首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
The short preincubation of submitochondrial particles with low concentrations of ADP in the presence of Mg2+ results in a complete loss of their ATPase and inosine triphosphatase activities. Other nucleoside diphosphates (IDP and GDP) do not affect the ATPase activity. The ADP-inhibited ATPase can be activated in a time-dependent manner by treatment of submitochondrial particles with the enzyme converting ADP into ATP (phosphoenolpyruvate plus pyruvate kinase). The activaton is a first-order reaction with rate constant 0.2 min-1 at 25 degrees C. The rate constant of activation is increased in the presence of ATP up to 2 min-1, and this increase shows saturation kinetics with Km value equal to that for ATPase reaction itself (10(-4) M at 25 degrees C at pH 8.0). The experimental results obtained are consistent with the model where two alternative pathways of ADP dissociation from the inhibitory site of ATPase exist; one is spontaneous dissociation and the second is ATP-dependent dissociation through the formation of the ternary complex between ADP, the enzyme and ATP. ADP-induced inactivation and ATP-dependent activation of ATPase activity of submitochondrial particles is accompanied by the same directed change of their ability to catalyse the ATP-dependent reverse electron transport from succinate to NAD+. The possible implication of the model suggested is discussed in terms of functional role of the inhibitory high-affinity binding site for ADP in the mitochondrial ATPase.  相似文献   

2.
The kinetics of protein-fluorescence change when rabbit skeletal myosin subfragment 1 is mixed with ATP or adenosine 5'-(3-thiotriphosphate) in the presence of Mg(2+) are incompatible with a simple bimolecular association process. A substrate-induced conformation change with DeltaG(0)<-24kJ.mol(-1) (i.e. DeltaG(0) could be more negative) at pH8 and 21 degrees C is proposed as the additional step in the binding of ATP. The postulated binding mechanism is M+ATPright harpoon over left harpoonM.ATPright harpoon over left harpoonM*.ATP, where the association constant for the first step, K(1), is 4.5x10(3)m(-1) at I 0.14m and the rate of isomerization is 400s(-1). In the presence of Mg(2+), ADP binds in a similar fashion to ATP, the rate of the conformation change also being 400s(-1), but with DeltaG(0) for that process being -14kJ.mol(-1). The effect of increasing ionic strength is to decrease K(1), the kinetics of the conformation change being essentially unaltered. Alternative schemes involving a two-step binding process for ATP to subfragment 1 are possible. These are not excluded by the experimental results, although they are perhaps less likely because they imply uncharacteristically slow bimolecular association rate constants.  相似文献   

3.
Purines, that is, adenosine and ATP, are not only products of metabolism but are also neurotransmitters. Indeed, purinergic neurotransmission is involved in thermoregulatory processes that occur during normoxia. Exposure to severe hypoxia elicits a sharp decrease in body core temperature (T(CO)), and adenosinergic mechanisms have been suspected to be responsible for this hypothermia. Because ATP per se and its metabolite adenosine could have complex interactions in some neural networks, we hypothesize that both adenosine and ATP are involved in the central mechanism of hypoxia-induced hypothermia. Their role in the thermoregulatory process was therefore investigated in a 24-h hypobaric hypoxia (Fi(O2) = 10%), using CGS-15943, a nonselective antagonist of adenosine receptors, and suramin, an ATP receptor antagonist. T(CO) and spontaneous activity (A(S)) were monitored by telemetry in conscious rats, receiving CGS-15943 (10 mg/kg ip), suramin (7 nmol icv), or both. The same treatments were done in normoxia to evaluate the specificity of their thermoregulatory action observed in hypoxia. Suramin/CGS-15943 treatment blunted the profound hypothermia observed in control rats throughout the hypoxia exposure, whereas CGS-15943 treatment blunted hypothermia during only 3 h, and suramin treatment had no effect. These results suggest that suramin potentiates the CGS-15943 effects and consequently that adenosine and ATP signaling act in synergy. In normoxia, suramin/CGS-15943 induced an increase in T(CO) but to a far lesser extent than observed in hypoxia. Thus it might be suggested that the suramin/CGS-15943 blunting of hypoxia-induced hypothermia would be specific to hypoxia-induced mechanisms.  相似文献   

