首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suppressor of cytokine signaling (SOCS) proteins have emerged as important regulators of cytokine signals in lymphocytes. In this study, we have investigated regulation of SOCS expression and their role in Th cell growth and differentiation. We show that SOCS genes are constitutively expressed in naive Th cells, albeit at low levels, and are differentially induced by Ag and Th-polarizing cytokines. Whereas cytokines up-regulate expression of SOCS1, SOCS2, SOCS3, and cytokine-induced Src homology 2 protein, Ags induce down-regulation of SOCS3 within 48 h of Th cell activation and concomitantly up-regulate SOCS1, SOCS2, and cytokine-induced Src homology 2 protein expression. We further show that STAT1 signals play major roles in inducing SOCS expression in Th cells and that induction of SOCS expression by IL-4, IL-12, or IFN-gamma is compromised in STAT1-deficient primary Th cells. Surprisingly, IL-4 is a potent inducer of STAT1 activation in Th2 but not Th1 cells, and SOCS1 or SOCS3 expression is dramatically reduced in STAT1(-/-) Th2 cells. To our knowledge, this is the first report of IL-4-induced STAT1 activation in Th cells, and suggests that its induction of SOCS, may in part, regulate IL-4 functions in Th2 cells. In fact, overexpression of SOCS1 in Th2 cells represses STAT6 activation and profoundly inhibits IL-4-induced proliferation, while depletion of SOCS1 by an anti-sense SOCS1 cDNA construct enhances cell proliferation and induces constitutive activation of STAT6 in Th2 cells. These results are consistent with a model where IL-4 has dual effects on differentiating T cells: it simulates proliferation/differentiation through STAT6 and autoregulates its effects on Th2 growth and effector functions via STAT1-dependent up-regulation of SOCS proteins.  相似文献   

2.
Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) plays an important role in T and B lymphocyte signaling; however, the function of SHP-1 in Th cell differentiation, in particular, the Th1 response, has not been defined. In this study, we provide evidence that SHP-1 phosphatase negatively regulates Th1 cell development and IFN-gamma production. Compared with the wild-type control, anti-CD3-activated mouse T lymphocytes carrying the motheaten viable mutation in the SHP-1 gene produced a significantly increased amount of IFN-gamma in the presence of IL-12. This increase was also seen at the basal level without IL-12 addition. Similarly, Th1 cell differentiation and proliferation of anti-CD3-activated SHP-1 mutant lymph node cells in the presence or absence of IL-12 were markedly enhanced, indicating a negative role for SHP-1 phosphatase in such lymphocyte activities. Interestingly, IL-12-induced activation of Jak2 and STAT4, critical components for IL-12-mediated cellular responses, was shortened or attenuated in mutant T cells. Together these results suggest that SHP-1 negatively regulates Th1 cell development and functions through a mechanism that is not directly related to IL-12 signaling.  相似文献   

3.
4.
The mechanisms underlying physiological regulation of alloimmune responses remain poorly defined. We investigated the roles of cytokines, CTLA-4, CD25(+) T cells, and apoptosis in regulating alloimmune responses in vivo. Two murine cardiac transplant models were used, B10.D2 (minor mismatch) and C57BL/6 (major mismatch), into BALB/c recipients. Recipients were wild type, STAT4(-/-) (Th1 deficient), or STAT6(-/-) (Th2 deficient) mice. Minor mismatched allografts were accepted spontaneously in approximately 70% of wild type and STAT4(-/-) mice. By contrast, there was significantly shorter graft survival in minor mismatched STAT6(-/-) mice. Either the adoptive transfer of STAT4(-/-) splenocytes or the administration of IL-4Fc fusion protein into STAT6(-/-) mice resulted in long term graft survival. Blocking CTLA-4 signaling accelerated the rejection in all recipients, but was more pronounced in the minor combination. This was accompanied by an increased frequency of alloreactive T cells. Furthermore, CTLA-4 blockade regulated CD4(+) or CD8(+) as well as Th1 or Th2 alloreactive T cells. Finally, while anti-CD25 treatment prolonged graft survival in the major mismatched combination, the same treatment accelerated graft rejection in the minor mismatched group. The latter was associated with an increased frequency of alloreactive T cells and inhibition of T cell apoptosis. These data demonstrate that cytokine regulation, CTLA-4 negative signaling, and T cell apoptosis play critical roles in regulating alloimmunity, especially under conditions where the alloreactive T cell clone size is relatively small.  相似文献   

