = 50) as well as to control pups (RARA; n = 50). At postnatal day 5, pups were exposed to 95% N(2)-5% CO(2), and gasping and the ability to autoresuscitate were assessed. Compared with RARA, IHRA- and RAIH-exposed pups had a reduced number of gasps, decreased overall gasp duration, and were less likely to autoresuscitate on introduction of room air to the breathing mixture during the last phase of gasping (P < 0.001 vs. RARA). We conclude that both prenatal and early postnatal IH adversely affect gasping and related survival mechanisms.  相似文献   

17.
18.
We have investigated the effects of preconditioning pheochromocytoma (PC12) cells with intermittent hypoxia (IH) on transmitter release during acute hypoxia. Cell cultures were exposed to either alternating cycles of hypoxia (1% O(2) + 5% CO(2); 30 s/cycle) and normoxia (21% O(2) + 5% CO(2); 3 min/cycle) for 15 or 60 cycles or normoxia alone (control) for similar durations. Control and IH cells were challenged with either hyperoxia (basal release) or acute hypoxia (Po(2) of approximately 35 Torr) for 5 min, and the amounts of dopamine (DA) and acetylcholine (ACh) released in the medium were determined by HPLC combined with electrochemical detection. Hypoxia augmented DA (approximately 80%) but not ACh release in naive cells, whereas, in IH-conditioned cells, it further enhanced DA release (ranging from 120 to approximately 145%) and facilitated ACh release (approximately 30%). Hypoxia-evoked augmentation of transmitter release was not seen in cells conditioned with sustained hypoxia. IH-induced increase in DA but not IH-induced ACh release during hypoxia was partially inhibited by cadmium chloride (100 microM), a voltage-gated Ca(2+) channel blocker. By contrast, 2-aminoethoxydiphenylborate (75 microM), a blocker of inositol 1,4,5-trisphosphate (IP(3)) receptors, and N-acetyl-L-cysteine (300 microM), a potent scavenger of reactive oxygen species, either attenuated or abolished IH-evoked augmentation of transmitter release during hypoxia. Together, the above results demonstrate that IH conditioning increases hypoxia-evoked neurotransmitter release from PC12 cells via mechanisms involving mobilization of Ca(2+) from intracellular stores through activation of IP(3) receptors. Our findings also suggest that oxidative stress plays a central role in IH-induced augmentation of transmitter release from PC12 cells during acute hypoxia.  相似文献   

19.
We examined the effects of exposure to 10-12 days intermittent hypercapnia [IHC: 5:5-min hypercapnia (inspired fraction of CO(2) 0.05)-to-normoxia for 90 min (n = 10)], intermittent hypoxia [IH: 5:5-min hypoxia-to-normoxia for 90 min (n = 11)] or 12 days of continuous hypoxia [CH: 1,560 m (n = 7)], or both IH followed by CH on cardiorespiratory and cerebrovascular function during steady-state cycling exercise with and without hypoxia (inspired fraction of oxygen, 0.14). Cerebrovascular reactivity to CO(2) was also monitored. During all procedures, ventilation, end-tidal gases, blood pressure, muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAv) were measured continuously. Dynamic cerebral autoregulation (CA) was assessed using transfer-function analysis. Hypoxic exercise resulted in increases in ventilation, hypocapnia, heart rate, and cardiac output when compared with normoxic exercise (P < 0.05); these responses were unchanged following IHC but were elevated following the IH and CH exposure (P < 0.05) with no between-intervention differences. Following IH and/or CH exposure, the greater hypocapnia during hypoxic exercise provoked a decrease in MCAv (P < 0.05 vs. preexposure) that was related to lowered cerebral oxygenation (r = 0.54; P < 0.05). Following any intervention, during hypoxic exercise, the apparent impairment in CA, reflected in lowered low-frequency phase between MCAv and BP, and MCAv-CO(2) reactivity, were unaltered. Conversely, during hypoxic exercise following both IH and/or CH, there was less of a decrease in muscle oxygenation (P < 0.05 vs. preexposure). Thus IH or CH induces some adaptation at the muscle level and lowers MCAv and cerebral oxygenation during hypoxic exercise, potentially mediated by the greater hypocapnia, rather than a compromise in CA or MCAv reactivity.  相似文献   

20.
Sleep apnea (intermittent periods of hypoxia with or without hypercapnia) is associated with systemic hypertension and increased mortality from cardiovascular disease, but the relationship to pulmonary hypertension is uncertain. Previous studies on intermittent hypoxia (IH) in rats that demonstrated pulmonary hypertension utilized relatively long periods of hypoxia. Recent studies that utilized brief periods of hypoxia have conflicting reports of right ventricular (RV) hypertrophy. In addition, many studies have not measured pulmonary hemodynamics to asses the severity of pulmonary hypertension in vivo. Given the increasing availability of genetically engineered mice and the need to establish a rodent model of IH-induced pulmonary hypertension, we studied the effect of IH (2-min cycles of 10% and 21% O2, 8 h/day, 4 wk) on wild-type mice, correlating in vivo measurements of pulmonary hypertension with RV mass and pulmonary vascular remodeling. RV systolic pressure was increased after IH (36 +/- 0.9 mmHg) compared with normoxia (29.5 +/- 0.6) but was lower than continuous hypoxia (44.2 +/- 3.4). RV mass [RV-to-(left ventricle plus septum) ratio] correlated with pressure measurements (IH = 0.27 +/- 0.02, normoxia = 0.22 +/- 0.01, and continuous hypoxia = 0.34 +/- 0.01). Hematocrits were also elevated after IH and continuous hypoxia (56 +/- 1.6 and 54 +/- 1.1 vs. 44.3 +/- 0.5%). Evidence of neomuscularization of the distal pulmonary circulation was found after IH and continuous hypoxia. We conclude that mice develop pulmonary hypertension following IH, representing a possible animal model of pulmonary hypertension in response to the repetitive hypoxia-reoxygenation of sleep apnea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号