4.
M Ikejima  D M Gill 《Biochemistry》1985,24(19):5039-5045
Poly(adenosine 5'-diphosphate ribose) [poly(ADP-ribose]) is spontaneously ADP-ribosylated when it is incubated with nicotinamide adenine dinucleotide, especially in 0.5 M NaCl and at an alkaline pH. The ADP-ribose residues are monomeric and are attached to the middle of polymer chains. The linkage is similar to, and may be identical with, that of the branch points that are created in cells. RNA is also spontaneously ADP-ribosylated, but not DNA.  相似文献   

5.
Adenosine has been measured at the nanomolar level by an enzymatic radioactive assay. The nucleoside is converted into [U-14C]ribose-labeled inosine via the following reactions: adenosine + H2O----adenine + ribose (adenosine nucleosidase); adenine + [U-14C]ribose 1-phosphate in equilibrium with T[U-14C]ribose-adenosine + Pi (adenosine phosphorylase); [U-14C]ribose-adenosine + H2O----[U-14C]ribose-inosine + NH3 (adenosine deaminase). The radioactivity of inosine, separated by thin-layer chromatography, is a measure of the adenosine initially present.  相似文献   

6.
Lineweaver-Burk plots of Ca2+-activated adenosine triphosphatase from rabbit muscle sarcoplasmic reticulum have been determined for a wide range of substrate concentrations. The plots measured at constant Mg2+ concentrations are normally nonlinear, but approach linearity either as the sarcoplasmic reticulum ages, or when small quantities of Triton-X100 are added. Titration with N-ethylmaleimide has the same effect on the activity of the ATPase measured either at high or low substrate concentrations. Lineweaver-Burk plots measured under conditions where the Mg2+ concentration is varied so as to be always equal to the ATP concentration are linear. These results have been interpreted as evidence that the adenosine triphosphatase has a single active site which uses MgATP as its substrate and which can be modified by free Mg2+.  相似文献   

7.
Capillary transport of adenosine   总被引:2,自引:0,他引:2  
We tested the hypothesis that capillary exchange of adenosine is influenced by the ability of endothelial cells (ECs) to take up adenosine. Triple-indicator diffusion experiments were performed by injecting [14C]adenosine, [3H]9-beta-D-arabinofuranosylhypoxanthine ( [3H]araH), and radioiodinated serum albumin (RISA) into the arterial perfusate of isolated nonworking guinea pig hearts. Tracer appearance in venous effluent was observed over time. The early extraction of [14C]adenosine was much higher than that of [3H]araH. Extracted [3H]araH returned to the vascular space, but [14C]adenosine did not. Quantitative analysis of the curves by using a mathematical model indicates that approximately half of the extracted adenosine enters ECs and is metabolized. The remainder enters the interstitium and is taken up by myocytes, ECs, or other cells and is metabolized. We conclude that uptake of adenosine by ECs represents a significant influence on the capillary exchange of adenosine.  相似文献   

8.
Jae Park 《FEBS letters》2009,583(13):2231-1396
Adenosine kinase (AK) is only found in eukaryotes. Recently, a Mycobacterium tuberculosis (MTub) protein exhibiting greater sequence similarity to ribokinases (RK) was identified as AK. We have expressed AKs from MTub, human and Chinese hamster (CH) cells in Escherichia coli and also AK from human and MTub in AK-deficient CH cells. While both E. coli and CH cells expressing mammalian AKs efficiently metabolized various adenosine analogs, those expressing MTub-AK were completely inactive. The AK activity of the MTub protein was very low (50-fold lower than E. coli RK) and it was not stimulated by phosphate or inhibited by several AK inhibitors. These results raise questions over MTub protein’s true function and whether it functions as AK in cells.  相似文献   

9.
The thermodynamic treatment of the disproportionation reaction of adenosine 5′-diphosphate to adenosine 5′-triphosphate and adenosine 5′-monophosphate is discussed in terms of an equilibrium model which includes the effects of the multiplicity of ionic and metal bound species and the presence of long range electrostatic and short range repulsive interactions. Calculated quantities include equilibrium constants, enthalpies, heat capacities, entropies, and the stoichiometry of the overall reaction. The matter of how these calculations can be made self-consistent with respect to both calculated values of the ionic strength and the molality of the free magnesium ion is discussed. The thermodynamic data involving proton and magnesium-ion binding data for the nucleotides involved in this reaction have been evaluated.  相似文献   