5.
6.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   

7.
In this study we demonstrated that CD4(+) T cells from STAT4(-/-) mice exhibit reduced IL-12R expression and poor IL-12R signaling function. This raised the question of whether activated STAT4 participates in Th1 cell development mainly through its effects on IL-12 signaling. In a first approach to this question we determined the capacity of CD4(+) T cells from STAT4(-/-) bearing an IL-12Rbeta2 chain transgene (and thus capable of normal IL-12R expression and signaling) to undergo Th1 differentiation when stimulated by Con A and APCs. We found that such cells were still unable to exhibit IL-12-mediated IFN-gamma production. In a second approach to this question, we created Th2 cell lines (D10 cells) transfected with STAT4-expressing plasmids with various tyrosine-->phenylalanine mutations and CD4(+) T cell lines from IL-12beta2(-/-) mice infected with retroviruses expressing similarly STAT4 mutations that nevertheless express surface IL-12Rbeta2 chains. We then showed that constructs that were unable to support STAT4 tyrosine phosphorylation (in D10 cells) as a result of mutation were also incapable of supporting IL-12-induced IFN-gamma production (in IL-12Rbeta2(-/-) cells). Thus, by two complementary approaches we demonstrated that activated STAT4 has an essential downstream role in Th1 cell differentiation that is independent of its role in the support of IL-12Rbeta2 chain signaling. This implies that STAT4 is an essential element in the early events of Th1 differentiation.  相似文献   

8.
9.
IL-12 was recently shown to induce CCR5 on TCR-triggered mouse T cells. Considering that STAT4 is the most critical of IL-12 signaling molecules, this study investigated the role for STAT4 in the induction of CCR5 expression. IL-12R was induced by stimulation with anti-CD3 plus anti-CD28 mAb similarly on T cells from wild-type (WT) and STAT4-deficient (STAT4(-/-)) mice, but the levels of IL-12R induced on IFN-gamma-deficient (IFN-gamma(-/-)) T cells were lower compared with WT T cells. Exposure of TCR-triggered WT T cells to IL-12 induced CCR5 expression. In contrast, TCR-triggered STAT4(-/-) T cells failed to express CCR5 in response to IL-12. IL-12 stimulation induced detectable albeit reduced levels of CCR5 expression on IFN-gamma(-/-) T cells. Addition of rIFN-gamma to cultures of IFN-gamma(-/-) T cells, particularly to cultures during TCR triggering resulted in restoration of CCR5 expression. However, CCR5 expression was not induced in STAT4(-/-) T cells by supplementation of rIFN-gamma. These results indicate that for the induction of CCR5 on T cells, 1) STAT4 plays an indispensable role; 2) such a role is not substituted by simply supplementing rIFN-gamma; and 3) IFN-gamma amplifies CCR5 induction depending on the presence of STAT4.  相似文献   

10.
Polarized Th1 cells show a stable phenotype: they become insensitive to IL-4 stimulation and lose the potential to produce IL-4. Previously, we reported that IFN-gamma played a critical role in stabilizing Th1 phenotype. However, the mechanism by which IFN-gamma stabilizes Th1 phenotype is not clear. In this study, we compared STAT6 phosphorylation in wild-type (WT) and IFN-gamma receptor knockout (IFNGR(-/-)) Th1 cells. We found a striking diminution of STAT6 phosphorylation in differentiated WT Th1 cells, but not in differentiated IFNGR(-/-) Th1 cells. The impairment of STAT6 phosphorylation in differentiated WT Th1 cells was not due to a lack of IL-4R expression or phosphorylation. Jak1 and Jak3 expression and phosphorylation were comparable in both cell types. No differential expression of suppressor of cytokine signaling 1 (SOCS1), SOCS3, or SOCS5 was observed in the two cell types. In addition, Src homology 2-containing phosphatase mutation did not affect IL-4-induced STAT6 phosphorylation in differentiated Th1 cells derived from viable motheaten (me(v)/me(v)) mice. These results led us to focus on a novel mechanism. By using a pulldown assay, we observed that STAT6 in WT Th1 cells bound less effectively to the phosphorylated IL-4R/GST fusion protein than that in IFNGR(-/-) Th1 cells. Our results suggest that IFN-gamma may suppress phosphorylation of STAT6 by inhibiting its recruitment to the IL-4R.  相似文献   