10.
The enthalpy of hydrolysis of the enzyme-catalyzed (heavy meromyosin) conversion of adenosine 5'-triphosphate (ATP) to adenosine 5'-diphosphate (ADP) and inorganic phosphate has been investigated using heat-conduction microcalorimetry. Enthalpies of reaction were measured as a function of ionic strength (0.05-0.66 mol kg-1), pH (6.4-8.8), and temperature (25-37 degrees C) in Tris/HCl buffer. The measured enthalpies were adjusted for the effects of proton ionization and metal ion binding, protonation and interaction with the Tris buffer, and ionic strength effects to obtain a value of delta H0 = -20.5 +/- 0.4 kJ mol-1 at 25 degrees C for the process, ATP4-(aq) + H2O(l) = ADP3-(aq) + HPO2-4(aq) + H+(aq) where aq is aqueous and l is liquid. Heat measurements carried out at different temperatures lead to a value of delta C0p = -237 +/- 30 J mol-1 K-1 for the above process.  相似文献   

11.
Biotin-containing analogs of a potent agonist (N6-phenyladenosine) and a potent antagonist (1,3-dipropyl-8-phenylxanthine) of adenosine receptor activity have been synthesized. A spacer chain to the biotin moiety is attached in both cases to the para-position of the phenyl ring. Two biotin conjugates of N6-phenyladenosine differing only in the length of the spacer chain bind to the adenosine receptor and to avidin simultaneously. The shorter-chain derivative was more potent in inhibiting binding of N6-[3H]cyclohexyladenosine to rat cerebral cortical membranes (Ki of 11 nM in the absence of avidin, 36 nM for the avidin complex). Three biotin conjugates of 1,3-dipropyl-8-phenylxanthine bound competitively to the adenosine receptor, but only in the absence of avidin. The results are interpreted in terms of the possible orientation of the ligands at the receptor binding site.  相似文献   

12.
Abstract Membranes prepared from various members of the genus Halobacterium contained a Triton X-100 activated adenosine triphosphatase. The enzyme from Halobacterium saccharovorum was unstable in solutions of low ionic strength (< 3 M NaCl) and maximally active in the presence of 3.5 M NaCl. A variety of nucleotide triphosphates was hydrolyzed. MgADP, the product of ATP hydrolysis, was not hydrolyzed and was a competitive inhibitor with respect to MgATP. The enzyme from H. saccharovorum was composed of at least 2 and possibly 4 subunits. The 83-kDa and 60-kDa subunits represented about 90% of total protein. The 60-kDa subunit reacted with dicyclohexylcarbodiimide (DCCD) when inhibition was carried out in an acidic medium. The significance of the two minor components (28 kDa and 12 kDa) is not established. The enzyme from H. saccharovorum , which differs from previously described halobacterial ATPases, possesses properties of an F1F0 as well as an E1E2 ATPase.  相似文献   

13.
1. Preincubation of the ox heart chloroform-released mitochondrial ATPase with MgATP results in a time-dependent inhibition of ATPase activity. No re-activation occurs when MgATP remains in the preincubation medium. The enzyme activity returns when all the MgATP in the preincubation system has been hydrolysed. 2. The mechanism of the MgATP-induced inhibition was examined. Inhibition occurs on incubation with MgATP or other hydrolysable nucleotides. Incubation with MgADP or Pi does not cause any inhibition. Neither freshly bound adenine nucleotide nor Pi is associated with inhibited enzyme. The rate of MgATP-induced inhibition correlates with the rate of ATP hydrolysis in the preincubation medium. Changing the rate of ATP hydrolysis at a fixed concentration of ATP also changes the rate of MgATP-induced inhibition by the same proportion. The inhibition is thus related to the ATP-hydrolysis process itself. 3. We propose that intermediate enzyme species of the ATP-hydrolytic sequence can undergo a conformational change to form inhibited species. The kinetics of the inhibition suggest that a substrate-activation step is involved in ATP hydrolysis and MgATP-induced inhibition. 4. The effects of the nature of the preincubation medium on the process of MgATP-induced inhibition and its reversal were examined.  相似文献   