11.
Activation-induced cytidine deaminase (AID) plays critical roles in Ig class switch recombination and V(H) gene somatic hypermutation. We investigated the role of IL-4 in AID mRNA induction, the signaling transduction involved in IL-4-mediated AID induction, and the effect of CD45 on IL-4-dependent AID expression in human B cells. IL-4 was able to induce AID expression in human primary B cells and B cell lines, and IL-4-induced AID expression was further enhanced by CD40 signaling. IL-4-dependent AID induction was inhibited by a dominant-negative STAT6, indicating that IL-4 induced AID expression via the Janus kinase (JAK)/STAT6 signaling pathway. Moreover, triggering of CD45 with anti-CD45 Abs can inhibit IL-4-induced AID expression, and this CD45-mediated AID inhibition correlated with the ability of anti-CD45 to suppress IL-4-activated JAK1, JAK3, and STAT6 phosphorylations. Thus, in humans, IL-4 alone is sufficient to drive AID expression, and CD40 signaling is required for optimal AID production; IL-4-induced AID expression is mediated via the JAK/STAT signaling pathway, and can be negatively regulated by the JAK phosphatase activity of CD45. This study indicates that the JAK phosphatase activity of CD45 can be induced by anti-CD45 Ab treatment, and this principle may find clinical application in modulation of JAK activation in immune-mediated diseases.  相似文献   

12.
Autoantibodies to the muscle acetylcholine receptor (AChR) cause the symptoms of human and experimental myasthenia gravis (EMG). AChR-specific CD4+ T cells permit development of these diseases, but the role(s) of the Th1 and Th2 subsets is unclear. The STAT4 and STAT6 proteins, which mediate intracellular cytokine signaling, are important for differentiation of Th1 and Th2 cells, respectively. Wild-type (WT) BALB/c mice, which are prone to develop Th2 rather than Th1 responses to Ag, are resistant to EMG. We have examined the role of Th1 and Th2 cells in EMG using STAT4 (STAT4-/-)- or STAT6 (STAT6-/-)-deficient BALB/c mice. After AChR immunization, STAT6-/- mice were susceptible to EMG: they developed more serum anti-AChR Ab, and had more complement-fixing anti-AChR IgG2a and 2b and less IgG1 than WT or STAT4-/- mice. The susceptibility to EMG of STAT6-/- mice is most likely related to the Th1 cell-induced synthesis of anti-AChR Ab, which trigger complement-mediated destruction of the neuromuscular junction. CD4+ T cells of the STAT6-/- mice had proliferative responses to the AChR comparable to those of WT and STAT4-/- mice, and recognized similar AChR epitopes. STAT6-/- mice had abundant AChR-specific Th1 cells, which were nearly absent in WT and STAT4-/- mice. Spleen and lymph nodes from STAT6-/- mice contained cells that secreted IL-4 when cultured with AChR: these are most likely STAT6-independent cells, stimulated in a non-Ag-specific manner by the cytokines secreted by AChR-specific Th1 cells.  相似文献   

13.
IL-12 and IL-18 are both proinflammatory cytokines that contribute to promoting Th1 development and IFN-gamma expression. However, neither IL-12R nor IL-18R is expressed as a functional complex on most resting T cells. This study investigated the molecular mechanisms underlying the induction of an IL-18R complex in T cells. Resting T cells expressed IL-18Ralpha chains but did not exhibit IL-18 binding sites as detected by incubation with rIL-18 followed by anti-IL-18 Ab, suggesting a lack of IL-18Rbeta expression in resting T cells. Although they also failed to express IL-12R, stimulation with anti-CD3 plus anti-CD28 generated IL-12R. Exposure of these cells to IL-12 led not only to up-regulation of IL-18Ralpha expression but also to induction of IL-18R binding sites on both CD4(+) and CD8(+) T cells concomitant with IL-18Rbeta mRNA expression. The IL-18 binding site represented a functional IL-18R complex capable of exhibiting IL-18 responsiveness. IL-12 induction of an IL-18R complex and IL-18Rbeta mRNA expression was not observed in STAT4-deficient (STAT4(-/-)) T cells and was substantially decreased in IFN-gamma(-/-) T cells. However, the failure of STAT4(-/-) T cells to induce an IL-18R complex was not corrected by IFN-gamma. These results indicate that STAT4 and IFN-gamma play an indispensable role and a role as an amplifying factor, respectively, in IL-12 induction of the functional IL-18R complex.  相似文献   