14.
In intact pigeon erythrocytes, adenosine is a potent inhibitor of Na,K-dependent adenosine triphosphatase. In purified cell-membrane preparations, adenosine is only a weak competitive inhibitor of Na,K-ATPase, with respect to ATP. This indicates that adenosine must not be a direct inhibitor of the sodium pump in intact red cells per se; instead, adenosine exerts its inhibitory effect via endogenous cell factors.  相似文献   

15.
Deaza analogues of adenosine and EHNA were tested as inhibitors of the enzyme adenosine deaminase (ADA) obtained from several sources including human erythrocytes, calf intestine, Saccaromices cerevisiae, Escherichia coli and Takadiastase. Ki values of the inhibitors suggest differences among the enzymes both at purine and erythro-nonyl binding site. Among the ribofuranosyl derivatives, 1-deazaadenosine is the best inhibitor, its Ki ranging between 3.5 x 10(-7) and 4 x 10(-5) M for ADA from erythrocytes and Takadiastase respectively. Only ADA from erythrocytes and calf intestine bind EHNA and some of deazaEHNA analogues; 3-deazaEHNA behaves very similarly to EHNA both in affinity and slow binding mechanism, whereas 1-deazaEHNA, though less potent, is a good inhibitor.  相似文献   

16.
The conformational models of the active site of adenosine deaminase (ADA) and its complexes in the basic state with adenosine and 13 isosteric analogues of the aza, deaza, and azadeaza series were constructed. The optimization of the conformational energy of the active site and the nucleoside bound with it in the complex was achieved in the force field of the whole enzyme (the 1ADD structure was used) within the molecular mechanics model using the AMBER 99 potentials. The stable conformational states of each of the complexes, as well as the optimal conformation of the ADA in the absence of ligand, were determined. It was proved that the conformational state that is close to the structure of the ADA complex with 1-deazaadenosine (1ADD) known from the X-ray study corresponds to one of the local minima of the potential surface. Another, a significantly deeper minimum was determined; it differs from the first minimum by the mutual orientation of side chains of amino acid residues. A similar conformational state is optimal for the ADA active site in the absence of the bound ligand. A qualitative correlation exists between the values of potential energies of the complexes in this conformation and the enzymatic activity of ADA toward the corresponding nucleosides. The dynamics of conformational conversions of the active site after the binding of substrate or its analogues, as well as the possibility of the estimation of the inhibitory properties of nucleosides on the basis of calculations, are discussed.  相似文献   

17.
Adenosine kinase is a potential target for development of new types of drugs. The COG1839 family has been defined as “adenosine-specific kinase” family based on structural analysis and the adenosine-binding ability of a family member, PAE2307. However, there has been no experimental evidence with regard to the enzymatic function of this protein family. Here we measured the enzymatic activity of TTHA1091, a COG1839 family protein from Thermus thermophilus HB8. The phosphorylation of adenosine by TTHA1091 was undetectable when ATP or ADP were used as phosphate donor. However, the degradation of ADP to AMP was detected, indicating that this protein possessed adenosine diphosphatase (ADPase) activity. The (ADPase) activity was inhibited by divalent cations and was specific to ADP and CDP. Thus, this study provides the first experimental evidence for the enzymatic function of the “adenosine-specific kinase” family and suggests a need to reexamine its functional annotation.  相似文献   

18.
Radioactive adenosine triphosphate was synthesized transiently from adenosine diphosphate and radioactive inorganic phosphate by sodium and potassium adenosine triphosphatase from guinea pig kidney. In a first step, K+-sensitive phosphoenzyme was formed from radioactive inorganic phosphate in the presence of magnesium ion and 16 mM sodium ion. In a second step the addition to the phosphoenzyme of adenosine diphosphate with a higher concentration of sodium ion produced adenosine triphosphate. Recovery of adenosine triphosphate from the phosphoenzyme was 10 to 100% in the presence of 96 to 1200 mM sodium ion, respectively. Potassium ion (16mM) inhibited synthesis if added before or simultaneously with the high concentration of sodium ion but had no effect afterward. The half-maximal concentration for adenosine diphosphate was about 12 muM. Ouabain inhibited synthesis. The ionophore gramicidin had no significant effect on the level of phosphoenzyme nor on the rate nor on the extent of synthesis of adenosine triphosphate. The detergent Lubrol WX reduced the rate of phosphoenzyme break-down and the rate of synthesis but did not affect the final recovery. Phospholipase A treatment inhibited synthesis. In a steady state, the enzyme catalzyed a slow ouabain-sensitive incorporation or inorganic phosphate into adenosine triphosphate. These results and other suggest that binding of sodium ion to a low affinity site on phosphoenzyme formed from inorganic phosphate is sufficient to induce a conformational change in the active center which permits transfer of the phosphate group to adenosine diphosphate.  相似文献   