14.
Humans and mice have evolved distinct pathways for Th1 cell development. Although IL-12 promotes CD4(+) Th1 development in both murine and human T cells, IFN-alphabeta drives Th1 development only in human cells. This IFN-alphabeta-dependent pathway is not conserved in the mouse species due in part to a specific mutation within murine Stat2. Restoration of this pathway in murine T cells would provide the opportunity to more closely model specific human disease states that rely on CD4(+) T cell responses to IFN-alphabeta. To this end, the C terminus of murine Stat2, harboring the mutation, was replaced with the corresponding human Stat2 sequence by a knockin targeting strategy within murine embryonic stem cells. Chimeric m/h Stat2 knockin mice were healthy, bred normally, and exhibited a normal lymphoid compartment. Furthermore, the murine/human STAT2 protein was expressed in murine CD4(+) T cells and was activated by murine IFN-alpha signaling. However, the murine/human STAT2 protein was insufficient to restore full IFN-alpha-driven Th1 development as defined by IFN-gamma expression. Furthermore, IL-12, but not IFN-alpha, promoted acute IFN-gamma secretion in collaboration with IL-18 stimulation in both CD4(+) and CD8(+) T cells. The inability of T cells to commit to Th1 development correlated with the lack of STAT4 phosphorylation in response to IFN-alpha. This finding suggests that, although the C terminus of human STAT2 is required for STAT4 recruitment and activation by the human type I IFNAR (IFN-alphabetaR), it is not sufficient to restore this process through the murine IFNAR complex.  相似文献   

15.
16.
17.
T helper (Th) cells differentiate into functionally distinct effector cell subsets of which Th1 and Th2 cells are best characterized. Besides T cell receptor signaling, IL-12-induced STAT4 and T-bet- and IL-4-induced STAT6 and GATA3 signaling pathways are the major players regulating the Th1 and Th2 differentiation process, respectively. However, there are likely to be other yet unknown factors or pathways involved. In this study we used quantitative proteomics exploiting cleavable ICAT labeling and LC-MS/MS to identify IL-4-regulated proteins from the microsomal fractions of CD4(+) cells extracted from umbilical cord blood. We were able to identify 557 proteins of which 304 were also quantified. This study resulted in the identification of the down-regulation of small GTPases GIMAP1 and GIMAP4 by IL-4 during Th2 differentiation. We also showed that both GIMAP1 and GIMAP4 genes are up-regulated by IL-12 and other Th1 differentiation-inducing cytokines in cells induced to differentiate toward Th1 lineage and down-regulated by IL-4 in cells induced to Th2. Our results indicate that the GIMAP (GTPase of the immunity-associated protein) family of proteins is differentially regulated during Th cell differentiation.  相似文献   

18.
IL-27 is a novel IL-6/IL-12 family cytokine that not only plays a role in the early regulation of Th1 differentiation, but also exerts an inhibitory effect on immune responses, including the suppression of proinflammatory cytokine production. However, the molecular mechanism by which IL-27 exerts the inhibitory effect remains unclear. In this study we demonstrate that IL-27 inhibits CD28-mediated IL-2 production and that suppressor of cytokine signaling 3 (SOCS3) plays a critical role in the inhibitory effect. Although IL-27 enhanced IFN-gamma production from naive CD4+ T cells stimulated with plate-coated anti-CD3 and anti-CD28 in the presence of IL-12, IL-27 simultaneously inhibited CD28-mediated IL-2 production. Correlated with the inhibition, IL-27 was shown to augment SOCS3 expression. Analyses using various mice lacking a signaling molecule revealed that the inhibition of IL-2 production was dependent on STAT1, but not on STAT3, STAT4, and T-bet, and was highly correlated with the induction of SOCS3 expression. Similar inhibition of CD28-mediated IL-2 production and augmentation of SOCS3 expression by IL-27 were observed in a T cell hybridoma cell line, 2B4. Forced expression of antisense SOCS3 or dominant negative SOCS3 in the T cell line blocked the IL-27-inudced inhibition of CD28-mediated IL-2 production. Furthermore, pretreatment with IL-27 inhibited IL-2-mediated cell proliferation and STAT5 activation, although IL-27 hardly affected the induction level of CD25 expression. These results suggest that IL-27 inhibits CD28-mediated IL-2 production and also IL-2 responses, and that SOCS3, whose expression is induced by IL-27, plays a critical role in the inhibitory effect in a negative feedback mechanism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号