19.
High-pressure liquid-chromatography and microcalorimetry have been used to determine equilibrium constants and enthalpies of reaction for the disproportionation reaction of adenosine 5′-diphosphate (ADP) to adenosine 5′-triphosphate (ATP) andadenosine 5′-monophosphate (AMP). Adenylate kinase was used to catalyze this reaction. The measurements were carried out over the temperature range 286 to 311 K, at ionic strengths varying from 0.06 to 0.33 mol kg−1, over the pH range 6.04 to 8.87, and over the pMg range 2.22 to 7.16, where pMg = -log a(Mg2+). The equilibrium model developed by Goldberg and Tewari (see the previous paper in this issue) was used for the analysis of the measurements. Thus, for the reference reaction: 2 ADp3− (ao) AMp2− (ao)+ ATp (ao), K° = 0.225 ± 0.010, ΔG° = 3.70 +- 0.11 kJ mol −1, ΔH° = −1.5 ± 1. 5 kJ mol −1, °S ° = −17 ± 5 J mol−1 K−1, and ACPp°≈ = −46 J mo1l−1 K−1 at 298.15 K and 0.1 MPa. These results and the thermodynamic parameters for the auxiliary equilibria in solution have been used to model the thermodynamics of the disproportionation reaction over a wide range of temperature, pH, ionic strength, and magnesium ion morality. Under approximately physiological conditions (311.15 K, pH 6.94, [Mg2+] = 1.35 × 10−3 mol kg−1, and I = 0.23 mol kg−1) the apparent equilibrium constant (KA′ = m(ΣAMP)m(ΣATP)/[ m(ΣADP)]2) for the overall disproportionation reaction is equal to 0.93 ± 0.02. Thermodynamic data on the disproportionation reaction and literature values for this apparent equilibrium constant in human red blood cells are used to calculate a morality of 1.94 × 10−4 mol kg−1 for free magnesium ion in human red blood cells. The results are also discussed in relation to thermochemical cycles and compared with data on the hydrolysis of the guanosine phosphates.  相似文献   

20.
We previously demonstrated a bimodal distribution of vasodilator responsiveness to adenosine (Ado) infusion in human subjects, despite similar responses to exercise between subgroups [subjects responsive to Ado infusion (Ado responders) and subjects with blunted vasodilator responses to Ado infusion (Ado nonresponders]). (Martin EA, Nicholson WT, Eisenach JH, Charkoudian N, and Joyner MJ. J Appl Physiol 101: 492-499, 2006). A component of this difference was attributed to a larger nitric oxide component of Ado-mediated vasodilation in responders. However, there may also be differences in Ado receptors between these subgroups. We hypothesized that Ado receptor antagonism would reduce vasodilator responsiveness to Ado and exercise only in Ado responders. To test this hypothesis, we compared forearm vasodilation induced by intra-arterial infusion of three doses of Ado to vasodilation during three workloads of forearm handgrip exercise before and after Ado receptor antagonism with aminophylline (Aph) in 19 subjects. In Ado responders, the change in forearm vascular conductance above baseline for the low, medium, and high doses of Ado, respectively, was 93 +/- 16, 140 +/- 14, 194 +/- 18 before Aph and 27 +/- 12, 71 +/- 19, and 134 +/- 34 ml.min(-1).100 mmHg(-1) after Aph (P < 0.05 for low and medium dose before vs. after Aph). For nonresponders, these values were 30 +/- 5, 39 +/- 6, and 78 +/- 9 ml.min(-1).100 mmHg(-1) before Aph (P < 0.05 vs. responders), with no difference after Aph (P > 0.05). We found that Ado receptor blockade significantly inhibited exercise hyperemia only at high workloads in both responders and nonresponders (P < 0.05 before vs. after Aph). We conclude that there may be reduced Ado receptor responsiveness or sensitivity in nonresponders. Furthermore, Ado may play a limited role exercise hyperemia in both subgroups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号